02

Спектрально-люминесцентные свойства циклометаллированных комплексов Pd(II) на основе метилового эфира цинхофена

© Р.И. Байчурин¹, И.Т. Дуланова¹, Ал.М. Пузык², М.В. Пузык¹¶

¹ Российский государственный педагогический университет имени А.И. Герцена,

191186 Санкт-Петербург, Россия

² Санкт-Петебургский государственный университет,

199034 Санкт-Петербург, Россия

[¶]e-mail: puzyk@mail.ru

Поступила в редакцию 30.04.2021 г. В окончательной редакции 22.07.2021 г. Принята к публикации 27.07.2021 г.

Разработана методика синтеза комплексов Pd(II) с метиловым эфиром 2-фенилхинолин-4-карбоновой кислоты: $[PdMpqc(\mu-Ac)]_2$ и $[PdEnMpqc]BF_4$, где Mpqc — метил-2-фенил-4-хинолинкарбоксилат-ион, Ac — ацетат-ион, En — этилендиамин. Состав и строение полученных комплексов установлены на основании данных ИК и полиядерной спектроскопии ЯМР, оптические и физические свойства описаны на основании УФ и флуоресцентной спектроскопии. Фосфоресценция комплексов Pd(II) в видимой области отнесена к излучательному переходу из спин-запрещенного внутрилигандного электронно-возбужденного ${}^3(\pi - \pi)$ -состояния, локализованного на ароматической системе Мрqс.

Ключевые слова: комплексы Pd(II), метил-2-фенил-4-хинолинкарбоксилат, спектроскопия ЯМР, спектрально-люминесцентные свойства.

DOI: 10.21883/OS.2021.11.51637.2253-21

Цинхофен (2-фенилцинхониновая кислота) и его производные известны с конца 19 века. Введение различных заместителей в молекулу цинхофена способствует снижению токсичности, повышению растворимости, всасываемости, транспортировки по кровяному руслу и, как следствие, к расширению спектра фармакологического действия (болеутоляющие, жаропонижающие, противоподагрические, антимикробные и противоопухолевые средства) [1–4].

Наличие в молекуле цинхофена атомов кислорода и азота способствует его комплексообразованию с некоторыми d-металлами. Так, катионы Zn(II) и Cd(II) соединяются через атомы кислорода карбоксильной группы [5,6], а Au(III) и металлы платиновой группы Pt(II), Pd(II), Rh(III), Ir(III) координируются через азот и депротонированный углерод фенильного кольца [7–12]. Однако фотофизические характеристики подробно исследованы только для октаэдрических Ir(III), Rh(III) и плоскоквадратного Pt(II) комплексов [8,10-12]. Металлированные цинхофены — это часть большого сообщества циклометаллированных комплексов, интенсивная люминесценция которых в сочетании с особенностью электронного строения привлекает внимание исследователей при разработке светоиндуцирующих устройств (типа OLED) [13], сенсоров на молекулярный кислород [14], ионы тяжелых элементов [15], рН, люминесцентные маркеры биомолекул [11], а также применяются для фотодинамической терапии [16].

Однако для электронного аналога Pt(II) — комплексов Pd(II) с цинхофеном люминесцентные исследования отсутствуют [9]. В настоящей работе представлены

результаты спектрально-люминесцентных исследований соединений $[PdMpqc(\mu-Ac)]_2$ (2) и $[PdEnMpqc]BF_4$ (3), где Мрqc — депротонированная форма метил-2-фенил-4-хинолинкарбоксилат-иона, Ac — ацетат-ион, En — этилендиамин (рис. 1).

