17,09

Энергетический спектр и спектр оптического поглощения фуллерена С₂₆ в модели Хаббарда

© А.В. Силантьев

Марийский государственный университет, Йошкар-Ола, Россия E-mail: kvvant@rambler.ru

Поступила в Редакцию 1 июня 2021 г. В окончательной редакции 1 июня 2021 г. Принята к публикации 7 июля 2021 г.

В рамках модели Хаббарда в приближении статических флуктуаций получены в аналитическом виде антикоммутаторные функции Грина и энергетические спектры фуллерена C_{26} и эндо-эдрального фуллерена $U@C_{26}$ с группой симметрии D_{3h} . Используя методы теории групп проведена классификация энергетических состояний, а также определены разрешенные переходы в энергетических спектрах молекул C_{26} и $U@C_{26}$ с группой симметрии D_{3h} .

Ключевые слова: модель Хаббарда, функции Грина, энергетический спектр, наносистемы, фуллерен С₂₆.

DOI: 10.21883/FTT.2021.11.51602.183

1. Введение

Интенсивное исследование углеродных кластеров начатое в 1985 г. после открытия фуллерена C_{60} [1] привело к открытию целого ряда фуллеренов C_n и эндоэдральных фуллеренов $A@C_n$, как с n < 60, так и n > 60. Фуллерены C_n с n < 60 относятся к так называемому классу малых фуллеренов. В настоящее время большое число исследований посвящено изучению свойств малых фуллеренов: C_{20} [2,3], C_{24} [4,5], C_{28} [6,7], C_{36} [8,9]. Одним из малых фуллеренов является фуллерен C_{26} , существование которого экспериментально было подтверждено в ряде работ [10,11]. Исследованию физических и химических свойств фуллерена C_{26} посвящено довольно много работ [12–15].

Фуллерен С26 состоит из 12 пентагонов и 3 гексагонов, как показано на рис. 1, и обладает группой симметрии D_{3h}. Из диаграммы Шлегеля, изображенной на рис. 1, видно, что этот фуллерен содержит пять неэквивалентных связей и четыре группы неэквивалентных атомов углерода: $G_1 = \{1, 4, 9, 15, 21, 25\},\$ $G_2 = \{2, 3, 5, 6, 8, 10, 14, 16, 20, 22, 24, 26\}, G_3 = \{7, 11, 10, 20, 22, 24, 26\}, G_3 = \{7, 11, 10, 20, 22, 24, 26\}, G_3 = \{7, 11, 20, 22, 24, 26\}, G_3 = \{7, 12, 20, 22, 22, 24, 26\}, G_3 = \{7, 12, 20, 22, 22, 22, 22, 22, 22, 22\}, G_3 = \{7, 12, 20, 22, 22, 22, 22, 22, 22\}, G_3 = \{7, 12, 20, 22, 22, 22, 22, 22, 22\}, G_3 = \{7, 12, 20, 22, 22, 22, 22, 22, 22, 22\}, G_3 = \{7, 12, 22, 22, 22, 22, 22,$ 13, 17, 19, 23}, $G_4 = \{12, 18\}$. К множеству G_1 принадлежат атомы, которые находятся в вершинах сочленения одного гексагона и двух пентагонов, общая граница которых связывает два гексагона. К множеству G₂ принадлежат атомы, которые находятся в вершинах сочленения одного гексагона и двух пентагонов, общая граница которых связывает гексагон и пентагон. К множеству G₃ принадлежат атомы, которые находятся в вершинах сочленения трех пентагонов, общая граница которых связывает пентагон и гексагон. К множеству G₄ принадлежат атомы, которые находятся в вершинах сочленения трех пентагонов, общая граница которых связывает два пентагона.

Для описания электронных свойств углеродных наносистем широко используется модель Хаббарда [16]. В рамках этой модели были изучены электронные и оптические свойства, как фуллеренов [17–22], так и нанотрубок [23]. Так, например, в рамках модели Хаббарда в приближении статических флуктуаций были получены энергетические спектры и спектры оптического поглощения фуллерена C_{60} [17], фуллерена C_{70} [18], фуллерена C_{36} с группой симметрии D_{6h} [19], фуллерена C_{28} с группой симметрии T_d [20], фуллерена C_{24} с группами симметрии O_h , D_6 и D_{6d} [21] и фуллерена C_{20} с группами симметрии I_h , D_{5d} и D_{3d} [22]. Полученные в работах [17,18] результаты достаточно хорошо согласуются с экспериментальными данными.

Целью настоящей работы является исследование энергетического спектра фуллерена C₂₆ с группой симметрии D_{3h} в рамках модели Хаббарда в приближении статических флуктуаций.

2. Энергетический спектр фуллерена С₂₆

Для описания *л*-электронной системы фуллерена С₂₆ воспользуемся моделью Хаббарда [16]:

$$H = \sum_{\sigma,i} \varepsilon_i n_{i\sigma} + \sum_{\sigma,i\neq j} t_{ij} c_{i\sigma}^+ c_{j\sigma} + \frac{1}{2} \sum_{\sigma,i} U_i n_{i\sigma} n_{i\bar{\sigma}}, \quad (1)$$

где $c_{i\sigma}^+$, $c_{i\sigma}$ — операторы рождения и уничтожения электронов со спином σ на узле i; $n_{i\sigma}$ — оператор числа частиц со спином σ на узле i; ε_i — энергия одноэлектронного атомного состояния на узле i; t_{ij} — интеграл переноса, описывающий перескоки электронов с узла i на узел j; U_i — энергия кулоновского отталкивания двух электронов, находящихся на i-ом узле; $\bar{\sigma} = -\sigma$.

Из диаграммы Шлегеля, изображенной на рис. 1, видно, что фуллерен С₂₆ имеет пять типов неэквивалентных

Рис. 1. Фуллерен С₂₆ с группой симметрии D_{3h} и его диаграмма Шлегеля с указанием положения атомов углерода и связей между атомами углерода.

связей. Поэтому в рамках модели Хаббарда этим связям соответствует пять интегралов переноса

$$t_{1,9} = t_{4,15} = t_{21,25} = t_a,$$

$$t_{1,2} = t_{1,6} = t_{3,4} = t_{4,5} = t_{8,9} = t_{9,10} = t_{14,15} = t_{15,16}$$

$$= t_{20,21} = t_{21,22} = t_{24,25} = t_{25,26} = t_b,$$

$$t_{2,3} = t_{5,6} = t_{8,20} = t_{10,22} = t_{14,24} = t_{16,26} = t_c,$$

$$t_{2,11} = t_{3,13} = t_{5,17} = t_{6,7} = t_{7,8} = t_{10,11} = t_{13,14} = t_{16,17}$$

$$= t_{19,20} = t_{19,26} = t_{22,23} = t_{23,24} = t_d,$$

$$t_{7,18} = t_{11,12} = t_{12,13} = t_{12,23} = t_{17,18} = t_{18,19} = t_e.$$
(2)

