13.3

Металл-стимулированное разложение поверхности сапфира в потоке электронов с энергией 70 keV

© В.П. Власов, А.Э. Муслимов ¶, В.М. Каневский

Федеральный научно-исследовательский центр "Кристаллография и фотоника" РАН, Москва, Россия [¶] E-mail: amuslimov@mail.ru

Поступило в Редакцию 4 мая 2021 г. В окончательной редакции 6 июля 2021 г. Принято к публикации 6 июля 2021 г.

> Исследовано металл-стимулированное разложение поверхности сапфира при комнатной температуре в потоке электронов с энергией 70 keV. В качестве стимулятора применен ансамбль кристаллических островков золота. Впервые установлено, что наличие ансамбля островков золота на поверхности сапфира значительно снижает температуру подложки и энергию электронов, при которых происходит разложение поверхности. Ямки травления образуются около островков золота и имеют удлиненную форму со следующими размерами: длина до 1.2 µm, ширина до 0.8 µm и средняя глубина 20 nm. Максимальная площадь основания островков при этом увеличивается с 0.6 до 1.8 µm².

Ключевые слова: сапфир, золото, металл-стимулированное разложение, поток электронов.

DOI: 10.21883/PJTF.2021.20.51608.18858

Радиационное разложение поверхности сапфира длительное время привлекает пристальное внимание исследователей вследствие применения сапфира в различных элементах структуры в реакторах, ускорителях, космических аппаратах и т.д. [1]. В частности, чистые поверхности сапфира применяются в элементах рентгеновской оптики, в качестве подложек для многослойных зеркал, в окнах и монохроматорах, работающих в условиях рентгеновского излучения, а также в космическом пространстве [2]. В связи с этим важнейшим фактором является радиационная стойкость сапфира. Известно [3-7], что в результате радиационного воздействия на поверхности сапфира образуются не только структурные дефекты, но и преципитаты алюминия. Таким образом, для практического применения необходимо подбирать такие условия, при которых вероятность образования преципитатов минимизирована. Во всех случаях [3-6] образец находился в вакууме $10^{-5} - 10^{-8}$ Ра, однако варьировались параметры облучения: ускоряющее напряжение электронного луча изменялось в пределах 100-200 kV, экспозиционная доза — в пределах $10^{23} - 10^{27} e \cdot cm^{-2}$, время облучения — в пределах 120-3600 s, температура образца менялась от комнатной до 1130 К. Согласно этим данным, с повышением температуры образца сапфира, подвергающегося бомбардировке электронами, вероятность образования преципитатов алюминия повышается [3,6]. Вместе с тем по этим данным сложно провести корреляцию между радиационной стойкостью облучаемой поверхности сапфира и энергией электронов.

Сапфир также применяется в нанотехнологиях, в том числе для подложек микроэлектронных элементов, которые могут эксплуатироваться в условиях радиационного излучения [7]. Таким образом, необходимы исследования влияния радиационного излучения на поверхность сапфира, на которой имеются некоторые элементы. Известно повсеместное применение золота при изготовлении интегральных схем [8]. Ранее процессы осаждения золота на поверхности (0001) сапфира были нами изучены в [9].

В настоящей работе было необходимо изучить влияние покрытия островками золота на процессы разложения поверхности сапфира под действием электронного облучения, в частности, в условиях вакуума. Вообще говоря, разложение чистой поверхности диэлектрика в вакууме ($\sim 10^{-2}-10^{-4}$ Ра) в потоке электронов может существенно замедляться электрическим полем, связанным с ее зарядкой [10]. Наличие островков золота, наоборот, должно ускорять процесс разложения поверхности сапфира, поскольку островки могут служить эффективными центрами стока заряда.

Образцы представляли собой сапфировые подложки (0001)-ориентации с односторонней химико-механической полировкой. Далее на подложках сапфира методом термовакуумного напыления (установка ВН-2000) формировались слои Au толщиной порядка 100 nm на холодной подложке. После этого подложки с металлизированной поверхностью отжигались на воздухе (трубчатая печь Naber) в течение 2h при 700°С для заведомого формирования дискретных островков Аи на поверхности сапфира. Отжиг в вакууме не применялся, поскольку при этих температурах есть вероятность частичной десорбции золота. Такая дискретная структура островков на поверхности подложки оптимальна для изучения и анализа на основе микроскопических (топографических) данных возможных процессов эволюции островков и разложения поверхности сапфира в процессе электронного облучения. Микроскопические исследования поверхности образцов проводились на атомно-силовом микроскопе "Ntegra Aura" (НТ-МДТ). Для выявления эффектов разложения поверхности сапфира применялись ускоренные электроны (плотность потока электронов 10^{21} cm⁻² · s⁻¹, ускоряющее напряжение 70 kV). Эксперименты проводились в электронографе ЭМР-100, давление ~ 10^{-4} Ра. Угол падения пучка электронов 45°. Использовался фокусированный пучок с диаметром пятна 0.5 mm.

