18, 12, 13

Зависимость подвижности носителей заряда в гибридных наноструктурах на интерфейсе графена с молекулярными ионами от их зарядовой плотности

© А.В. Бутко, В.Ю. Бутко[¶], Ю.А. Кумзеров

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия

[¶] E-mail: vladimirybutko@gmail.com

Поступила в Редакцию 11 июня 2021 г. В окончательной редакции 11 июня 2021 г. Принята к публикации 12 июня 2021 г.

Гибридные наноструктуры с развитым интерфейсом между наноструктурными компонентами играют важную роль в современной электронике. В том числе, гибридные наноструктуры, формируемые на интерфейсе графена с ансамблями молекулярных ионов в графеновых полевых транзисторах (GFETs) с жидкими затворными изоляторами, перспективны для создания химических и биологических сенсоров. Поэтому изучение влияния интерфейса на электрический транспорт в таких системах представляет большой интерес. Настоящая работа направлена на теоретическое исследование зависимости подвижности носителей заряда (μ) в таких наноструктурах от плотности интерфейсных молекулярных ионов (N_{ii}). Установлено, что зависимость $\mu \propto 1/(N_{ii})^{1/2}$, полученная в модели свободных носителей заряда в графене при условии их слабой связи с интерфейсными ионами для короткодействующих сил рассеяния, удовлетворительно описывает экспериментальные транзисторные характеристики при высоких напряжениях на затворе.

Ключевые слова: графен, гибридные наноструктуры, транзисторы, подвижность, интерфейс.

DOI: 10.21883/FTT.2021.11.51603.141

1. Введение

Интерес к исследованиям влияния интерфейса на электрический транспорт в гибридных наноструктурах, формируемых на границе графена с ансамблями молекулярных ионов в GFETs с затворными изоляторами в виде ионных растворов, в первую очередь, связан с важностью таких наноструктур для создания химических и биологических сенсоров [1-12]. Несмотря на этот интерес, в настоящее время, в описании электрического транспорта в указанных наноструктурах существует ряд нерешенных проблем. В том числе, к настоящему моменту исследовательские группы не пришли к однозначному выводу о зависимости подвижности носителей заряда (µ) в графене от плотности Кулоновских рассеивающих центров. Например, в работах [13] и [14] получены различные параметрические зависимости для подвижности носителей заряда от концентрации носителей заряда в графене ($\mu \propto 1/(n)^{0.3}$ [13] и $\mu \propto 1/n$ [14]), соответственно. Поэтому помимо указанных применений, является актуальным использование таких систем в качестве модельного объекта для установления закономерностей двумерного транспорта носителей заряда в наноструктурах при наличии Кулоновских рассеивающих центров. Для этой цели потенциальным достоинством рассматриваемых GFETs является возможность плавного изменения в широких пределах плотности интерфейсных ионов (N_{ii}) (рассеивающих центров) с помощью управляющего напряжения на затворе (V_g) . Такая возможность отсутствует в образцах традиционных материалов, для каждого из которых плотность примесных ионов фиксирована. Поэтому в настоящей работе мы используем транзисторные характеристики GFETs с затворными изоляторами в виде водных растворов (см. рис. 1, a и b) для исследования зависимости подвижности носителей заряда от плотности рассеивающих центров. Мы также проводим сопоставление результатов, полученных на основе имеющихся в литературе экспериментальных данных, описывающих транспорт носителей заряда в графеновых полевых транзисторах с затворными изоляторами на основе водных растворов, с выводами простых теоретических моделей.

Модель двумерного транспорта носителей заряда в GFETs при наличии интерфейсных ионных рассеивающих центров

Двумерный электрический транспорт в приближении свободных носителей заряда в общем случае определяется различными видами их рассеяния. Для графена хорошо исследованными являются случаи рассеяния носителей заряда на фононах [15] и на примесных ионах [16]. Для высококачественных образцов графена при комнатной температуре вкладом этих видов рассеяния в ограничение проводимости часто можно пренебречь. В числе других механизмов рассеяния носителей заряда, вызывающих особый интерес в GFETs, можно назвать их рассеяние на других носителях заряда [17] и на дипольных флуктуациях интерфейсных графену квазипериодических ионных структур в жидких ионных затворных изоляторах [18]. Правильность выбора той или иной модели рассеивающих центров для конкретного случая определяется соотношением параметров выбранной задачи. В настоящей работе мы исследуем случай рассеяния носителей заряда в GFETs с затворными изоляторами в виде деионизированной воды, для которой концентрация молекулярных ионов значительно меньше, чем в ионных жидкостях, использованных в работе [18]. Поэтому эффекты формирования квазипериодических плотных ионных структур на поверхности графена [18] нами не рассматриваются. В то же время, учет влияния интерфейсных ионов на подвижность носителей заряда в графене необходим. Об этом косвенно свидетельствует влияние на проводимость графена эффектов памяти состояния, связанных с формированием на его поверхности квазистационарных ионных комплексов [9]. Поэтому в предлагаемой модели предполагается, что рассеяние свободных носителей заряда в графене