Используя гамильтониан (1), соотношения (2), а также диаграмму Шлегеля, изображенную на рис. 1, запишем уравнения движения для всех операторов рождения $c_{f\sigma}^+(\tau)$, заданных в представлении Гейзенберга

$$\begin{cases} \frac{dc_{1\sigma}^{+}}{d\tau} = \varepsilon_{\sigma}c_{1\sigma}^{+} + t_{b}(c_{2\sigma}^{+} + c_{6\sigma}^{+}) + t_{a}c_{9\sigma}^{+} + Uc_{1\sigma}^{+}n_{1\bar{\sigma}}, \\ \frac{d(c_{1\sigma}^{+}n_{1\bar{\sigma}})}{d\tau} = (\varepsilon_{\sigma} + U)c_{1\sigma}^{+}n_{1\bar{\sigma}} + t_{b}(c_{2\sigma}^{+}n_{2\bar{\sigma}} + c_{6\sigma}^{+}n_{6\bar{\sigma}}) \\ + t_{a}c_{9\sigma}^{+}n_{9\bar{\sigma}}, \\ \dots \\ \frac{dc_{26\sigma}^{+}}{d\tau} = \varepsilon_{\sigma}c_{26\sigma}^{+} + t_{b}c_{25\sigma}^{+} + t_{c}c_{16\sigma}^{+} + t_{d}c_{19\sigma}^{+} + Uc_{26\sigma}^{+}n_{26\bar{\sigma}}, \\ \frac{d(c_{26\sigma}^{+}n_{26\bar{\sigma}})}{d\tau} = (\varepsilon_{\sigma} + U)c_{26\sigma}^{+}n_{26\bar{\sigma}} + t_{b}c_{25\sigma}^{+}n_{25\bar{\sigma}} \\ + t_{c}c_{16\sigma}^{+}n_{16\bar{\sigma}} + t_{d}c_{19\sigma}^{+}. \end{cases}$$
(3)

Система уравнений (3) является замкнутой системой. Используя решение данной системы уравнений можно вычислить Фурье-образы антикоммутаторных функций Грина для всех узлов фуллерена C₂₆:

$$\left\langle \langle c_{j\sigma}^{+}/c_{j\sigma} \rangle \right\rangle = \frac{i}{2\pi} \sum_{m=1}^{36} \frac{F_{j,m}}{E - E_m + ih},$$

$$E_k = \varepsilon + e_k, \quad E_{k+18} = E_k + U, \quad F_{j,m} = q_m Q_{j,m},$$

$$Q_{j,k+18} = Q_{j,k}, \quad k = 1 \dots 18,$$

$$q_m = \begin{cases} 1 - \frac{n}{2}, \ m = 1 \dots 18 \\ \frac{n}{2}, \ m = 19 \dots 36 \end{cases}$$
(4)

где

$$Q_{x,1} = Q_{x,4} = Q_{x,5} = Q_{x,6} = Q_{x,7} = Q_{x,8} = Q_{x,9} = Q_{p,1}$$

$$= Q_{p,2} = Q_{p,3} = Q_{s,1} = Q_{s,2} = Q_{s,3} = Q_{s,4} = Q_{s,5}$$

$$= Q_{s,6} = Q_{s,14} = Q_{s,15} = Q_{s,16} = Q_{s,17} = Q_{s,18} = 0;$$

$$Q_{x,2} = \frac{\sqrt{(t_a - t_c)^2 + 8t_b^2} + t_c - t_a}{12\sqrt{(t_a - t_c)^2 + 8t_b^2}},$$

$$Q_{x,3} = \frac{\sqrt{(t_a - t_c)^2 + 8t_b^2} - t_c + t_a}{12\sqrt{(t_a - t_c)^2 + 8t_b^2}},$$

$$Q_{x,k} = \frac{1}{6} \frac{e_k^3 - e_k^2 t_c - e_k(2t_d^2 + 3t_e^2) + 3t_c t_e^2}{4e_k^3 - 3e_k^2(t_a + t_c) + 2(t_c t_a - 3t_e^2 - 2t_b^2 - 2t_d^2)e_k +},$$

$$+ 3t_e^2(t_a + t_c) + 2t_d^2 t_a$$

$$k = 10, 11, 12, 13;$$

$$\begin{split} \mathcal{Q}_{x,k} &= \frac{2}{3} \frac{e_k^k - e_k^2(2t_d^2 + 2t_c^2 + t_c^2) + e_k t_c t_d^2 + 2t_d^2 t_d^2}{5e_k^4 - 3e_k^2(2t_d^2 + t_c^2 + t_d^2 + 4t_b^2) + 2t_c t_d^2 e_k + t_c^2 t_d^2} + 4t_b^2 t_d^2 + 2t_d^2 t_d^2 + 2t_b^2 t_d t_c + 4t_b^k \\ &\quad k = 14, 15, 16, 17, 18; \\ \mathcal{Q}_{y,1} &= \frac{1}{12}, \\ \mathcal{Q}_{y,2} &= \frac{\sqrt{(t_a - t_c)^2 + 8t_b^2} - t_c + t_a}{24\sqrt{(t_a - t_c)^2 + 8t_b^2}}, \\ \mathcal{Q}_{y,3} &= \frac{\sqrt{(t_a - t_c)^2 + 8t_b^2} + t_c - t_a}{24\sqrt{(t_a - t_c)^2 + 8t_b^2}}, \\ \mathcal{Q}_{y,k} &= \frac{1}{3} \frac{e_k^2 - t_d^2}{3e_k^2 - t_c^2 - 2t_d^2}, \ k = 4, 5, 6, \\ \mathcal{Q}_{y,k} &= \frac{1}{12} \frac{e_k^2 - 3t_c^2}{3e_k^2 - 2t_c e_k - 3t_c^2 - 2t_d^2}, \ k = 7, 8, 9, \\ \mathcal{Q}_{y,k} &= \frac{1}{12} \frac{e_k^2 - 3t_c^2}{4e_k^2 - 3e_k^2(2t_a^2 + t_c^2 + t_a^2 + t_d^2) + t_d^2 t_d^2}{k^2 + 2t_c^2 t_d^2 + 2t_c^2 t_d^2 - 2t_d^2 - 2t_d^2)e_k +}, \\ &\quad + 3t_c^2(t_a + t_c) + 2t_dt_a - 3t_c^2 - 2t_d^2 - 2t_d^2)e_k + , \\ &\quad + 3t_c^2(t_a + t_c) + 2t_dt_d - 3t_c^2 - 2t_d^2 - 2t_d^2)e_k + , \\ &\quad + 4t_c^2 t_d^2 + 2t_c^2 t_d^2 + 2t_d^2 t_d^2 + 2t_d^2 + 2t_d^2 + t_d^2 + 2t_d^2 + t_d^2 + t_$$