Осадок золота, полученный осаждением из пара в вакууме на поверхности (0001) сапфира при комнатной температуре подложки, не показывал какой-либо предпочтительной ориентации. Последующий отжиг в атмосферных условиях при 800°С приводил к формированию островковой структуры пленки золота на сапфире (рис. 1).

При облучении поверхности сапфира с кристаллическими островками Аи фокусированным электронным пучком с ускоряющим напряжением 70 kV при комнатной температуре был обнаружен интересный результат: в прилегающей к островкам золота области поверхности сапфира появляются ямки травления (рис. 2). На рис. 2, b представлен типичный профиль ямки травления. Ямки травления имеют удлиненную форму со следующими размерами: длина до $1.2\,\mu$ m, ширина до $0.8\,\mu$ m и средняя глубина 20 nm. При этом в области, прилегающей к островкам высотой менее 30 nm (рис. 2, a, островок 1), травления не обнаружено. Для островка высотой 67 nm заметна ямка травления (рис. 2, *a*, островок 2). Факт травления поверхности сапфира в процессе обработки электронами также подтверждается исследованиями в режиме сигнала рассогласования атомно-силовой микроскопии (рис. 3, a). Можно наблюдать контрастное

Рис. 1. Топография поверхности сапфира с кристаллическими островками золота.

Рис. 2. *а* — топография поверхности сапфира с кристаллическими островками золота после обработки в потоке электронов. *1* — островок высотой 30 nm, *2* — островок высотой 67 nm. На вставке — схема травления, *е* — направление потока электронов. *b* — профиль ямки травления вдоль направления, показанного светлой линией на части *a*.

изображение области покрытия потоком электронов. В целом в процессе облучения на поверхности сапфира образуется кратер (вставка на рис. 3, a).

Что касается микроморфологии, то ямки травления имеют в основном удлиненную форму. Лишь возле отдельных частиц ямки имеют уширенную форму: ширина $\sim 1\,\mu$ m, длина ~ 600 nm. Ямки травления формируются со стороны падающего электронного пучка. Однако центральная ось ямок не лежит в плоскости падения, а образует с ней некоторый острый угол (вставка на рис, 2, *a*). Вероятно, наибольшая интенсивность процесса травления имеет место вдоль одного из основных направлений типа [1100] или [1120] в базисной плоскости сапфира. Образование ямок травления в сапфире сопровождается увеличением размеров островков золота. Это подтверждается гистограммами распределения по величине площади основания островков золота до и после облучения потоком электронов (рис. 3, *b*, *c*). Максимальная площадь основания островков при этом увеличивается с 0.6 до $1.8 \,\mu m^2$.

Наблюдаемое разложение поверхности сапфира под действием электронного облучения происходит в результате реакции $2Al_2O_3(solid) \rightarrow 4Al(solid) + 3O_2(gas)$.

Электронное облучение приводит к интенсивной зарядке поверхности сапфира с находящимися на ней островками золота. Островки являются эффективными центрами стока и накопления заряда и создают поля напряжений, ослабляющие межатомные связи в приповерхностных слоях сапфира. Вероятнее всего, наблюдается силовое смещение атомов, которое только усиливается при бомбардировке электронами и, естественно, приводит к неравновесному состоянию, при котором атомы (или ионы) кислорода десорбируются, а атомы алюминия в Al_2O_3 переходят в состояние металлического алюминия. Разрастание островков объясняется диффузией положительно заряженных атомов алюминия к отрицательно заряженным островкам золота.