Экспериментальная часть

Спектральные исследования выполнены с использованием оборудования Центра коллективного пользования факультета химии Российского государственного педагогического университета им. А.И. Герцена. Спектры ЯМР¹H, ¹³C¹H, ¹H-¹H COSY, ¹H-¹H NOESY, ¹H-¹³C HMOC, ¹H-¹³C HMBC и ¹H-¹⁵N HMBC регистрировали на спектрометре Jeol ECX400A с рабочими частотами 399.78 (¹H), 100.53 (¹³C) и 40.52 MHz (¹⁵N); растворитель — ДМСО-d₆. В качестве внутреннего стандарта использовали сигналы остаточных протонов недейтерированного растворителя. Химические сдвиги ¹⁵N определялись относительно CH₃NO₂. ИК спектры получены на фурье-спектрометре Shimadzu IR-Prestige-21 в таблетках КВг. Электронные абсорбционные спектры получали при комнатной температуре в 96%-ном этаноле на СФ-2000 ("ОКБ Спектр", Санкт-Петербург, Россия). Люминесцентные исследование проводили при 77 К на спектрофлуориметре Флюорат-02-Панорама (ГК "Люмэкс", Санкт-Петербург, Россия).

Метил-2-фенилхинолин-4-карбоксилат (HMpqc), тетрафтороборат аммония (NH_4BF_4) (коммерческие вещества, Sigma-Aldrich, "Нева реактив") были использованы

2

Рис. 1. Структурные формулы метил-2-фенилхинолин-4-карбоксилата (1) и циклопалладированных комплексов: [PdMpqc(µ-Ac)]₂ (2) и [PdEnMpqc]BF₄ (3).

без дополнительной очистки. Все растворители очищали с использованием стандартных методик [17].

Комплекс 2 получали при нагревании 89 mg (0.4 mmol) ацетата палладия $Pd(Ac)_2$ и 105 mg (0.4 mmol) 1 в ледяной уксусной кислоте (5.0 ml). О протекании химической реакции судили по смене цвета раствора с коричневого на красный и выпадению осадка при упаривании реакционной смеси вдвое. Собранный на фильтре и промытый холодным дихлорметаном осадок сушили на воздухе до постоянного веса. Масса продукта составила 150 mg, выход — 90%.

Синтез комплекса **3** состоял из двух стадий. Вначале к взвеси, состоящей из 20 mg (0.023 mmol) **2** и 8 ml теплого метанола (50°С), добавили 0.2 ml 0.24 mol/l водного раствора этилендиамина. Наблюдали растворение **2** и изменение цвета раствора с красного на желтый. Далее к полученному теплому раствору приливали насыщенный раствор тетрафторобората аммония до начала выпадения осадка. После охлаждения суспензии до комнатной температуры осадок собирали на фильтре и промывали холодным метанолом, сушили на воздухе до постоянного веса. Масса продукта составила 20 mg, выход — 81%.

Метил-2-фенилхинолин-4-карбоксилат (**HMpqc**, 1). Спектр ЯМР ¹H, δ, ppm: 3.97 с (3H, CH₃), 7.45–7.55 м (3H, H^{3',4',5'}), 7.64 д.д.д. (1H, H⁶, ³J_{5,6} 8.50, ³J_{6,7} 6.95, ⁴J_{6,8} 1.35 Hz), 7.79 д.д.д. (1H, H⁷, ³J_{7,8} 8.45, ³J_{6,7} 6.95, ⁴J_{5,7} 1.25 Hz), 8.10 д.д.д. (1H, H⁸, ³J_{7,8} 8.45, ⁴J_{6,8} 1.35, ⁵J_{5,8} 0.50 Hz), 8.19–8.24 (2H, H^{2',6'}), 8.39 c (H³), 8.51 д.д.д. (1H, H⁵, ³J_{5,6} 8.50, ⁴J_{5,7} 1.25, ⁵J_{5,8} 0.50 Hz). Спектр ЯМР ¹³C{¹H}, δ, ppm: 53.43 (CH³), 119.88 (C³), 123.67 (C⁴), 125.61 (C⁵), 127.71 (C^{2',6'}), 128.48 (C⁶), 129.48 (C^{3',5'}), 130.35 (C⁸), 130.55 (C^{4'}), 130.83 (C⁷), 136.60 (C^{4a}), 138.24 (C^{1'}), 148.85 (C^{8a}), 156.20 (C²), 166.75 (C=O). Спектр ЯМР ¹⁵N, δ, ppm: -62.65.