$$\begin{split} e_2 &= -\frac{t_a + t_c}{2} + \frac{1}{2} \sqrt{(t_a - t_c)^2 + 8t_b^2}, \\ e_3 &= -\frac{t_a + t_c}{2} - \frac{1}{2} \sqrt{(t_a - t_c)^2 + 8t_b^2}, \\ e_4 &= \frac{2}{\sqrt{3}} \sqrt{t_c^2 + 2t_d^2} \sin\left(\frac{\pi}{6} + \frac{\varphi_3}{3}\right), \\ e_5 &= \frac{2}{\sqrt{3}} \sqrt{t_c^2 + 2t_d^2} \cos\left(\frac{\varphi_3 + \pi}{3}\right), \\ e_6 &= -\frac{2}{\sqrt{3}} \sqrt{t_c^2 + 2t_d^2} \cos\left(\frac{\varphi_3}{3}\right), \\ e_7 &= \frac{t_c}{3} + \frac{2}{3} \sqrt{t_c^2 + 6t_d^2 + 9t_e^2} \cos\left(\frac{\varphi_2}{3}\right), \\ e_8 &= \frac{t_c}{3} - \frac{2}{3} \sqrt{t_c^2 + 6t_d^2 + 9t_e^2} \cos\left(\frac{\varphi_2}{3}\right), \\ e_9 &= \frac{t_c}{3} - \frac{2}{3} \sqrt{t_c^2 + 6t_d^2 + 9t_e^2} \cos\left(\frac{\pi}{6} + \frac{\varphi_2}{3}\right), \\ e_{10} &= \frac{1}{4} \left(t_c + t_a + 2\sqrt{A}\right) \\ &+ \sqrt{8A + \frac{(t_c + t_a)((t_c - t_a)^2 + 8t_b^2 - 12t_e^2) + 8t_d^2(t_c - t_a)}{\sqrt{A}} - 12z} \right), \\ e_{11} &= \frac{1}{4} \left(t_c + t_a + 2\sqrt{A}\right) \\ &- \sqrt{8A + \frac{(t_c + t_a)((t_c - t_a)^2 + 8t_b^2 - 12t_e^2) + 8t_d^2(t_c - t_a)}{\sqrt{A}} - 12z} \right), \\ e_{12} &= \frac{1}{4} \left(t_c + t_a - 2\sqrt{A}\right) \\ &+ \sqrt{8A - \frac{(t_c + t_a)((t_c - t_a)^2 + 8t_b^2 - 12t_e^2) + 8t_d^2(t_c - t_a)}{\sqrt{A}} - 12z} \right), \\ e_{13} &= \frac{1}{4} \left(t_c + t_a - 2\sqrt{A}\right) \\ &- \sqrt{8A - \frac{(t_c + t_a)((t_c - t_a)^2 + 8t_b^2 - 12t_e^2) + 8t_d^2(t_c - t_a)}{\sqrt{A}} - 12z} \right), \\ e_{13} &= \frac{1}{4} \left(t_c + t_a - 2\sqrt{A}\right) \\ &- \sqrt{8A - \frac{(t_c + t_a)((t_c - t_a)^2 + 8t_b^2 - 12t_e^2) + 8t_d^2(t_c - t_a)}{\sqrt{A}} - 12z} \right), \\ e_{14} &= x_1, \\ e_{15} &= x_2, \\ e_{16} &= x_3, \\ e_{17} &= x_4, \\ e_{18} &= x_5, \\ A &= \frac{t_a^2}{4} - \frac{t_a t_c}{6} + \frac{t_e^2}{4} + \frac{4t_a^2}{3} + \frac{4t_b^2}{3} + 2t_e^2 + z, \\ z &= \frac{2}{3} \left[4(t_d^2 + t_b^2 + 3t_e^2)(t_d^2 + t_b^2 - t_c t_a) \right] \\ &+ t_a \left(6t_d^2(t_c + t_a) + t_a t_e^2\right) \left(3t_d^2 - \frac{\varphi_1}{3}\right), \end{aligned}$$

$$\begin{split} \varphi_{1} &= \arccos \bigg\{ \frac{1}{2} \Big[\Big(2(2t_{d}^{2} + 2t_{b}^{2} - t_{c}t_{a} + 3t_{e}^{2})^{2} \\ &+ 27 \big((t_{c} + t_{a})^{2} + 8t_{c}t_{a} - 16t_{b}^{2} \big) t_{e}^{2} + 18(t_{c} + t_{a})t_{d}^{2}t_{a} \big) \\ &\times (2t_{d}^{2} + 2t_{b}^{2} - t_{c}t_{a} + 3t_{e}^{2}) - 27 \big(3(t_{c} + t_{a})t_{e}^{2} + 2t_{d}^{2}t_{a} \big)^{2} \\ &+ 81t_{e}^{2}(t_{c}t_{a} - 2t_{b}^{2})(t_{c} + t_{a})^{2} \Big] \Big[6t_{a}(t_{c} + t_{a})t_{d}^{2} \\ &+ (2t_{d}^{2} + 2t_{b}^{2} - t_{c}t_{a} + 3t_{e}^{2})^{2} \\ &+ 9t_{e}^{2} \big(8t_{b}^{2} + (t_{c} - t_{a})^{2} \big) \Big]^{(-3/2)} \Big\}, \\ \varphi_{2} &= \arccos \bigg(\frac{t_{c}(t_{c}^{2} + 9t_{d}^{2} - 27t_{e}^{2})}{(t_{c}^{2} + 6t_{d}^{2} + 9t_{e}^{2})^{3/2}} \bigg), \\ \varphi_{3} &= \arccos \bigg(\frac{3^{3/2}t_{d}^{2}t_{c}}{2(t_{c}^{2} + 2t_{d}^{2})^{3/2}} \bigg), \end{split}$$

где *x*₁, *x*₂, *x*₃, *x*₄, *x*₅ являются корнями следующего уравнения

$$x^{5} - (t_{a}^{2} + 4t_{b}^{2} + t_{c}^{2} + 2t_{d}^{2})x^{3} + t_{d}^{2}t_{c}x^{2} + (4t_{d}^{2}t_{b}^{2} + 4t_{b}^{4} + t_{a}^{2}t_{c}^{2} + 2t_{a}^{2}t_{d}^{2} + 2t_{b}^{2}t_{c}t_{a})x - 4t_{d}^{2}t_{b}^{2}t_{a} - t_{a}^{2}t_{d}^{2}t_{c} = 0.$$
 (6)

Величины E_m , которые входят в соотношение (4), являются полюсами Фурье-образа антикоммутаторной функции Грина, которые, как известно [24], соответствуют энергетическим состояниям квантовой системы. Следовательно, величины E_m , которые входят в функцию Грина (4), определяют энергетический спектр фуллерена C_{26} с группой симметрии D_{3h} .

Энергетические состояния фуллерена C_{26} с группой симметрии D_{3h} можно классифицировать согласно неприводимым представлениям группы D_{3h} , которая, как известно [25], имеет четыре одномерных неприводимых представлений a'_1, a''_1, a'_2, a''_2 и два двумерных неприводимых представлений e', e''. Можно показать, что энергетические состояния фуллерена C_{26} , определяемые полюсами функции Грина (4), связаны с неприводимыми представлениями группы D_{3h} следующим образом:

$$E_{1}(a_{1}''), E_{2}(a_{2}'), E_{3}(a_{2}'), E_{4}(e''), E_{5}(e''), E_{6}(e''), E_{7}(a_{2}''), \\ E_{8}(a_{2}''), E_{9}(a_{2}''), E_{10}(a_{1}'), E_{11}(a_{1}'), E_{12}(a_{1}'), E_{13}(a_{1}'), \\ E_{14}(e'), E_{15}(e'), E_{16}(e'), E_{17}(e'), E_{18}(e'), E_{19}(a_{1}''), \\ E_{20}(a_{2}'), E_{21}(a_{2}'), E_{22}(e''), E_{23}(e''), E_{24}(e''), E_{25}(a_{2}''), \\ E_{26}(a_{2}''), E_{27}(a_{2}''), E_{28}(a_{1}'), E_{29}(a_{1}'), E_{30}(a_{1}'), E_{31}(a_{1}'), \\ E_{32}(e'), E_{33}(e'), E_{34}(e'), E_{35}(e'), E_{36}(e').$$

Как известно, энергетические уровни квантовой системы кроме значения энергии, также характеризуются степенью вырождения, которую можно найти с помощью следующего соотношения [17,18]:

$$g_i = \sum_{j=1}^{N} Q_{j,i},$$
 (7)

где *N* — число узлов в наносистеме.

