01,10,12 Изучение ГЦК-ОЦК фазового перехода в сплаве Аu-Fe

© М.Н. Магомедов

Институт проблем геотермии и возобновляемой энергетики филиал Объединенного института высоких температур РАН, Махачкала, Россия

E-mail: mahmag4@mail.ru

Поступила в Редакцию 15 июня 2021 г. В окончательной редакции 29 июня 2021 г. Принята к публикации 30 июня 2021 г.

На основании аналитического метода расчета, в котором используется парный межатомный потенциал Ми–Леннард-Джонса, изучены свойства неупорядоченного сплава замещения Au-Fe. Определены параметры межатомного потенциала для ГЦК- и ОЦК-структур Au и Fe. На основе данных параметров рассчитаны концентрационные зависимости свойств ГЦК- и ОЦК-структур сплава Au-Fe. При нормальных условиях (т. е. давление P = 0 и температура T = 300 K) рассчитаны изменения свойств сплава Au-Fe при структурном фазовом переходе ГЦК-ОЦК. Используя RP-модель нанокристалла, рассчитано смещение концентрации C_f , при которой происходит ГЦК-ОЦК фазовый переход, обусловленное уменьшением размера наночастицы. Показано, что при изохорно-изотермическом уменьшении числа атомов (N) в наночастице Au-Fe значение C_f смещается в сторону больших концентраций Fe. Для наночастицы с фиксированным числом атомов и неизменной формой поверхности значение C_f увеличивается при изохорном росте температуры, и значение C_f уменьшается при изотермическом уменьшении плотности. Расчеты показали, что при N < 59900 для сплава Au_1-_c Fe $_c$ при P = 0, $T \leq 300$ K и при любой концентрации железа ГЦК-структура более стабильна чем ОЦК-структура.

Ключевые слова: золото, железо, сплав замещения, фазовый переход, уравнение состояния, модуль упругости, тепловое расширение, наночастица, поверхностная энергия.

DOI: 10.21883/FTT.2021.11.51583.145

1. Введение

Как было показано в [1–5], при низких температурах (T < 600 K) и давлениях $(P \approx 0)$ твердый раствор замещения $\text{Au}_{1-C}\text{Fe}_C$ образует две стабильные кристаллические структуры (здесь C — атомная концентрация железа):

при 0 < C < 68% стабильна гранецентрированная кубическая (ГЦК, Fm3m) структура типа Си,

при 68 < C < 100% стабильна смесь из объёмноцентрированных кубических (ОЦК, Im3m) структур типа α -Fe и δ -Fe.

Однако изменения термодинамических свойств при структурном фазовом переходе ГЦК-ОЦК в этом сплаве экспериментально не изучены. Это связано с тем, что в сплаве $Au_{1-C}Fe_C$ при 45 < C < 90% в экспериментах появляется метастабильная аморфная структура [1,2,4], что и затрудняет изучение "чистого" ГЦК-ОЦК-перехода. В связи с этим и граница стабильности ГЦК- и ОЦК-фаз (т.е. C_f) для сплава Au-Fe определяется очень приближенно, и в литературе приводятся различные оценки для величины C_f . Поэтому экспериментальных данных об изменении термодинамических свойств сплава Au-Fe при ГЦК-ОЦК-переходе даже при нормальных условиях (т.е. при $P \approx 0$ и T = 300 K) в литературе нет.

Теоретическое изучение ГЦК-ОЦК-перехода в сплаве Аи-Fe затруднено по той причине, что чистое золото

не образует ОЦК структуру, а железо при $P \approx 0$ имеет ГЦК-структуру (γ -фаза, аустенит) только при высоких температурах (T > 1185 K). Это приводит к неоднозначности определения параметров межатомного взаимодействия для этих фаз чистых металлов и затрудняет теоретическое изучение ГЦК-ОЦК-перехода в их сплаве замещения.

Свойства твердого раствора замещения $Au_{1-C}Fe_C$ с ГЦК-структурой были изучены нами на основании аналитического метода расчета в [6]. В данной работе, на основе математического метода из [6], изучены свойства данного сплава как в ОЦК-фазе, так и при фазовом ГЦК-ОЦК-переходе. Показано, что главную роль в этом фазовом переходе играет железо и объяснено возникновение метастабильной аморфной фазы в области фазового перехода. Кроме этого, на основании аналитической RP-модели нанокристалла из [6,7] изучено изменение параметров ГЦК-ОЦК-перехода при уменьшении размера наночастицы сплава Au-Fe.