Бис-((μ -ацетато)-метил-2-фенил-4-хинолинкарбоксилатопалладий(II)) (2). Плохорастворимый красный порошок. Спектр ЯМР ¹Н, δ , ppm: 2.11 с (3H, ацетат), 4.11 с (3H, CH₃), 6.11 т (1H, J 6.41 Hz), 6.24 д (1H, J 6.71 Hz), 6.50 т (1H, J 6.30 Hz), 7.03 д (1H, J 7.32 Hz), 7.53 т (1H, J 7.20 Hz), 7.64 т (1H, J 7.10 Hz), 8.17 д (1H, J 8.24 Hz), 8.37 д (1H, J 7.93 Hz) (всего 8H, бензольное и хинолиновые кольца). Спектр ЯМР ¹³С{¹H} не удалось измерить по причине низкой растворимости соединения. Спектр ИК (KBr), ν , cm⁻¹: 1725 (O-C=O), 1367, 1267, 1247 (C=N/C=C). C₃₈H₃₀N₂O₈Pd₂, найдено (%) C 53.47; H 3.53; N 3.28, вычислено (%) C 53.40; H 3.51; N 3.28.

Тетрафтороборат метил-2-фенил-4-хинолинкарбоксилатоэтилендиаминпалладия(II) (3). Спектр ЯМР ¹H, δ , ppm: 2.58–2.64 м (2H, CH₂), 2.68–2.75 м (2H,

СН₂), 4.03 с (3H, CH₃), 4.43 уш.с (NH₂^{*a*}), 5.40 уш.с (NH₂^{*b*}), 7.13–7.16 м (1H, H^{3'}), 7.16–7.25 м (2H, H^{4',5'}), 7.94–7.98 м (1H, H^{6'}), 7.76 д.д.д. (1H, H⁶, ³*J*_{5,6} 8.30, $P^{3}J_{6,7}$ 7.10, ⁴*J*_{6,8} 1.00 Hz), 7.85 д.д.д. (1H, H⁷, ³*J*_{7,8} 8.54, ³*J*_{6,7} 7.10, ⁴*J*_{5,7} 1.30 Hz), 7.98 д (1H, H⁸, ³*J*_{7,8} 8.54), 8.44 д.д. (1H, H⁵, ³*J*_{5,6} 8.30, ⁴*J*_{5,7} 1.30), 8.54 с (H³). Спектр ЯМР ¹³С{¹H}, δ , ppm: 44.47 (CH₂), 46.37 (CH₂), 53.95 (CH₃), 118.47 (C₃), 124.21 (C₄), 125.80 (C^{5'}), 126.36 (C⁵), 126.65 (C⁸), 127.17 (C^{6'}), 128.95 (C⁶), 130.52 (C^{4'}), 132.54 (C⁷), 134.08 (C^{3'}), 139.95 (C^{4a}), 146.55 (C^{1'}), 148.02 (C^{8a}), 156.39 (C²), 16.12 (C=O), 166.61 (C^{2'}). Спектр ЯМР ¹⁵N, δ , ppm: –142.06. ИК спектр (KBr), ν , cm⁻¹: 3335, 3278, 3258 (NH), 1728 (O-C=O), 1367, 1276, 1236 (C=N/C=C), 1122, 1109, 1080, 622 (B-F). C₁₉H₂₀N₃O₂BF₄Pd: найдено (%) C 44.30; H 3.90; N 8.19, вычислено (%) C 44.27; H 3.88; N 8.16.