Для того чтобы получить численные значения для степеней вырождения энергетических уровней фуллерена C_{26} подставим в формулу (7) величины $Q_{j,i}$, которые входят в функцию Грина (4):

$$g_{1} = g_{2} = g_{3} = g_{7} = g_{8} = g_{9} = g_{10} = g_{11}$$
$$= g_{12} = g_{13} = g_{19} = g_{20} = g_{21} = g_{25} = g_{26}$$
$$= g_{27} = g_{28} = g_{29} = g_{30} = g_{31} = 1,$$
$$g_{4} = g_{5} = g_{6} = g_{14} = g_{15} = g_{16} = g_{17} = g_{18} = g_{22}$$
$$= g_{23} = g_{24} = g_{32} = g_{33} = g_{34} = g_{35} = g_{36} = 2.$$
 (8)

Таким образом, величины E_m , которые входят в функцию Грина (4), и величины g_m из (8) описывают энергетический спектр фуллерена C_{26} с группой симметрии D_{3h} в модели Хаббарда в приближении статических флуктуаций. Из этих соотношений следует, что энергетический спектр фуллерена C_{26} с группой симметрии D_{3h} состоит из 36 энергетических состояний, из которых 20 энергетических состояний являются двукратно вырожденными.

3. Обсуждение результатов

Исследования, выполненные в работе [15], показали, что расстояния между атомами углерода в фуллерене C_{26} с группой симметрии D_{3h} имеют следующие значения:

$$x_a = 1.540 \text{ Å}, \ x_b = 1.428 \text{ Å}, \ x_c = 1.450 \text{ Å},$$

 $x_d = 1.473 \text{ Å}, \ x_e = 1.410 \text{ Å}.$ (9)

Для того чтобы получить численные значения для энергетического спектра фуллерена С₂₆, необходимо найти численные значения для интегралов переноса, которые соответствуют этому фуллерену. Для этого воспользуемся следующим соотношением [18,21]:

$$t_s = -8.17065 \exp(-1.69521x_s). \tag{10}$$

Подставляя (9) в соотношение (10) мы получим численные значения для интегралов переноса для фуллерена С₂₆ с группой симметрии D_{3h}:

$$t_a = -0.60045 \,\text{eV}, \ t_b = -0.72600 \,\text{eV}, \ t_c = -0.69942 \,\text{eV},$$

 $t_d = -0.67268 \,\text{eV}, \ t_e = -0.74849 \,\text{eV}.$ (11)

Как видно из функции Грина (4) соотношение, описывающее энергетический спектр фуллерена C_{26} , можно записать в следующем виде:

$$E_k = \varepsilon + \frac{U}{2} + \bar{e}_k, \tag{12}$$

N⁰	e_j , eV	E_j , eV	<i>g j</i>	$E(\Gamma_j)$	N⁰	e_j , eV	E_j , eV	g j	$E(\Gamma_j)$
1	-4.930	-9.923	1	$E_{13}(a'_1)$	19	0.732	-4.261	1	$E_{31}(a_1')$
2	-4.612	-9.605	1	$E_9(a_2'')$	20	1.050	-3.943	1	$E_{27}(a_{2}^{\prime\prime})$
3	-4.479	-9.472	2	$E_{18}(e')$	21	1.183	-3.810	2	$E_{36}(e')$
4	-3.906	-8.899	1	$E_{12}(a'_1)$	22	1.756	-3.237	1	$E_{30}(a'_1)$
6	-3.876	-8.869	2	$E_6(e'')$	23	1.786	-3.207	2	$E_{24}(e'')$
5	-3.752	-8.745	2	$E_{17}(e')$	24	1.910	-3.083	2	$E_{35}(e')$
8	-3.266	-8.259	1	$E_8(a_2'')$	25	2.396	-2.597	1	$E_{26}(a_{2}^{\prime\prime})$
7	-3.209	-8.202	1	$E_{3}(a'_{2})$	26	2.453	-2.540	1	$E_{21}(a'_2)$
9	-3.071	-8.064	2	$E_{16}(e')$	27	2.591	-2.402	2	$E_{34}(e')$
10	-3.067	-8.060	2	$E_5(e'')$	28	2.595	-2.398	2	$E_{23}(e'')$
11	-2.531	-7.524	1	$E_{11}(a'_1)$	29	3.131	-1.862	1	$E_{29}(a'_1)$
12	-2.132	-7.125	1	$E_1(a_1'')$	30	3.530	-1.463	1	$E_{19}(a_1'')$
13	-1.712	-6.705	2	$E_{14}(e')$	31	3.950	-1.043	2	$E_{32}(e')$
14	-1.550	-6.543	2	$E_4(e^{\prime\prime})$	32	4.112	-0.881	2	$E_{22}(e'')$
16	-1.314	-6.307	1	$E_7(a_2'')$	33	4.348	-0.645	1	$E_{25}(a_{2}^{\prime\prime})$
15	-1.257	-6.250	1	$E_{10}(a_{1}')$	34	4.405	-0.588	1	$E_{28}(a'_1)$
17	-1.153	-6.146	1	$E_2(a'_2)$	35	4.509	-0.484	1	$E_{20}(a'_2)$
18	-1.142	-6.135	2	$E_{15}(e')$	36	4.520	-0.473	2	$E_{33}(e')$

Таблица 1. Энергетический спектр фуллерена С₂₆ с группой симметрии D_{3h}: значения энергии уровней, кратность их вырождения и неприводимые представления группы D_{3h}, к которым они относятся

Таблица 2. Энергетический спектр эндофуллерена U@C₂₆ с группой симметрии D_{3h}: значения энергии уровней, кратность их вырождения и неприводимые представления группы D_{3h}, к которым они относятся