Рис. 1. *а* — схематическое изображение GFET с водным затворным изолятором для случая сильной связи между положительными интерфейсными ионами и электронами. *b* — схематическое изображение GFET с водным затворным изолятором для случая слабой связи между положительными интерфейсными ионами и электронами.

Рис. 2. *а* — схематическое изображение транспорта электронов в GFET с жидким затворным изолятором для случая сильной связи между положительными интерфейсными ионами и электронами. *b* — схематическое изображение транспорта электронов в GFET с жидким затворным изолятором для случая слабой связи между положительными интерфейсными ионами и электронами.

может происходить не только на свободных носителях заряда (их двумерная (2D) плотность: *n*), но и на интерфейсных молекулярных ионах. При таком рассмотрении возникают два предельных случая, которые мы будем называть случаем сильной связи и случаем слабой связи.

В первом из них, (случай сильной связи) благодаря сильному кулоновскому притяжению свободные носители заряда противоположного знака настолько близко расположены к любому из интерфейсных ионов (см. рис. 1, *a* и рис. 2, *a*), что происходит практически полное экранирование электрического поля интерфейсных ионов, и вкладом в рассеяние свободных носителей заряда от создаваемых при этом диполей можно пренебречь. Благодаря полевому эффекту $n \approx n_0 + N_{ii}$, где n_0 — равновесная плотность носителей заряда в графене в отсутствии напряжения на затворе. Поэтому для рассматриваемого случая вклады в рассеяние свободных носителей заряда от электрических полей интерфейсных ионов и от электрических полей свободных носителей заряда, инжектированных в графен благодаря полевому эффекту, взаимно компенсируют друг друга, приводя к практически полной независимости подвижности носителей заряда от плотности интерфейсных ионов и затворного напряжения.

Во втором предельном случае слабой связи (см. рис. 1, *b* и рис. 2, *b*), Ферми энергия или тепловая энергия свободных носителей заряда достаточно велика, чтобы препятствовать их локализации (стационарному сближению с интерфейсными ионами). При этом не происходит полной компенсации электрических полей, создаваемых интерфейсными ионами и свободными носителями заряда, и вклады в рассеяние от этих полей необходимо учитывать независимо при определении подвижности носителей заряда. Оба эти вклада уменьшают среднее время свободного пробега носителей заряда (τ).

Таким образом, путем изучения экспериментальных зависимостей подвижности носителей заряда от плотности интерфейсных ионов и затворного напряжения возможно определение того, какой из этих предельных случаев лучше соответствует эксперименту.