Результаты и обсуждение

Комплексные соединения Pd(II) 2 и 3 были синтезированы согласно следующим реакциям:

 $2 \operatorname{PdAc}_2 + 2 \operatorname{HMpqc} = [\operatorname{PdMpqc}(\mu - \operatorname{Ac})]_{2\downarrow} + 2 \operatorname{CH}_3 \operatorname{COOH},$

 $[PdMpqc(\mu-Ac)]_2 + 2En = 2[PdEnMpqc]Ac,$

 $[PdEnMpqc]Ac + (NH_4)BF_4 = [PdEnMpqc]BF_4 + NH_4Ac.$

Состав и строение соединений **2** и **3** были подтверждены данными ИК и ЯМР ¹Н и ¹³C{¹H} спектроскопии с привлечение гомо- (¹H-¹H COSY, ¹H-¹H NOESY) и гетероядерных (¹H-¹³C HMQC, ¹H-¹³C HMBC и ¹H-¹⁵N HMBC) экспериментов, а также в сравнении с данными некоординированного **1** (см. дополнительные материалы).

В ИК спектрах **2**, **3** присутствуют характеристические частоты валентных и деформационных С=С-, С=N-колебаний в области 1500–1200 сm⁻¹, N–Н-колебаний в области 3350–3200 m⁻¹, колебаний СОО⁻-группы — при 1720–1560 сm⁻¹ и 1420–1240 сm⁻¹, а также колебаний В-F тетрафтороборат-иона, находящегося во внешней сфере комплекса, при 1100–1070 и 622 сm⁻¹ [18] (см. дополнительные материалы).

В ЯМР ¹Н спектре соединения **1** наблюдаются группы сигналов фенильных протонов ($H^{2'}-H^{6'}$) в области 7.45–8.24 ppm, протонов хинолинового кольца (H^1-H^8) в области 7.64-8.51 ppm, а также протонов метильной группы (CH₃) при 3.97 ppm, что согласуется с литературными данными [19–25]. Маркерным принят сигнал протона H^3 хинолинового цикла в орто-положении к метилкарбоксилатной группе, проявляющийся в виде синглета при 8.39 ppm. В спектре ¹Н-¹Н NOESY соединения **1** присутствующие кросс-пики между сигналами протонов H^5/CH_3 и H^3/CH_3 свидетельствуют о конформационной подвижности сложноэфирного фрагмента. Также обращает на себя внимание кросс-пик (присутствует также в спектре соединения **3**) между сигналами протонов $H^3/H^{6'}$, что свидетельствует об их сближении в пространстве — нахождении в одной плоскости.

Использование спектроскопии ¹H-¹³C HMQC позволило надежно идентифицировать протонированные атомы углерода, а непротонированные атомы углерода по анализу кросс-пиков (через 2–3 связи). В спектре ¹H-¹³C HMBC соединения **3** следует отметить следующие важные для идентификации кросс-пики:

– кросс-пики $H^{6'}/C^2$ позволили определить C^2 ,

– кросс-пики H³/C^{1'}, H^{5'}/C^{1'}, H^{3'}/C^{1'} позволили определить C^{1'},

- кросс-пики H³/C⁴ позволили определить C⁴,

– кросс-пики H^3/C^{4a} , H^5/C^{4a} позволили определить C^{4a} ,

– кросс-пики H^5/C^{8a} , H^7/C^{8a} позволили определить C^{8a} .

- кросс-пики протонов и атомов углерода метиленовых групп этилендиамина (2.58-2.64/44.47 и 2.68-2.75/46.37 ppm).

О комплексообразовании между **1** и Pd(II) судили по координационно-индуцированному сдвигу пиков (CIS = $\delta_{\text{комплекса}} - \delta_{\text{лиганда}}$) сигналов ядер водорода и углерода (табл. 1). Положительная величина CIS указывает на смещение резонансов в слабое поле, т.е. на снижение электронной плотности на атомах лиганда Мрqc. Наибольшее значение CIS зафиксировано для атома углерода C^{2⁶}, который подвергся депротонированию и образовал химическую связь с палладием. Наибольшая отрицательная величина CIS, зафиксированная для C⁸ хинолинового кольца, указывает на смещение резонансов в сильное поле и, следовательно, на повышение электронной плотности на атомах лиганда. Это, возможно, обусловлено π -дативным взаимодействием палладия с хинолиновым кольцом.