N⁰	e_j , eV	E_j , eV	g j	$E(\Gamma_j)$	N⁰	e_j , eV	E_j , eV	g j	$E(\Gamma_j)$
1	-4.803	-9.796	1	$E_{13}(a'_1)$	19	0.859	-4.134	1	$E_{31}(a'_1)$
2	-4.518	-9.511	1	$E_9(a_2'')$	20	1.144	-3.849	1	$E_{27}(a_{2}^{\prime\prime})$
3	-4.370	-9.363	2	$E_{18}(e')$	21	1.292	-3.701	2	$E_{36}(e')$
4	-3.867	-8.860	1	$E_{12}(a'_1)$	22	1.795	-3.198	1	$E_{30}(a'_1)$
6	-3.808	-8.801	2	$E_6(e'')$	23	1.854	-3.139	2	$E_{24}(e'')$
5	-3.676	-8.669	2	$E_{17}(e')$	24	1.986	-3.007	2	$E_{35}(e')$
8	-3.250	-8.243	1	$E_8(a_2'')$	25	2.412	-2.581	1	$E_{26}(a_{2}^{\prime\prime})$
7	-3.138	-8.131	1	$E_{3}(a'_{2})$	26	2.524	-2.469	1	$E_{21}(a'_2)$
9	-3.073	-8.066	2	$E_{16}(e')$	27	2.589	-2.404	2	$E_{34}(e')$
10	-3.052	-8.045	2	$E_5(e'')$	28	2.610	-2.383	2	$E_{23}(e'')$
11	-2.585	-7.578	1	$E_{11}(a'_1)$	29	3.077	-1.916	1	$E_{29}(a'_1)$
12	-2.173	-7.166	1	$E_1(a_1'')$	30	3.489	-1.504	1	$E_{19}(a_1'')$
13	-1.774	-6.767	2	$E_{14}(e')$	31	3.888	-1.105	2	$E_{32}(e')$
14	-1.632	-6.625	2	$E_4(e^{\prime\prime})$	32	4.030	-0.963	2	$E_{22}(e^{\prime\prime})$
16	-1.383	-6.376	1	$E_7(a_2^{\prime\prime})$	33	4.279	-0.714	1	$E_{25}(a_{2}^{\prime\prime})$
15	-1.336	-6.329	1	$E_{10}(a_1')$	34	4.326	-0.667	1	$E_{28}(a_1')$
17	-1.262	-6.255	2	$E_{15}(e')$	35	4.400	-0.593	2	$E_{33}(e')$
18	-1.257	-6.250	1	$E_2(a_2')$	36	4.405	-0.588	1	$E_{20}(a'_2)$

где \bar{e}_k — это энергия k-го энергетического уровня относительно энергии $\varepsilon + U/2$:

$$\bar{e}_{k} = \begin{cases} e_{k} - \frac{U}{2}, & k = 1 \dots 18, \\ e_{k-18} + \frac{U}{2}, & k = 19 \dots 36. \end{cases}$$
(13)

Используя соотношения (13), (5) и (11), а также U = 5.662 eV [17] получим численные значения для величин \bar{e}_k , которые приведены в табл. 1. Подставляя \bar{e}_k из табл. 1, а также $\varepsilon = -7.824 \text{ eV}$, U = 5.662 eV [17]

в соотношение (12) получим энергетический спектр фуллерена C_{26} с группой симметрии D_{3h} . Результаты вычислений приведены в табл. 1, а также на рис. 2. Как видно из соотношений (12), (13) и рис. 2, энергетические состояния фуллерена C_{26} образуют две подзоны Хаббарда. Энергетические состояния, образующие нижнюю подзону Хаббарда, сосредоточены вблизи энергии ε , а энергетические состояния, образующие верхнюю подзону Хаббарда, сосредоточены вблизи энергии $\varepsilon + U$.

Рис. 2. Энергетический спектр фуллерена C_{26} с группой симметрии D_{3h} .

Рассмотрим теперь эндоэдральный фуллерен U@C₂₆. Проведенные исследования показали [15], что эндоэдральный фуллерен U@C₂₆ обладает группой симметрии D_{3h} , а расстояния между атомами углерода в этой молекуле имеют следующие значения:

$$x_a = 1.531 \text{ Å}, \ x_b = 1.480 \text{ Å}, \ x_c = 1.486 \text{ Å},$$

 $x_d = 1.514 \text{ Å}, \ x_a = 1.433 \text{ Å},$ (14)

Теперь для того чтобы получить численные значения для интегралов переноса у молекулы U@C₂₆ подставим (14) в соотношение (10):

$$t_a = -0.60968 \text{ eV}, t_b = -0.66474 \text{ eV}, t_c = -0.65801 \text{ eV},$$

 $t_d = -0.62751 \text{ eV}, \quad t_e = -0.71987 \text{ eV}.$ (15)

Подставляя численные значения для ε , U и интегралов переноса (15) в соотношения (5), (13) и (12) получим для молекулы U@C26 численные значения для величин \bar{e}_k и E_k , которые приведены в табл. 2. Из рис. 2, рис. 3, табл. 1 и табл. 2 видно, что энергетические спектры молекул C₂₆ и U@C₂₆ отличаются друг от друга относительным расположением энергетических состояний $E_2(a'_2), E_{15}(e')$ и $E_{20}(a'_2), E_{33}(e')$. Считается, что при внедрении атома металла внутрь фуллерена не происходит существенного изменения его энергетических уровней. При этом в первом приближении считается, что при внедрении атома металла валентные электроны этого атома переходят на остов фуллерена [26]. При образовании эндоэдрального фуллерена U@C26, четыре валентных электрона атома Урана переходят в оболочку фуллерена С₂₆ и, как видно из рис. 3, занимают уровни $E_{31}(a_1'), E_{27}(a_2'')$ и $E_{36}(e').$

Одной из важнейших характеристик квантовой системы является ее спектр оптического поглощения. Найдем переходы, которые обуславливают оптические спектры фуллерена C_{26} и эндоэдрального фуллерена U@ C_{26} с группой симметрии D_{3h} . Для этого воспользуемся энергетическими спектрами этих молекул, и используя

Рис. 3. Энергетический спектр эндофуллерена U@C₂₆ с группой симметрии D_{3h} .

