## 07.2;07.3

# Варизонные гетероструктуры $AI_x In_y Ga_{1-x-y} P_z As_{1-z}/GaAs$ для фотоэлектрических преобразователей

© Л.С. Лунин<sup>1</sup>, М.Л. Лунина<sup>1</sup>, Д.Л. Алфимова<sup>1</sup>, А.С. Пащенко<sup>1</sup>, Н.А. Яковенко<sup>2</sup>, О.С. Пащенко<sup>1</sup>

<sup>1</sup> Федеральный исследовательский центр Южный научный центр РАН, Ростов-на-Дону, Россия <sup>2</sup> Кубанский государственный университет, Краснодар, Россия E-mail: lunin Is@mail.ru

Поступило в Редакцию 7 июня 2021 г. В окончательной редакции 2 июля 2021 г. Принято к публикации 6 июля 2021 г.

Выращены варизонные гетероструктуры Al<sub>x</sub>In<sub>y</sub>Ga<sub>1-x-y</sub>P<sub>z</sub>As<sub>1-z</sub>/GaAs методом зонной перекристаллизации градиентом температуры с возвратно-поступательным движением жидкой зоны, в которых достигнуто изменение ширины запрещенной зоны от 1.43 до 2.2 eV. Исследовано влияние технологических параметров на изменение ширины запрещенной зоны выращенных твердых растворов Al<sub>x</sub>In<sub>y</sub>Ga<sub>1-x-y</sub>P<sub>z</sub>As<sub>1-z</sub>. В гетероструктуре p-Al<sub>x</sub>In<sub>y</sub>Ga<sub>1-x-y</sub>P<sub>z</sub>As<sub>1-z</sub>/n-GaAs достигнут максимальный градиент ширины запрещенной зоны 10 490 eV/ст и показано увеличение внешнего квантового выхода в диапазоне длин волн 500–900 nm.

Ключевые слова: варизонные гетероструктуры, твердые растворы, AlInGaPAs, полупроводники, III-V.

DOI: 10.21883/PJTF.2021.20.51610.18907

Эффективность работы фотоэлектрических преобразователей (ФЭП) на основе полупроводниковых гетероструктур А<sub>3</sub>В<sub>5</sub> зависит от многих факторов, к которым, в частности, относятся структурное качество используемых фоточувствительных материалов, параметр кристаллической решетки и ширина запрещенной зоны (33). К настоящему времени твердые растворы соединений А<sub>3</sub>В<sub>5</sub> получили широкое распространение в технологии  $\Phi \Im \Pi$  и применяются для p-n-переходов, а также в качестве широкозонных оптических окон, потенциальных барьеров и буферов для согласования периодов кристаллических решеток в многослойных гетероструктурах [1-4]. Физическая природа твердых растворов позволяет создавать изопериодные гетероструктуры [5-7], в которых рассогласование периодов кристаллических решеток слоя и подложки  $\Delta a = 0$ , и варизонные гетероструктуры [8–10], в которых ширина запрещенной зоны слоя изменяется по его толщине. Важным моментом при получении варизонных структур является создание на первой стадии роста изопериодного переходного слоя на гетерогранице для уменьшения ее дефектности, обусловленной термическими и упругими напряжениями несоответствия. Твердые растворы  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}$  на подложках GaAs представляют практический интерес, так как на их основе возможно получить слои, чувствительные в спектральном диапазоне 0.5-0.9 µm. Использование варизонных слоев позволяет за счет тянущего электрического поля, которое увеличивает поток носителей заряда к *p*-*n*-переходу, увеличить внешний квантовый выход ФЭП [9]. Преимущество пятикомпонентных твердых растворов соединений АзВ5 заключается в независимом (друг от друга) изменении ширины запрещенной зоны  $(E_g)$ , периода кристаллической решетки (a) и коэффициента термического расширения. В связи с этим

цель настоящей работы состоит в изучении влияния параметров роста и исследовании свойств варизонных гетероструктур  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}/GaAs$  для ФЭП.