Также следует отметить присутствие в спектре ${}^{1}\text{H}{}^{-1}\text{H}$ NOESY комплекса **3** кросс-пиков между сигналами протонов H⁸/NH^a₂ и H^{3'}/NH^b₂, что позволяет разнести сигналы протонов неэквивалентных аминогрупп. Наблюдается также корреляция сигналов протонов NH^a₂ (4.43 ppm) и метиленовых протонов при 2.58–2.64 ppm и сигналов протонов NH^b₂ (5.40 ppm) и метиленовых протонов при 2.68–2.75 ppm. Спин-спиновая связанность протонов была доказана анализом спектров ${}^{1}\text{H}{}^{-1}\text{H}$ COSY по наличию соответствующих кросс-пиков. Совокупность полученных данных позволяет утверждать о плоскостном нахождении атомов азота этилендиамина, атомов фенильного и хинолинового колец и центрального иона — Pd(II).

Использование методики ${}^{1}\text{H}{}^{15}\text{N}$ HMBC-эксперимента (наличие кросс-пика с протоном H⁸) позволяет приписать атомам азота хинолина химический сдвиг (δ_{N}) при -62.65 ppm в свободном лиганде (HMpqc) и -142.06 ppm в соединении **3**. Такие значения δ_{N} сигнала атома азота хинолинового кольца согласуются с литературными данными. Например, для незамещенного хинолина -77.5 [19], а комплексообразование с катионом серебра приводит к смещению в сильное поле на 23–30 ppm, -75 [20], -71.1 ppm [21],

Углерод	CH ₃	C ¹	C ^{2/2} '	C	3/3'	$C^{4/4a}$	C	5 C	⁵ C ⁷	$C^{8/8a}$	C=O
CIS	0.52	8.31	4.19/38.9	-0.	96/3.6	0.54/3.3	5 0.7	5 0.4	7 1.67	-3.7/-0.63	-0.63
		—	Водород	CH ₃	H ³	H ⁵	H ⁶	H ⁷	H ⁸		
			CIS	0.06	0.15	0.07	0.12	0.06	-0.12		

Таблица 1. Координационно-индуцированные сдвиги (CIS, ppm) углерода и водорода в комплексе **3**; нумерация атомов приведена на рис. 1

для 2-(4-метоксифенил)хинолин-4-карбоновой кислоты -68.23 [22], 2-фенилхинолина -86.8 ppm [23]; для палладиевого диацетатного димера, полученного из 4-(2-бромфенокси)-6-фенилхинолина, -191.3 ppm [24], для дигидробис(трифенилфосфин)родий(III) комплекса, полученного из хинолин-2-карбоновой кислоты, -114.1 [25]. Приведены литературные данные относительно нитрометана (если в статье использовался иной стандарт, то нами производился пересчет данных, принимая химический сдвиг нитрометана равным 388 ppm относительно NH₃).

Электронные абсорбционные и эмиссионные свойства соединений 1-3 могут быть рассмотрены в рамках теории локализованных молекулярных орбиталей [26], т.е. молекулярные орбитали преимущественно локализованы либо на Pd(II), либо на лиганде Мрqc (табл. 2). Спектры поглощения в растворе этанола соединений 1-3 (рис. 2) характеризуются рядом спин-разрешённых переходов различной интенсивности и орбитальной природы:

– в коротковолновой области (до 360 nm) более интенсивные ($\varepsilon > 10^4$ l/mol·cm) внутрилигандные переходы (ВЛ) локализованы на ароматической системе фрагмента Мрqс и представляют собой переходы ${}^1(\pi - \pi^*)$ типа; в спектрах комплексов **2** и **3** благодаря комплексообразованию — депротонированию **1** и образованию связи C-Pd ВЛ переходы батохромно смещены;

– в более длиноволновой области (более 390 nm) проявляются менее интенсивные полосы ($\varepsilon > 10^3 \text{ l/mol} \cdot \text{cm}$) переноса заряда с металла на лиганд (ПЗМЛ) или переходы $^1(d-\pi^*)$ -типа, которые отсутствуют в спектре поглощения **1**.