NT.	4.5		NL			NL	4.5		N	٨E	
IN⁰	ΔE	$\Delta E, ev$	INΩ	ΔE	$\Delta E, ev$	INΩ	ΔE	$\Delta E, ev$	INΩ	ΔE	$\Delta E, ev$
1	$E_{31} - E_{15}$	1.874	45	$E_{36} - E_3$	4.392	89	$E_{35} - E_{17}$	5.662	133	$E_{32} - E_5$	7.018
2	$E_{31} - E_7$	2.046	46	$E_{35} - E_{11}$	4.441	90	$E_{32} - E_{14}$	5.662	134	$E_{32} - E_{16}$	7.021
3	$E_{27} - E_{10}$	2.307	47	$E_{29} - E_7$	4.446	91	$E_{23} - E_5$	5.662	135	$E_{33} - E_{11}$	7.051
4	$E_{36} - E_{15}$	2.325	48	$E_{31} - E_{17}$	4.483	92	$E_{36} - E_{18}$	5.662	136	$E_{34} - E_{18}$	7.071
5	$E_{36} - E_2$	2.336	49	$E_{21} - E_1$	4.585	93	$E_{23} - E_{16}$	5.665	137	$E_{23} - E_{18}$	7.074
6	$E_{24} - E_4$	3.336	50	$E_{19} - E_2$	4.684	94	$E_{33} - E_2$	5.673	138	$E_{32} - E_3$	7.159
7	$E_{36} - E_{10}$	2.440	51	$E_{23} - E_1$	4.726	95	$E_{28} - E_7$	5.719	139	$E_{22} - E_5$	7.180
8	$E_{31} - E_{14}$	2.443	52	$E_{30} - E_{16}$	4.827	96	$E_{33} - E_{10}$	5.777	140	$E_{22} - E_{16}$	7.183
9	$E_{27} - E_4$	2.600	53	$E_{29} - E_{14}$	4.843	97	$E_{35} - E_6$	5.786	141	$E_{23} - E_9$	7.206
10	$E_{36} - E_4$	2.733	54	$E_{24} - E_5$	4.854	98	$E_{34} - E_3$	5.800	142	$E_{26} - E_{13}$	7.326
11	$E_{36} - E_{14}$	2.895	55	$E_{24} - E_{16}$	4.857	99	$E_{35} - E_{12}$	5.816	143	$E_{22} - E_8$	7.378
12	$E_{30} - E_{15}$	2.899	56	$E_{27} - E_6$	4.926	100	$E_{22} - E_{14}$	5.824	144	$E_{19} - E_6$	7.406
13	$E_{24} - E_{15}$	2.929	57	$E_{26} - E_{11}$	4.927	101	$E_{23} - E_8$	5.861	145	$E_{25} - E_5$	7.415
14	$E_{35} - E_{15}$	3.052	58	$E_{36} - E_{17}$	4.935	102	$E_{25} - E_4$	5.898	146	$E_{28} - E_{16}$	7.475
15	$E_{35} - E_2$	3.064	59	$E_{27} - E_{12}$	4.956	103	$E_{27} - E_{13}$	5.981	147	$E_{34} - E_{13}$	7.522
16	$E_{30} - E_7$	3.071	60	$E_{35} - E_5$	4.978	104	$E_{33} - E_4$	6.070	148	$E_{20} - E_{16}$	7.579
17	$E_{24} - E_7$	3.101	61	$E_{35} - E_{16}$	4.981	105	$E_{36} - E_{13}$	6.113	149	$E_{33} - E_5$	7.587
18	$E_{35} - E_{10}$	3.167	62	$E_{30} - E_8$	5.023	106	$E_{28} - E_{14}$	6.117	150	$E_{33} - E_{16}$	7.590
19	$E_{35} - E_4$	3.460	63	$E_{24} - E_8$	5.053	107	$E_{29} - E_{16}$	6.202	151	$E_{29} - E_{18}$	7.610
20	$E_{30} - E_{14}$	3.468	64	$E_{36} - E_6$	5.059	108	$E_{21} - E_{17}$	6.205	152	$E_{28} - E_8$	7.671
21	$E_{24} - E_{14}$	3.498	65	$E_{19} - E_4$	5.080	109	$E_{20} - E_{14}$	6.221	153	$E_{32} - E_{17}$	7.702
22	$E_{27} - E_{11}$	3.581	66	$E_{36} - E_{12}$	5.089	110	$E_{33} - E_{14}$	6.232	154	$E_{33} - E_3$	7.729
23	$E_{21} - E_{15}$	3.595	67	$E_{32} - E_{15}$	5.092	111	$E_{30} - E_{18}$	6.235	155	$E_{29} - E_{9}$	7.743
24	$E_{35} - E_{14}$	3.622	68	$E_{32} - E_2$	5.103	112	$E_{22} - E_1$	6.244	156	$E_{32} - E_6$	7.826
25	$E_{26} - E_{10}$	3.653	69	$E_{35} - E_3$	5.119	113	$E_{24} - E_{18}$	6.265	157	$E_{32} - E_{12}$	7.856
26	$E_{36} - E_{11}$	3.714	70	$E_{34} - E_{11}$	5.122	114	$E_{26} - E_6$	6.271	158	$E_{22} - E_{17}$	7.864
27	$E_{34} - E_{15}$	3.734	71	$E_{32} - E_{10}$	5.207	115	$E_{26} - E_{12}$	6.301	159	$E_{22} - E_6$	7.988
28	$E_{23} - E_{15}$	3.737	72	$E_{31} - E_{18}$	5.211	116	$E_{34} - E_{17}$	6.343	160	$E_{28} - E_{17}$	8.157
29	$E_{34} - E_2$	3.745	73	$E_{22} - E_{15}$	5.254	117	$E_{23} - E_{17}$	6.346	161	$E_{25} - E_6$	8.223
30	$E_{34} - E_{10}$	3.849	74	$E_{31} - E_9$	5.343	118	$E_{30} - E_{9}$	6.368	162	$E_{25} - E_{12}$	8.253
31	$E_{31} - E_{16}$	3.802	75	$E_{22} - E_7$	5.426	119	$E_{35} - E_{18}$	6.389	163	$E_{20} - E_{17}$	8.260
32	$E_{23} - E_7$	3.909	76	$E_{26} - E_5$	5.463	120	$E_{29} - E_8$	6.397	164	$E_{33} - E_{17}$	8.272
33	$E_{24} - E_1$	3.918	77	$E_{32} - E_4$	5.500	121	$E_{24} - E_9$	6.398	165	$E_{33} - E_6$	8.395
34	$E_{26} - E_4$	3.946	78	$E_{30} - E_{17}$	5.508	122	$E_{34} - E_6$	6.467	166	$E_{33} - E_{12}$	8.425
35	$E_{31} - E_8$	3.998	79	$E_{21} - E_{16}$	5.524	123	$E_{23} - E_6$	6.470	167	$E_{32} - E_{18}$	8.429
36	$E_{27} - E_5$	4.118	80	$E_{24} - E_{17}$	5.538	124	$E_{32} - E_{11}$	6.481	168	$E_{22} - E_{18}$	8.591
37	$E_{34} - E_4$	4.141	81	$E_{28} - E_{15}$	5.547	125	$E_{34} - E_{12}$	6.497	169	$E_{22} - E_9$	8.724
38	$E_{23} - E_4$	4.144	82	$E_{25} - E_{10}$	5.605	126	$E_{20} - E_1$	6.540	170	$E_{32} - E_{13}$	8.881
39	$E_{21} - E_{14}$	4.165	83	$E_{20} - E_{15}$	5.651	127	$E_{19} - E_5$	6.598	171	$E_{28} - E_{18}$	8.884
40	$E_{36} - E_5$	4.250	84	$E_{34} - E_5$	5.659	128	$E_{19} - E_3$	6.739	172	$E_{20} - E_{18}$	8.988
41	$E_{36} - E_{16}$	4.253	85	$E_{24} - E_6$	5.662	129	$E_{35} - E_{13}$	6.841	173	$E_{33} - E_{18}$	8.999
42	$E_{29} - E_{15}$	4.273	86	$E_{34} - E_{16}$	5.662	130	$E_{25} - E_{11}$	6.878	174	$E_{28} - E_9$	9.017
43	$E_{34} - E_{14}$	4.303	87	$E_{22} - E_4$	5.662	131	$E_{29} - E_{17}$	6.883	175	$E_{25} - E_{13}$	9.278
44	$E_2 3 - E_{14}$	4.306	88	$E_{33} - E_{15}$	5.662	132	$E_{21} - E_{18}$	6.932	176	$E_{33} - E_{13}$	9.450

Таблица З. Разрешенные переходы в энергетическом спектре фуллерена С26

теорию групп [27] найдем, какие переходы с точки зрения симметрии у молекул C_{26} и U@C₂₆ разрешены, а какие запрещены. Можно показать, что в энергетическом спектре молекулы с группой симметрии D_{3h} разрешены следующие переходы:

$$a'_{1} \leftrightarrow e', \ a'_{2} \leftrightarrow e', \ e' \leftrightarrow e',$$
$$a''_{1} \leftrightarrow e'', \ a''_{2} \leftrightarrow e'', \ e'' \leftrightarrow e'',$$
$$a'_{1} \leftrightarrow a''_{2}, \ a'_{2} \leftrightarrow a''_{1}, \ e' \leftrightarrow e''.$$
(16)