Гетероструктуры  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}/GaAs$  были получены методом зонной перекристаллизации градиентом температуры (ЗПГТ) [11] при возвратнопоступательном движении зоны. Суть этого варианта ЗПГТ заключается в перекристаллизации первоначально выросшего слоя при прямом проходе зоны возвратнопоступательным движением, которое осуществляется путем изменения направления температурного градиента при постоянной средней температуре процесса. В этом случае оба кристалла (источник подпитки и подложка) имеют одинаковый состав (GaAs), а жидкая зона содержит три компонента (Al-In-P), образующие с веществами основных кристаллов твердый раствор  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}$  с иной шириной запрещенной зоны. Толщина выращенных слоев во всех экспериментах составляла 1 µm. Слои имели проводимость *p*-типа с концентрацией Zn  $(1-2) \cdot 10^{17} \, \text{cm}^{-3}$ . Выращивание осуществлялось на подложках n-GaAs с кристаллографической ориентацией (100), легированных оловом до  $5 \cdot 10^{17} \,\mathrm{cm}^{-3}$ . Градиент ширины 33  $\nabla E = \Delta E / \Delta h$ (где  $\Delta E$  — изменение ширины 33,  $\Delta h$  — изменение толщины слоя) является одной из важнейших характеристик варизонных пленок  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}$ . Из особенностей нашего метода следует, что величина  $\nabla E$  и спектральные свойства гетероструктур  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}/GaAs$  будут существенно зависеть от возвратно-поступательного движения жидкой зоны, ее толщины (l), температуры (T) и концентрации компонентов в жидкой зоне  $(C_{liq}^0)$ . В наших экспериментах выращивались слои с  $\nabla E$  в пределах 2000-10 500 eV/cm. Температура подложки изменялась

 $C_{liq}^0$ , at.%  $\nabla E_{\rm max}$ , eV/cm  $k_0$  $T, ^{\circ}C$  $l, \mu m$ Al Р Al Р H = 0.05H = 0.07H = 0.10815 1.20 0.10 32 112 305.6 307.8 313.9 500 815 1.20 0.10 32 112 20 6280.0 6200.0 6250.0 815 1.20 0.10 32 112 10 9980.0 10290.0 10490.0 900 1.20 0.10 28 106 500 251.8 257.2 262.8 900 32 236.8 240.9 0.80 0.05 110 500 233.7

Изменение максимальной величины градиента ширины запрещенной зоны в варизонных слоях  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}$  в зависимости от температуры и исходной концентрации Al и P в жидкой фазе

 $\Pi$ римечание.  $k_0 = C_{sol}^0/C_{liq}^0$  — коэффициент распределения компонентов твердого раствора.

от 815 до 970°С. Изменение состава твердого раствора осуществлялось путем изменения концентраций Al и P (см. таблицу). Измерение величины градиента ширины 33 проводилось методом фотолюминесценции на косых шлифах.

На рис. 1, а приведены экспериментальные данные по изменению ширины 33 в зависимости от величины H = h/l (при  $l = 100 \,\mu m$ ) для слоев  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}$ , выращенных при возвратнопоступательном движении жидкой зоны. Остановка зоны осуществлялась в двух случаях: 1) H = 0.1; 2) H = 0.05. В случае прямого прохода зоны (кривая 1) до величины H = 0.1 удается достичь условия, когда на гетерогранице будет отсутствовать скачок ширины 33 и слой будет практически согласован по параметру решетки. Обратный проход зоны позволяет вырастить эпитаксиальный слой  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}$  с возрастающей шириной 33 к поверхности (кривая 2). Если нет задачи согласования ширины 33 на гетерогранице, то зону можно остановить в любом месте (например, H = 0.05). В этом случае зависимость ширины 33 от Н описывается кривыми 2' и 4'. На рис. 1, а можно наблюдать влияние состава жидкой зоны на градиент ширины 33. Кривые I, 2 и 2' соответствуют  $C_{liq}^0 = 1.2$  at.% Al и 0.1 at.% P. Кривые 3, 4 и 4' соответствуют составу  $C_{lia}^0 = 0.8$  at.% А1 и 0.05 at.% Р. Анализ экспериментальных результатов показывает, что изменение ширины запрещенной зоны в пределах эпитаксиального слоя  $\Delta E_h$  и ее скачок на границе слой-подложка  $\Delta E_0$  при постоянных T и  $C^0_{lig}$  существенно зависят от толщины выращиваемого слоя и, следовательно, от времени проведения процесса в прямом направлении  $\tau_f$ . Влияние параметра  $\tau_f$  на  $\Delta E_h$  становится незначительным начиная с некоторого *h*<sub>K</sub>, определяющего такое смещение зоны в прямом направлении, при котором концентрация Al и P падает до значений порядка 1 mol.%. Величина *h<sub>K</sub>* различна для разных температур процесса и исходных концентраций А1 и Р в зоне.