Спектр люминесценции **1** при комнатной температуре симметричен длинноволновой полосе поглощения. Незначительный стоксовый сдвиг (~ 4700 cm⁻¹) и наносекундный диапазон времени жизни люминесценции позволяют утверждать, что флуоресценция **1** происходит из низшего спин-разрешенного ВЛ состояния и представляет собой переход ${}^1(\pi - \pi^*)$ -типа.

Для всех циклометаллированных комплексов Pd(II) характерно эффективное температурное тушение люминесценции [27–29]. Комплексы 2 и 3 люминесцируют только при 77 К и в более длинноволновой области, чем 1. Согласие спектров возбуждения фосфоресценции со спектрами поглощения комплексов и экспоненциальный характер затухания фосфоресценции свидетельствуют о протекании излучательного процесса деградации энергии фотовозбуждения из низшего

Рис. 2. Спектры поглощения (a) (при 290 K), нормированные спектры возбуждения люминесценции (e) и люминесценции (l) соединений 1–3 в этаноле при 77 K.

по энергии электронно-возбужденного состояния комплекса 3. Колебательная структура низкотемпературных

	Поглощен	Люминесценция		
Соединение	λ_{\max} , nm ($\varepsilon \cdot 10^3$, l/mol cm)	Отнесение	λ_{\max} , nm	$ au$, μ s
1	337 (15.4)	$^{1}(\pi-\pi^{*})$	400	_
2	350 (14.6)	$^{1}(\pi-\pi^{*})$	556	100****
	402 (7.3)	$^{1}(d{-}\pi^{*})$	598***	
	490 (1.4)	$^{1}(d{-}\pi^{*})$		
3	352 (12.2)	$^{1}(\pi - \pi^{*})$	556	135
	400 (7.0)	$^1(d{-}\pi^*)$	600***	
$[IrDppb^*(Mpqc)_2]^+$	255 ⁿ (86)	$^{1}(\pi - \pi^{*})$	620	0.43****
[11]	284 (31)	$^{1}(\pi - \pi^{*})$		
	361 (14)	$^{1}(\pi - \pi^{*})$		
$[PtDppb^*Mpqc]^+$	275 ⁿ (31)	$^{1}(\pi - \pi^{*})$	620 ^π	0.38
[11]	358 (8.3)	$^{1}(\pi - \pi^{*})$	648	
	410 ⁿ (2.6)	$^{1}(d{-}\pi^{*})$		
$[RhDppz^{**}(Mpqc)_2]^+$	278 (32.5)	$^{1}(\pi - \pi^{*})$	576	0.128
[10]	361 (12.0)	$^{1}(\pi - \pi^{*})$		
	426 (1.8)	$^{1}(d{-}\pi^{*})$		

Таблица 2. Спектрально-люминесцентные характеристики комплексов и лигандов

Примечание. *Dppb — бис(дифенилфосфино)бензол, **Dppz — дипиридо[3,2-а:2',3'-с]феназин, *** — величина колебательного расщепления ~ 1300 cm⁻¹, **** — немоноэкспоненциально, ^п — плечо.

спектров фосфоресценции комплексов Pd(II) с частотой 1300 cm⁻¹, близкой к частоте валентных колебаний связей C=C/C=N Мрqс, и относительно длительное время затухания (135 μ s) позволяют отнести фосфоресценцию комплексов к спин-запрещенному внутрилигандному оптическому переходу ³(π - π *)-типа, преимущественно локализованному на ароматической системе Мрqс-лиганда.