Из функции Грина (4), рис. 2, рис. 3 и правил отбора (16) следует, что у фуллерена C_{26} имеется 176 разрешенных переходов, а у эндоэдрального фуллерена U@C₂₆ имеется 171 разрешенных переходов, которые представлены в табл. 3 и табл. 4. Остальные переходы являются запрещенными. Разное количество разрешенных переходов у C₂₆ и U@C₂₆ связано с тем, что, как видно из рис. 2 и рис. 3, при внедрении атома урана в фуллерен C₂₆ четыре валентных электрона переходят с атома урана на фуллерен C₂₆ и заполняют

Таблица 4. Разрешенные переходы в энергетическом спектре эндофуллерена U@C26

N₂	ΔE	ΔE , eV	N₂	ΔE	ΔE , eV	N⁰	ΔE	ΔE , eV	N⁰	ΔE	ΔE , eV
1	$E_{30} - E_{36}$	0.503	44	$E_{24} - E_1$	4.027	87	$E_{22} - E_4$	5.662	130	$E_{34} - E_{18}$	6.960
2	$E_{24} - E_{36}$	0.562	45	$E_{26} - E_4$	4.045	88	$E_{32} - E_{14}$	5662	131	$E_{23} - E_{18}$	6.980
3	$E_{30} - E_{27}$	0.651	46	$E_{34} - E_4$	4.222	89	$E_{33} - E_{15}$	5.662	132	$E_{33} - E_{11}$	6.985
4	$E_{35} - E_{36}$	0.695	47	$E_{23} - E_4$	4.242	90	$E_{24} - E_6$	5.662	133	$E_{32} - E_3$	7.025
5	$E_{24} - E_{27}$	0.709	48	$E_{21} - E_{14}$	4.299	91	$E_{20} - E_{15}$	5.667	134	$E_{22} - E_5$	7.082
6	$E_{35} - E_{31}$	1.128	49	$E_{29} - E_{15}$	4.339	92	$E_{23} - E_{16}$	5.682	135	$E_{22} - E_{16}$	7.102
7	$E_{21} - E_{36}$	1.233	50	$E_{34} - E_{14}$	4.364	93	$E_{28} - E_7$	5.709	136	$E_{23} - E_9$	7.128
8	$E_{34} - E_{36}$	1.298	51	$E_{23} - E_{14}$	4.384	94	$E_{34} - E_3$	5.727	137	$E_{26} - E_{13}$	7.215
9	$E_{23} - E_{36}$	1.318	52	$E_{29} - E_7$	4.460	95	$E_{33} - E_{10}$	5.736	138	$E_{22} - E_8$	7.279
10	$E_{23} - E_{27}$	1.466	53	$E_{35} - E_{11}$	4.572	96	$E_{35} - E_6$	5.795	139	$E_{19} - E_6$	7.297
11	$E_{26} - E_{31}$	1.553	54	$E_{21} - E_1$	4.697	97	$E_{22} - E_{14}$	5.804	140	$E_{25} - E_5$	7.331
12	$E_{34} - E_{31}$	1.730	55	$E_{19} - E_2$	4.746	98	$E_{35} - E_{12}$	5.853	141	$E_{34} - E_{13}$	7.392
13	$E_{29} - E_{36}$	1.785	56	$E_{23} - E_1$	4.783	99	$E_{25} - E_4$	5.911	142	$E_{28} - E_{16}$	7.398
14	$E_{29} - E_{27}$	1.933	57	$E_{29} - E_{14}$	4.851	100	$E_{33} - E_4$	6.032	143	$E_{29} - E_{18}$	7.447
15	$E_{32} - E_{36}$	2.596	58	$E_{30} - E_{16}$	4.868	101	$E_{28} - E_{14}$	6.100	144	$E_{33} - E_5$	7.452
16	$E_{22} - E_{36}$	2.738	59	$E_{24} - E_5$	4.906	102	$E_{29} - E_{16}$	6.149	145	$E_{33} - E_{16}$	7.473
17	$E_{22} - E_{27}$	2.886	60	$E_{24} - E_{16}$	4.926	103	$E_{30} - E_{18}$	6.165	146	$E_{20} - E_{16}$	7.478
18	$E_{32} - E_{31}$	3.029	61	$E_{26} - E_{11}$	4.997	104	$E_{20} - E_{14}$	6.180	147	$E_{33} - E_3$	7.538
19	$E_{28} - E_{36}$	3.034	62	$E_{35} - E_5$	5.039	105	$E_{33} - E_{14}$	6.174	148	$E_{32} - E_{17}$	7.563
20	$E_{30} - E_{15}$	3.057	63	$E_{30} - E_8$	5.045	106	$E_{21} - E_{17}$	6.200	149	$E_{28} - E_8$	7.576
21	$E_{33} - E_{36}$	3.108	64	$E_{35} - E_{16}$	5.059	107	$E_{22} - E_1$	6.203	150	$E_{29} - E_9$	7.595
22	$E_{20} - E_{36}$	3.114	65	$E_{24} - E_8$	5.103	108	$E_{26} - E_6$	6.221	151	$E_{32} - E_6$	7.696
23	$E_{24} - E_{15}$	3.116	66	$E_{19} - E_4$	5.121	109	$E_{24} - E_{18}$	6.224	152	$E_{22} - E_{17}$	7.705
24	$E_{30} - E_7$	3.178	67	$E_{35} - E_3$	5.124	110	$E_{34} - E_{17}$	6.265	153	$E_{32} - E_{12}$	7.755
25	$E_{28} - E_{27}$	3.182	68	$E_{32} - E_2$	5.144	111	$E_{26} - E_{12}$	6.279	154	$E_{22} - E_6$	7.838
26	$E_{24} - E_7$	3.237	69	$E_{32} - E_{15}$	5.150	112	$E_{23} - E_{17}$	6.285	155	$E_{28} - E_{17}$	8.00
27	$E_{35} - E_2$	3.243	70	$E_{34} - E_{11}$	5.175	113	$E_{30} - E_9$	6.313	156	$E_{33} - E_{17}$	8.076
28	$E_{35} - E_{15}$	3.248	71	$E_{32} - E_4$	5.520	114	$E_{29} - E_8$	6.327	157	$E_{20} - E_{17}$	8.081
29	$E_{35} - E_{10}$	3.323	72	$E_{32} - E_{10}$	5.224	115	$E_{35} - E_{18}$	6.357	158	$E_{25} - E_6$	8.087
30	$E_{25} - E_{31}$	3.420	73	$E_{22} - E_{15}$	5.292	116	$E_{24} - E_{9}$	6.371	159	$E_{25} - E_{12}$	8.146
31	$E_{24} - E_4$	3.486	74	$E_{22} - E_7$	5.413	117	$E_{34} - E_6$	6.398	160	$E_{33} - E_6$	8.208
32	$E_{33} - E_{31}$	3.541	75	$E_{26} - E_5$	5.464	118	$E_{23} - E_6$	6.418	161	$E_{32} - E_{18}$	8.258
33	$E_{30} - E_{14}$	3.569	76	$E_{30} - E_{17}$	5.471	119	$E_{34} - E_{12}$	6.456	162	$E_{33} - E_{12}$	8.267
34	$E_{35} - E_4$	3.619	77	$E_{24} - E_{17}$	5.529	120	$E_{32} - E_{11}$	6.473	163	$E_{22} - E_{18}$	8.400
35	$E_{24} - E_{14}$	3.628	78	$E_{28} - E_{15}$	5.588	121	$E_{19} - E_5$	6.541	164	$E_{22} - E_9$	8.548
36	$E_{26} - E_{10}$	3.748	79	$E_{21} - E_{16}$	5.597	122	$E_{20} - E_1$	6.578	165	$E_{32} - E_{13}$	8.691
37	$E_{35} - E_{14}$	3.761	80	$E_{23} - E_8$	5.860	123	$E_{19} - E_3$	6.627	166	$E_{28} - E_{18}$	8.696
38	$E_{21} - E_{15}$	3.786	81	$E_{25} - E_{10}$	5.615	124	$E_{29} - E_{17}$	6.752	167	$E_{33} - E_{18}$	8.770
39	$E_{34} - E_2$	3.846	82	$E_{34} - E_5$	5.642	125	$E_{35} - E_{13}$	6.790	168	$E_{20} - E_{18}$	8.776
40	$E_{34} - E_{15}$	3.851	83	$E_{33} - E_2$	5.657	126	$E_{25} - E_{11}$	6.864	169	$E_{28} - E_9$	8.844
41	$E_{23} - E_{15}$	3.872	84	$E_{34} - E_{16}$	5.662	127	$E_{21} - E_{18}$	6.895	170	$E_{33} - E_{13}$	9.203
42	$E_{34} - E_{10}$	3.926	85	$E_{35} - E_{17}$	5.662	128	$E_{32} - E_5$	6.940	171	$E_{25} - E_{13}$	9.082
43	$E_{23} - E_7$	3.993	86	$E_{23} - E_5$	5.662	129	$E_{32} - E_{16}$	6.960			