Результаты влияния толщины жидкой зоны на градиент ширины 33 приведены на рис. 1, *b*. Максимальное значение  $\Delta E_h$  для данных слоев достигается вблизи поверхности и существенно зависит от толщины зоны *l*, поскольку при прочих равных условиях она определяет толщину варизонного слоя. Анализ значений максимального градиента ширины запрещенной зоны в пленках  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}$  (см. таблицу) показывает, что  $\nabla E_{\max} \sim l^{-1}$ , а относительное смещение зоны в прямом направлении слабо влияет на  $\nabla E_{\max}$ .

В таблице продемонстрировано влияние на  $\nabla E_{\text{max}}$  температуры и исходной концентрации Al и P в жидкой фазе. С ростом исходной концентрации алюминия и фосфора (главные компоненты, определяющие ширину запрещенной зоны в твердом растворе AlInGaPAs) в зоне (при *T*, *H*, *l* ~ const) градиент ширины запрещенной зоны в слое увеличивается незначительно, что видно из кривых *1*-3 на рис. 1, *b* и таблицы и объясняется одновременным ростом значений  $\Delta E_h$  и  $\Delta E_0$  с увеличением  $C_{lia}^0$ .

Влияние температуры на изменение ширины 33 по толщине слоя иллюстрируют кривые 4-6 (значение Eна поверхности приблизительно одинаково): уменышение температуры от 970 до  $815^{\circ}$ С приводит к увеличению  $\nabla E_{\text{max}}$  от 2450 до 5800 eV/cm ( $l = 100 \,\mu$ m). Сравнение кривых 7 и 8 показывает, что уменьшение H (при  $C_{liq}^0$  и T = const) слабо увеличивает E, но оказывает влияние на  $\Delta E_0$  и  $\Delta E_h = E_h - E_0$ , причем на  $\Delta E_0$  более значительно, чем на  $\Delta E_h$ . Повышение температуры при неизменных  $C_{liq}^0$  увеличивает  $\Delta E_0$  и уменьшает  $\Delta E_h$ . Экспериментальные точки на рис. 1, *b* показывают, что расчетные данные хорошо согласуются с экспериментом.

На рис. 2 точками представлены экспериментальные значения ( $\Delta E_0$ ) в зависимости от средней температуры процесса ЗПГТ для образцов с равной толщиной *h* варизонного слоя  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}$ , полученных при одинаковой исходной концентрации компонентов в зоне ( $C_{liq}^0 = 0.8 \text{ at.}\%$  Al и 0.05 at.% P). Здесь же приведены расчетные кривые 1-7 зависимости  $\Delta E_0(T)$ для различных значений *H*. Видно, что при  $C_{liq}^0 = \text{const}$ изменение температуры процесса незначительно влияет на величину  $\Delta E_0$  при заданной *H*. Увеличение температуры с 800 до 1020°С изменяет  $\Delta E_0$  на 0.07 eV как для H = 0.06 (кривая 3), так и для H = 0.025 (кривая 6) с небольшой разницей в характере кривых.