Проводимость графена (σ) может быть оценена с помощью следующей формулы: $\sigma \approx e^2 \cdot n \cdot \tau / (2m)$, где е — заряд электрона, n — плотность свободных носителей заряда в графене, т — масса свободного носителя заряда, которую мы в дальнейшем будем считать равной массе электрона. В предположении, что причиной рассеяния свободных носителей заряда являются частично экранированные Кулоновские короткодействующие силы (короткодействующие по сравнению с длиной свободного пробега), длина свободного пробега носителей заряда в графене (λ) дается следующей формулой: $\lambda \approx \tau v_{\rm F}$, где $v_{\rm F}$ — Ферми скорость носителей заряда в графене. Время свободного пробега т для случая слабой связи дается формулой: $1/\tau = 1/\tau_{fc} + 1/\tau_{ii}$, где τ_{ii} — среднее время свободного пробега носителей заряда до рассеяния на интерфейсных ионах и $\tau_{\rm fc}$ среднее время свободного пробега носителей заряда до их рассеяния на других свободных носителях заряда. Подвижность носителей заряда при этом дается формулой $\mu \approx e \cdot \lambda / (2m \cdot v_{\rm F})$. Полагая $v_{\rm F}$ постоянной величиной, основная зависимость подвижности носителей заряда от N_{ii} определяется зависимостью от нее длины свободного пробега. Для двумерного случая длина свободного пробега носителей заряда между рассеяниями на интерфейсных ионах $\lambda_{ii} = \tau_{ii} v_F \propto 1/(N_{ii})^{1/2}$. При высоких затворных напряжениях, благодаря полевому эффекту, выполняется соотношения $n \approx N_{\rm ii}$. Для этого случая длина свободного пробега носителей заряда между рассеяниями на других свободных носителях заряда дается выражением $\lambda_{
m fc}= au_{
m fc}v_{
m F}\propto 1/(N_{
m ii})^{1/2}.$ Таким образом, в предположении слабой связи, используя выражение $1/\lambda = 1/\lambda_{\rm fc} + 1/\lambda_{\rm ii}$, получаем $\lambda \propto 1/(N_{\rm ii})^{1/2}$ и, соответственно, зависимость подвижности носителей заряда от интерфейсной зарядовой плотности определяется формулой: $\mu \propto 1/(N_{\rm ii})^{1/2}$.

3. Сопоставление экспериментальных и теоретических результатов

Полученные зависимости подвижности носителей заряда в графене от плотности интерфейсных ионов в GFETs нуждаются в экспериментальной проверке. С этой целью мы использовали экспериментальные данные о проводимости графена в GFETs с затворным изолятором в виде деионизированной воды, опубликованные в работе [7]. Схематические изображения использованного в этой работе GFET представлены на рис. 1, *а* и рис. 1, *b*. На рис. 3, *а* представлена зависимость проводимости для двух различных измерений

Рис. 3. *а* — результаты измерений зависимости проводимости GFET от напряжения на затворе, выполненных в работе [7], после смещения затворного напряжения на 0.5 V и вычитания из измеренной проводимости ее значения в минимуме кривой (в точке Дирака). *b* — данные, полученные в результате деления значений проводимости, представленных на рис. 3, *a*, на $V_g^{1/2}$. Горизонтальная линия является вспомогательным построением для наглядного подтверждения слабой зависимости полученной величины в представленном диапазоне напряжений.

от напряжения на затворе. При построении данной зависимости нами был осуществлен сдвиг +0.5 V по напряжению. Кроме этого, было осуществлено вычитание значения проводимости графена в точке Дирака, для совмещения этой точки с началом отсчета. Мы предполагаем, что при высоких напряжениях на затворе независящая от плотности интерфейсных ионов емкость двойного слоя (C_{dl}) много меньше квантовой емкости (C_q), которая, как известно [19], возрастает при увеличении плотности носителей заряда ($C_{\rm dl} \propto (n)^{1/2}$). При этом условии напряжение, прикладываемое к затвору, прямо пропорционально интерфейсной плотности молекулярных ионов на поверхности графена ($V_g \propto N_{\rm ii}$). (Коэффициент пропорциональности при этом зависит от $C_{\rm dl}$). С учетом справедливого при высоких уровнях напряжения на затворе соотношения $n \approx N_{\rm ii}$, получаем, что $V_g \propto n$. Для сравнения предсказания нашей модели $(\mu \propto 1/n^{1/2})$ подставляем это выражение в формулу для проводимости $\sigma \approx en\mu$, получаем, $\sigma \propto n^{1.2}$, а, следовательно, проводимость $\sigma \propto V_g^{1/2}$. На рис. 3, *b* представлен результат деления проводимости графена на корень квадратный из значения напряжения на затворе. Как видно из этого рисунка в результате такого деления получаем примерно постоянный уровень. Таким образом, предлагаемая модель удовлетворительно описывает зависимость подвижности носителей заряда от интерфейсной плотности молекулярных ионов для случая слабой связи. Для другого образца графена с худшей морфологией, исследовавшегося в той же работе [7], аналогичный подход дает зависимость $\mu \propto 1/n^{0.3}$, что соответствует результатам работы [13]. Вероятно, большее число дефектов в этом образце, вносит независящий от N_{ii} вклад в рассеяние свободных носителей заряда, тем самым ослабляя наблюдаемую зависимость от N_{ii}.