четыре нижних свободных энергетических состояний в верхней подзоне Хаббарда. В результате заполнения четырех энергетических состояний в верхней подзоне Хаббарда двадцать девять разрешенных переходов из нижней подзоны Хаббарда в верхнюю подзону Хаббарда, имеющихся в фуллерене C_{26} , исчезает, но при этом в эндоэдральном фуллерене U@C₂₆ появляется двадцать четыре новых разрешенных переходов в верхней подзоне Хаббарда, отсутствующие в молекуле C₂₆. Таким образом, в формировании оптического спектра фуллер

рена C_{26} участвуют разрешенные переходы из нижней подзоны Хаббарда в верхнюю подзону Хаббарда, а в формировании оптического спектра эндоэдрального фуллерена U@C₂₆ участвуют, как разрешенные переходы из нижней подзоны Хаббарда в верхнюю подзону Хаббарда, так и разрешенные переходы в пределах верхней подзоны Хаббарда. Как видно из табл. 4 разрешенные переходы у эндоэдрального фуллерена U@C₂₆ в пределах верхней подзоне Хаббарда формируют главным образом оптический спектр в инфракрасной и видимой

1959

областях спектра, а разрешенные переходы из нижней подзоны Хаббарда в верхнюю подзону Хаббарда, как и у фуллерена С₂₆, формируют главным образом оптический спектр в ультрафиолетовой области спектра.

4. Заключение

Исследование фуллерена С26 с группой симметрии D_{3h} в рамках модели Хаббарда в приближении статических флуктуаций показало, что в этой молекуле нижняя подзона Хаббарда полностью занята, в то время как верхняя подзона Хаббарда свободна. Исследование эндоэдрального фуллерена U@C26, который, как и фуллерена С₂₆ обладает группой симметрии D_{3h}, показало, что в этой молекуле нижняя подзона Хаббарда полностью занята, а в верхней подзоне Хаббарда находится четыре электрона. Кроме того, данные исследования показали, что в формировании оптических спектров поглощения молекул C₂₆ и U@C₂₆ участвуют 176 и 171 разрешенных переходов соответственно. Отметим также, что исследования оптических свойств фуллеренов С₆₀ и С₇₀, выполненные в рамках модели Хаббарда в работах [17,18], показали хорошее соответствие между экспериментальными данными и теоретическими результатами. Это позволяет считать, что модель Хаббарда в приближении статических флуктуаций достаточно хорошо описывает электронные свойства углеродных наносистем.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] H.W. Kroto, J.R. Heath, S.C. O'Brien, R.F. Curl, R.E. Smalley. Nature **318**, 162 (1985).
- [2] K.P. Katin, M.M. Maslov. Physica E 96, 6 (2018).
- [3] А.И. Подливаев, Л.А. Опенов. ФТТ 61, 793 (2019).
- [4] H.S. Wu, J.F. Jia. Chinese J. Struct. Chem. 23, 580 (2004).
- [5] V.A. Greshnyakov, E.A. Belenkov. J. Phys. Conf. Ser. 447, 012018 (2018).
- [6] Ke Xu, Tie Yang, Yu Feng, Xin Ruan, Zhenyan Liu, Guijie Liang, Xiaotian Wang. Nanomaterials 9, 1068 (2019).
- [7] А.Н. Еняшин, В.В. Ивановская, Ю.Н. Макурин, А.Л. Ивановский. ФТТ **46**, 1522 (2004).
- [8] K.S. Grishakov, K.P. Katin, M.M. Maslov. Diamond Rel. Mater. 84, 112 (2018).
- [9] R. Guajardo-Maturana, P.L. Rodrigues-Kessler, A. Munoz-Castro. Int. J. Quantum Chem. e26437 (2020).
- [10] R.P. Hallett, K.G. McKay, S.P. Balm, A.W. Allaf, H.W. Kroto, A.J. Stace. Z. Phys. D 34, 65 (1995).
- [11] Z.X. Wang, W.M. Wang, F.Y. Zhu, X.P. Li, M.L. Ruan, H. Chen, R.B. Huang, L.S. Zheng. High Energy Phys. Nucl. Phys. 25, 69 (2001).
- [12] R.C. Kent, M.D. Towler, R.J. Needs, G. Rajagopal. Phys. Rev. B 62, 15394 (2000).
- [13] M. Maruyama, S. Okada. J. Phys. Soc. Jpn. 82, 043708 (2013).

- [14] B. Hong, Y. Chang, A.F. Jalbout, Z. Su, R. Wang. Mol. Phys. 105, 95 (2007).
- [15] D. Manna, T.K. Ghanty. J. Phys. Chem. C 116, 25630 (2012).
- [16] J. Hubbard. Proc.Roy.Soc. London A 276, 238 (1963).
- [17] А.В. Силантьев. ЖЭТФ 148, 749 (2015).
- [18] А.В. Силантьев. Изв. вуз. Физика. 60, 6, 50 (2017).
- [19] А.В. Силантьев. Изв. вуз. Физика. 62, 6, 3 (2019).
- [20] А.В. Силантьев. ФТТ 62, 11, 1960 (2020).
- [21] А.В. Силантьев. ФТТ 62, 3, 473 (2020).
- [22] А.В. Силантьев. ФТТ 61, 2, 395 (2019).
- [23] Г.С. Иванченко, Н.Г. Лебедев. ФТТ 49, 183 (2007).
- [24] С.В. Тябликов. Методы квантовой теории магнетизма. Наука, М. (1975).
- [25] И.Г. Каплан. Симметрия многоэлектронных систем. Наука, М. (1969).
- [26] А.В. Елецкий. УФН 170, 2, 113 (2000).
- [27] Е.П. Вигнер. Теория групп и ее приложения к квантовомеханической теории спектров. ИЛ, М. (1961).

Редактор Т.Н. Василевская