Максимум люминесценции комплексов Pd(II) 2 и 3 имеет гипсохромный сдвиг по сравнению с комплексами Rh(III), Pt(II) и Ir(III), которые также содержат лиганд Мрqс [8,10,11]. Вероятно, это обусловлено влиянием ряда факторов: природой и степенью окисления металла, различием донорно-акцепторных свойств нецинхофенового лиганда (этилендиамин, бис(дифенилфосфино)бензол, дипиридо[3,2-а:2',3'с]феназин) [29].

Таким образом, комплексообразование, влияние тяжелого атома Pd(II) привело к появлению долгоживущей фосфоресценции, обусловленной ароматической системой Мрqс-лиганда.

Финансирование работы

Работа выполнена в рамках государственного задания при финансовой поддержке Минпросвещения России (проект № FSZN-2020-0026).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Palmer W.L., Woodall P.S. // JAMA. 1936. V. 107. N 10.
 P. 760. doi 10.1001/jama.1936.02770360006003
- [2] Мелентьева Г.А., Антонова Л.А. Фармацевтическая химия. М.: Медицина, 1985. 317 с.
- [3] Dexter D.L., Hesson D.P., Ardecky R.J., Rao G.V., Tippett D.L., Dusak B.A., Paull K.D., Plowman J., DeLarco B.M., Narayanan V.L., Forbes M. // Cancer Research. 1985. V. 45. N 11. Part. 1. P. 5563.
- [4] Wang X., Xie X., Cai Y., Yang X., Li J., Li Y., Chen W., He M. // Molecules. 2016. V. 21. N 3. Article № 340 (15 p.). doi 10.3390/molecules21030340
- [5] Bing Y, Li X., Zha M.-Q., Wang D.-J. // Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry. 2011. V. 41. P. 798. doi 10.1080/15533174.2011.591306
- [6] Lei N., Ren Q.-L., Liu Y.-P., Li J., Cong P., Qin J., Zhu H.-L. // J. Molecular Structure. 2014. V. 1067. N 5. P. 220. doi org/10.1016/j.molstruc.2014.03.052 0022-2860
- [7] Parish R.F., Wright J.P., Pritchard R.J. // J. of Organomet. Chem. 2000. V. 596. P. 165. doi 10.1016/S0022-328X(99)00645-2
- [8] Stacey O.J., Platts J.A., Coles S.J., Horton P.N., Pope S.J.A. // Inorg. Chem. 2015. V. 54(13). P. 6528. doi 10.1021/acs.inorgchem.5b00817
- [9] Sternberg M., Rust J., Lehmann C.W., Mohr F. // Helvetica Chimica Acta. 2013. V. 96. P. 280. doi 10.1002/hlca.201200386
- [10] Hao T., Yin C., Yang X., Fu Y., Zheng X., Li R., Xiao D., Chen H. // Eur. J. Inorg. Chem. 2017. V. 36. N 10. P. 4149. doi 10.1002/ejic.201700700
- [11] Solomatina A.I., Su S.-H., Lukina M.M., Dudenkova V.V., Shcheslavskiy V.I., Wu C.-H., Chelushkin P.S., Chou P.-T., Koshevoy I.O., Tunik S.P. // RSC Adv. 2018. V. 8. P. 17224. doi 10.1039/c8ra02742k