4. Заключение

Для образцов высококачественного графена для случая слабой связи предлагаемая модель удовлетворительно описывает зависимость подвижности свободных носителей заряда от плотности интерфейсных ионов $(\mu \propto 1/(N_{\rm ii})^{1/2})$. Для образцов графена с большим количеством дефектов наблюдается более слабая зависимость, чем предсказывает предлагаемая модель. Помимо большего вклада дефектов в рассеяние носителей заряда это обстоятельство может быть также обусловлено не вполне точным выполнением оценочных предположений, сделанных при получении такой зависимости.

Благодарности

Авторы благодарны В.Ю. Давыдову, А.А. Лебедеву, С.П. Лебедеву, И.А. Елисееву, А.А. Сысоевой и А.В. Фокину за помощь.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 21-72-20038).

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Список литературы

- P.K. Ang, W. Chen, A.T.S. Wee, K.P. Loh. J. Am. Chem. Soc. 130, 44, 14392 (2008).
- [2] H. Li, Y. Zhu, M.S. Islam, M.A. Rahman, K.B. Walsh, G. Koley. Sens. Actuators B Chem. 253, 759 (2017).
- [3] M.H. Lee, B.J. Kim, K.H. Lee, I.-S. Shin, W. Huh, J.H. Cho, M.S. Kang. Nanoscale 7, 17, 7540 (2015).
- [4] N.S. Green, M.L. Norton. Anal. Chim. Acta 853, 127 (2015).
- [5] S. Taniselass, M.K.M. Arshad, S.C.B. Gopinath. Biosens. Bioelectron. 130, 276 (2019).
- [6] X. You, J.J. Pak, Sens. Actuators B 202, 1357 (2014).
- [7] A.V. Butko, V.Y. Butko, S.P. Lebedev, A.A. Lebedev, V.Y. Davydov, I.A. Eliseyev, Y.A. Kumzerov. J. Appl. Phys. 128, 21, 215302 (2020).
- [8] A.V. Butko, V.Yu. Butko, S.P. Lebedev, A.A. Lebedev, Yu.A. Kumzerov. Phys. Solid State 60, 12, 2668 (2018).
- [9] A.V. Butko, V.Y. Butko, S.P. Lebedev, A.A. Lebedev, V.Y. Davydov, A.N. Smirnov, I.A. Eliseyev, M.S. Dunaevskiy, Y.A. Kumzerov. Appl. Surf. Sci. 444, 36 (2018).
- [10] A.V. Butko, V.Yu. Butko, S.P. Lebedev, A.A. Lebedev, Y.A. Kumzerov. Phys. Solid State **59**, *10*, 2089 (2017).
- [11] A.V. Butko, V.Yu. Butko, S.P. Lebedev, A.N. Smirnov, V.Yu. Davydov, A.A. Lebedev, Yu.A. Kumzerov. Phys. Solid State 58, 7, 1483 (2016).
- [12] A.V. Butko, V.Yu. Butko. Phys. Solid State 57, 5, 1048 (2015).
- [13] M. Dankerl, M.V. Hauf, A. Lippert, L.H. Hess, S. Birner, I.D. Sharp, A. Mahmood, P. Mallet, J. Veuillen, M. Stutzmann, J.A. Garrido. Adv. Funct. Mater. 20, 18, 3117 (2010).
- [14] J.L. Tedesco, B.L. VanMil, R.L. Myers-Ward, J.M. Mc Crate, S.A. Kitt, P.M. Campbell, G.G. Jernigan, J.C. Culbertson, C.R. Eddy, D.K. Gaskill. Appl. Phys. Lett. 95, 12, 122102 (2009).
- [15] A. Browning, N. Kumada, Y. Sekine, H. Irie, K. Muraki, H. Yamamoto. Appl. Phys. Exp. 9, 6, 065102 (2016).
- [16] S. Adam, E.H. Hwang, V.M. Galitski, S. Das Sarma. PNAS 104, 47, 18392 (2007).
- [17] E.H. Hwang, S. Adam, S. Das Sarma. Phys. Rev. Lett. 98, 18, 186806 (2007).
- [18] T.A. Petach, K.V. Reich, X. Zhang, K. Watanabe, T. Taniguchi, B.I. Shklovskii, D. Goldhaber-Gordon. ACS Nano 11, 8, 8395 (2017).
- [19] J. Xia, F. Chen, J. Li, N. Tao. Nature Nanotechnology 4, 8, 505 (2009).

Редактор К.В. Емцев