Однако это не единственно возможный подход, объясняющий наблюдаемое в эксперименте разложение сапфира. Можно предположить также термически активированное движение атомов в приповерхностном слое сапфира в результате локального разогрева под действием пучка электронов. Расчеты согласно [11] показывают, что локальный нагрев поверхности сапфира в условиях нашего эксперимента вряд ли может приводить к термодесорбции кислорода и дальнейшему разложению сапфира. Можно рассматривать также фактор непосредственной электронно-стимулированной десорбции атомов в результате столкновения с налетающим электроном и передачи им кинетической энергии ΔE . Оценка на основе теории столкновений показывает, что при бомбардировке поверхности сапфира электронами с энергией 70 keV, налетающими под углом 45°, кинетические энергии ΔE , передаваемые атомам кислорода и алюминия, равны ~ 5 и 3 eV соответственно. При этом величины энергий, необходимых для вытеснения атомов алюминия и кислорода из кристаллической решетки, составляют ~ 18 и 75 eV [12], что, конечно, значительно выше. Как нам представляется, в условиях эксперимента наиболее вероятен процесс радиолитического разложения сапфира [13], в основе которого лежит эффект оже-распада [14]. Более конкретно процесс радиолиза можно представить следующим образом: в результате удара внешнего электрона во внутренней электронной оболочке Al(2p) иона алюминия образуется дырка. После этого один валентный электрон в O(2p) аниона O²⁻ перескакивает в эту дырку с выделением дополнительных анионных валентных электронов кислорода. В результате анион O²⁻ меняет свое зарядовое состояние и вытесняется из решетки Al₂O₃.

Итак, в работе исследовалось металл-стимулированное разложение поверхности сапфира при комнатной

лическими островками золота после обработки в потоке электронов (исследования в режиме рассогласования атомносиловой микроскопии). На вставке — топографическое сечение рельефа. *b, с* — гистограммы распределения островков золота по величине площади основания. Светлая стрелка область, не облученная электронами; темная стрелка — область, облученная электронами.

температуре под действием электронного луча с энергией 70 keV. В качестве стимулятора применялся ансамбль кристаллических островков золота. Установлено, что наличие ансамбля островков золота на поверхности сапфира значительно снижает температуру и энергию электронов, при которых происходит ее разложение. Полученные результаты представляются весьма важными при исследовании радиационной и химической стойкости сапфировых кристаллов.

Финансирование работы

Исследования проводились в рамках выполнения работ по государственному заданию ФНИЦ "Кристаллография и фотоника" РАН, а также при поддержке Российского фонда фундаментальных исследований (грант 20-21-00068 Росатом).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- J. Mollá, R. Heidinger, A. Ibarra, J. Nucl. Mater., 212-215 (Pt B), 1029 (1994). DOI: 10.1016/0022-3115(94)90989-X
- [2] C.L. Chen, H. Furusho, H. Mori, Phil. Mag. Lett., 89 (2), 113 (2009). DOI: 10.1080/09500830802649778
- [3] T. Shikama, G.P. Pells, Phil. Mag. A, 47 (3), 369 (1983).
 DOI: 10.1080/01418618308245233
- [4] J.-W. Park, A.J. Pedrasa, W.R. Allen, J. Vac. Sci. Technol. A, 14 (2), 286 (1996). DOI: 10.1116/1.579890
- [5] D. Bouchet, C. Colliex, Ultramicroscopy, 96 (2), 139 (2003).
 DOI: 10.1016/S0304-3991(02)00437-0
- [6] S.H. Oh, Y. Kauffmann, C. Scheu, W.D. Kaplan, M. Ruhle, Science, **310** (5748), 661 (2005).
 DOI: 10.1126/science.1118611
- [7] S.J. Pearton, F. Ren, E. Patrick, M.E. Law, A.Y. Polyakov, ECS J. Solid State Sci. Technol., 5 (2), Q35 (2015).
 DOI: 10.1149/2.0251602jss
- [8] Р. Маллер, Т. Кейминс, Элементы интегральных схем (Мир, М., 1989).
- [9] А.Э. Муслимов, А.В. Буташин, А.Б. Колымагин, В.П. Власов, В.М. Каневский, Кристаллография, 60 (6), 964 (2015). DOI: 10.7868/S0023476115060211
- [10] В.А. Бурдовицин, А.В. Медовник, Е.М. Окс, Е.В. Скробов, Ю.Г. Юшков, ЖТФ, 82 (10), 103 (2012).
 DOI: 10.1134/S1063784212100039
- [11] R. Gossink, H. Van Doveren, J.A.T. Verhoeven, J. Non-Cryst. Solids, 37 (1), 111 (1980).
 - DOI: 10.1016/0022-3093(80)90483-4
- [12] G.P. Pells, D.C. Phillips, J. Nucl. Mater., 80 (2), 207 (1979).
 DOI: 10.1016/0022-3115(79)90183-1
- [13] C.L. Chen, K. Arakawa, H. Mori, Scripta Mater., 63 (4), 355 (2010). DOI: 10.1016/j.scriptamat.2010.04.007
- [14] M.L. Knotek, P.J. Feibelman, Phys. Rev. Lett., 40 (14), 964 (1978). DOI: 10.1103/PhysRevLett.40.964