- Smith R.A., Stokes E.C., Langdon-Jones E.E., Platts J.A., Kariuki B.M., Hallett A.J., Pope S.J.A. // Dalton Trans. 2013.
 V. 42. P. 10347. doi 10.1039/c3dt51098k
- [13] Nikolaeva M.V., Katlenok E.A., Khakhalina M.S., Puzyk M.V., Balashev K.P. // J. Phys: Conference Series. 2014. V. 541.
 N 12014. P. 012086. doi 10.1088/1742-6596/541/1/012086
- [14] Nikolaeva M.V., Katlenok E.A., Khakhalina M.S., Puzyk M.V., Balashev K.P. // J. Phys: Conference Series. 2015. V. 643.
 N 12. P. 012045. doi 10.1088/1742-6596/643/1/012045
- [15] Eremina A.A., Kinzhalov M.A., Katlenok E.A., Smirnov A.S., Andrusenko E.V., Pidko E.A., Suslonov V.V., Luzyanin K.V. // Inorg. Chem. 2020. V. 59. N 4. P. 2209. doi 10.1021/acs.inorgchem.9b02833
- [16] Gasser G., Ott I., Metzler-Nolte N. // J. Med. Chem. 2011.
 V. 54. N 1. P. 3. doi org/10.1021/jm100020w
- [17] Гордон А., Форд Р. Спутник химика. М.: Мир, 1976; Gordon A.J., Ford R.A. The Chemist's Companion: A Handbook of Practical Data, Techniques, and References. 1st Edition. 1976.
- [18] Накамото К. ИК спектры и спектры КР неорганических и координационных соединений. М.: Мир, 1992. 300 с.
- [19] Сахаров С.Г., Ковалев В.В., Горбунова Ю.Е., Токмаков Г.П., Скабицкий И.В., Кокунов Ю.В. // Коорд. химия. 2017. Т. 43. № 2. С. 67. Sakharov S.G., Kovalev V.V., Gorbunova Yu.E., Tokmakov G.P., Skabitskii I.V., Kokunov Yu.V. // Russ. J. Coord. Chem. 2017. V. 43. N 2. P. 75. doi 10.1134/S1070328417010079
- [20] Dokalik A., Kalchhauser H., Mikenda W., Schweng G. // Magn. Reson. Chem. 1999. V. 37. N 12. P. 895. doi 10.1002/(SICI)1097-458X(199912)37:12<895::AID-MRC581>3.0.CO;2-7
- [21] Marciniec K., Maślankiewicz A., Maślankiewicz M.J., Kurczab R. // J. Mol. Struct. 2012. V. 1015. P. 46. doi 10.1016/j.molstruc.2012.01.049
- [22] Котлова И.А., Колоколов Ф.А., Доценко В.В., Аксенов Н.А., Аксенова И.В. // ЖОХ. 2019. Т. 89. В. 12. С. 1901.
 Kotlova I.A., Kolokolov F.A., Dotsenko V.V., Aksenov N.A., Aksenova I.V. // Russ. J. Gen. Chem. 2019. V. 89. N 12.
 P. 2413. doi 10.1134/S1070363219120144
- [23] Mamedov V.A., Mamedova V.L., Khikmatova G.Z., Mahrous E.M., Korshin D.E., Syakaev V.V., Fayzullin R.R., Mironova E.V., Latypov Sh.K., Sinyashin O.G. // Russ. Chem. Bull., Int. Ed. 2019. V. 68. N 5. P. 1020. doi 10.1007/s11172-019-2513-4
- [24] Shanahan R.M., Hickey A., Bateman L.M., Light M.E., McGlacken G.P. // J. Org. Chem. 2020. V. 85. N 4. P. 2585. doi 10.1021/acs.joc.9b03321
- [25] Carlton L., Belciug M.-P. // J. of Organomet. Chem. 1989.
 V. 378. N 3. P. 469. doi 10.1016/0022-328X(89)85371-9
- [26] De Armond M., Carlin C. // Coord. Chem. Rev. 1985. V. 36.
 P. 325. doi 10.1016/S0010-8545(00)80502-0
- [27] Katlenok E.A., Balashev K.P. // Russ. J. Gen. Chem. 2017.
 V. 87. N 2. P. 293. doi 10.1134/S1070363217020232
- [28] Katlenok E.A., Balashev K.P. // Opt. Spectrosc. 2013. V. 115.
 N 4. P. 518. doi 10.7868/S0030403413040107
- [29] Ghedini M., Aiello I., Crispini A., Golemme A., La Deda M., Pucci D. // Coord. Chem. Rev. 2006. V. 250. P. 1373. doi 10.1016/j.ccr.2005.12.011