С целью исследования спектральных характеристик были выращены варизонные гетероструктуры *p*-Al<sub>x</sub>In<sub>y</sub>Ga<sub>1-x-y</sub>P<sub>z</sub>As<sub>1-z</sub>/*n*-GaAs ( $x_{max} = 0.45$ ,  $y_{max} = 0.1$ ,  $z_{max} = 0.6$ ) с  $\nabla E = 10\,490\,\text{eV/cm}$  (кривая *1* на рис. 3) и *p*-Al<sub>0.4</sub>In<sub>0.1</sub>Ga<sub>0.5</sub>P<sub>0.55</sub>As<sub>0.45</sub>/*n*-GaAs с постоянным составом (без  $\nabla E$ ) (кривая *2* на рис. 3). Оба типа структур не имели просветляющего покрытия. На участке 500–900 nm кривая *1* имеет спад характеристики, в то время как спектр кривой *2* более ровный. Обе кривые имеют достаточно резкий спад характеристики на участке 850–900 nm, обусловленный шириной 33 GaAs. Показано, что использование варизонного твер-



**Рис. 1.** Изменение ширины запрещенной зоны варизонного слоя  $Al_x In_y Ga_{1-x-y} P_z As_{1-z}$ . a — при возвратно-поступательном движении зоны в условиях  $C_{liq}^0 = 1.2$  at.% Al и 0.1 at.% P (кривые 1, 2 и 2') и  $C_{liq}^0 = 0.8$  at.% Al и 0.05 at.% P (3, 4 и 4'),  $T = 850^{\circ}$ C: 1, 3 — прямой проход зоны; 2, 4 — обратный проход зоны (остановка в точке H = 0.1); 2', 4' — обратный проход зоны (остановка в точке H = 0.05); b — при температуре 970 (1-4), 900 (5), 815 (6) и 850°C (7, 8). Сплошные кривые — расчет, точки — эксперимент.



Рис. 2. Зависимость скачка ширины 33 ( $\Delta E_0$ ) на границе  $Al_x In_y Ga_{1-x-y} P_z As_{1-z} - GaAs$  от средней температуры ЗПГТ при  $C_{liq}^0 = 0.8$  at.% Al и 0.05 at.% Р и H = 0.08 (1), 0.07 (2), 0.06 (3), 0.05 (4), 0.03 (5), 0.025 (6), 0.020 (7).



**Рис. 3.** Спектральная характеристика гетероструктур:  $I - p-Al_x In_y Ga_{1-x-y} P_z As_{1-z}/n$ -GaAs с градиентом ширины запрещенной зоны  $\nabla E = 10\,490\,\text{eV/cm}; 2 - p$ -Al<sub>0.4</sub>In<sub>0.1</sub>Ga<sub>0.5</sub>P<sub>0.55</sub>As<sub>0.45</sub>/*n*-GaAs.

дого раствора AlInGaPAs позволяет повысить внешний квантовый выход за счет создания дополнительного внутреннего тянущего поля.

#### Финансирование работы

Выращивание структур выполнено при финансовой поддержке гранта РНФ 19-79-10024, измерение характеристик осуществлено в рамках государственного задания ЮНЦ РАН (номер госрегистрации 01201354240).

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

### Список литературы

- [1] B.C. Калиновский, Е.В. Контрош, Г.В. Климко. С.В. Иванов, В.С. Юферев, Б.Я. Бер, Д.Ю. Казанцев, B.M. Андреев, ΦΤΠ, 54 (3), 285 (2020). DOI: 10.21883/FTP.2020.03.49034.9298 [V.S. Kalinovskii, E.V. Kontrosh, G.V. Klimko, S.V. Ivanov, V.S. Yuferev, B.Y. Ber, D.Y. Kazantsev, V.M. Andreev, Semiconductors, 54 (3), 355 (2020). DOI: 10.1134/S1063782620030112].
- [2] Г.С. Гагис, А.С. Власов, Р.В. Левин, А.Е. Маричев, М.П. Щеглов, Т.Б. Попова, Б.Я. Бер, Д.Ю. Казанцев, Д.В. Чистяков, В.И. Кучинский, В.И. Васильев, Письма в ЖТФ, 45 (20), 22 (2019). DOI: 10.21883/PJTF.2019.20.48388.17954 [G.S. Gagis, A.S. Vlasov, R.V. Levin, A.E. Marichev, М.Р. Scheglov, Т.В. Ророva, В.Ya. Ber, D.Yu. Kazantsev, D.V. Chistyakov, V.I. Kuchinskii, V.I. Vasil'ev, Tech. Phys. Lett., 45 (10), 1031 (2019). DOI: 10.1134/S1063785019100213].
- [3] N. Jain, J. Simon, K.L. Schulte, D.J. Friedman, D.R. Diercks, C.E. Packard, D.L. Young, A.J. Ptak, IEEE J. Photovolt., 8 (6), 1577 (2018). DOI: 10.1109/JPHOTOV.2018.2865172
- [4] T. Tayagaki, S.K. Reichmuth, H. Helmers, G. Siefer, J. Appl. Phys., **124** (18), 183103 (2018). DOI: 10.1063/1.5046543
- [5] R. Lang, J. Schon, J. Lefevre, B. Boizot, F. Dimroth, D. Lackner, Solar Energy Mater. Solar Cells, 211, 110551 (2020). DOI: 10.1016/j.solmat.2020.110551
- [6] S. Tomasulo, M. Gonzalez, M.P. Lumb, C.R. Brown, A.H. Dicarlo, I.R. Sellers, I. Vurgaftman, J.R. Meyer, R.J. Walters, M.K. Yakes, J. Cryst. Growth, 548, 125826 (2020). DOI: 10.1016/j.jcrysgro.2020.125826
- [7] X.B. Zhang, S.S. Huang, J.Q. Liu, K.W. Lin, Y.H. Wang, W.Y. Yang, Appl. Phys. Express, 13 (7), 071002 (2020). DOI: 10.35848/1882-0786/ab9990
- [8] В.И. Васильев, Г.С. Гагис, Р.В. Левин, А.Е. Маричев, Б.В. Пушный, М.П. Щеглов, В.И. Кучинский, Б.Я. Бер, Д.Ю. Казанцев, A.H. Горохов, Т.Б. Попова, Письма в ЖТФ, 44 (24), 12 (2018). DOI: 10.21883/PJTF.2018.24.47025.17442 [V.I. Vasil'ev, G.S. Gagis, R.V. Levin, A.E. Marichev, B.V. Pushnyi, M.P. Scheglov, V.I. Kuchinskii, B.Ya. Ber, D.Yu. Kazantsev, A.N. Gorokhov, T.B. Popova, Tech. Phys. Lett., 44 (12), 1127 (2018). DOI: 10.1134/S1063785018120593].
- [9] H. Ferhati, F. Djeffal, Opt. Mater., 76, 393 (2018). DOI: 10.1016/j.optmat.2018.01.006
- [10] S.Y. Wen, M.Z. Li, J.Y. Yang, X.L. Mei, B. Wu, X.L. Liu, J.X. Heng, D.H. Qin, L.T. Hou, W. Xu, D. Wang, Nanomaterials, 7 (11), 380 (2017). DOI: 10.3390/nano7110380
- [11] Д.Л. Алфимова, Л.С. Лунин, М.Л. Лунина, А.Е. Казакова, А.С. Пащенко, С.Н. Чеботарев, Неорган. материалы, 53 (12), 1245 (2017). DOI: 10.7868/S0002337X17120016
  [D.L. Alfimova, L.S. Lunin, M.L. Lunina, А.Е. Каzakova, A.S. Pashchenko, S.N. Chebotarev, Inorg. Mater., 53 (12), 1217 (2017). DOI: 10.1134/S0020168517120019].