2. Изучение свойств кристаллов Au и Fe в ГЦК- и ОЦК-фазах

Для расчета решеточных свойств однокомпонентного кристалла представим парное межатомное взаимодействие в виде потенциала Ми–Леннард-Джонса, который имеет следующий вид [8]:

$$\varphi(r) = \frac{D}{(b-a)} \left[a \left(\frac{r_{\rm o}}{r} \right)^b - b \left(\frac{r_{\rm o}}{r} \right)^a \right],\tag{1}$$

где D и $r_{\rm o}$ — глубина и координата минимума потенциала, b > a > 1 — численные параметры.

Для применения метода из [6] к расчету свойств бинарного сплава Au-Fe необходимо определить параметры межатомного потенциала (1) для Au (масса атома m = 196.967 а.m.u.) и для Fe (m = 55.847 а.m.u.). При этом, для расчета свойств сплава Au-Fe в ГЦК- и в ОЦК-фазах необходимо определить параметры потенциала (1) для Au и для Fe как с ГЦК (где первое координационное число и коэффициент упаковки равны $k_n(\infty) = 12$ и $k_p = 0.7405$), так и с ОЦК (где $k_n(\infty) = 8$ и $k_p = 0.6802$) структурой кристаллов. Для разных кристаллических структур чистого металла параметры потенциала парного межатомного взаимодействия будут разными. Это обусловлено перераспределением электронной плотности по парным межатомным связям при изменении структуры кристалла [9].

Для ГЦК-Аи параметры потенциала (1) были получены в [10,11] и использованы в [6] для расчета свойств ГЦК-Аи-Fe сплава. Для ГЦК-Fe параметры потенциала (1) были получены в [9] при изучении ОЦК-ГЦК фазового перехода в железе. Для смеси ОЦК-структур α -Fe и δ -Fe параметры потенциала (1) были получены и апробированы в [12].

Что касается ОЦК-Аu, то такой структуры золото при нормальных условиях не образует [13]. Поэтому параметры потенциала (1) для этой модификации золота были оценены следующим образом. Для определения r_0 было использовано эмпирическое соотношение между межатомным расстоянием и коэффициентом упаковки кристалла с кубической структурой. Если при полиморфном превращении величина коэффициента упаковки k_p возрастает в последовательности [14, р. 288]:

$$k_p = 0.3401 \text{ (A4 = diamond)} \rightarrow 0.5236 \text{ (A5 = scp)}$$

 $\rightarrow 0.6802 \text{ (A2 = bcc)} \rightarrow 0.7405 \text{ (A1 = fcc)}$

то длина межатомной связи возрастает в последовательности

$$1.02 \rightarrow 1.09 \rightarrow 1.11 \rightarrow 1.14$$

Таким образом, при переходе от ГЦК- к ОЦКструктуре расстояние между центрами ближайших атомов можно оценить по соотношению: $r_o(fcc)/r_o(bcc) =$ = 1.14/1.11 = 1.027. Так как для ГЦК-Аи получено: $r_o(fcc)/[10^{10} \text{ m}] = 2.8751$ [6,10,11], то для ОЦК-Аи получим: $r_o(bcc) = 2.7994 [10^{-10} \text{ m}].$

Степенные параметры потенциала (1) для ОЦК-Аи брали такими же как у ГЦК-Аи. Величина глубины потенциала D(bcc-Au) была определена путем подгонки точки пересечения удельных (на атом) термодинамических потенциалов при T = 10 К и R = 1 для ГЦК-

Рис. 1. Концентрационные зависимости удельных термодинамических потенциалов для ГЦК сплошная линия) и ОЦК (штриховая линия) структур сплава Au-Fe при T = 10 K и R = 1. Пересечение термодинамических потенциалов для ГЦК и ОЦК фаз при $C_f = 0.68$ указано стрелкой (при $D(\text{bcc-Au})/k_B = 11101$ K).

и ОЦК-фаз Au_{1-C}Fe_C сплава для концентрации железа $C_f = 0.68$. Здесь $R = r_o/c$ — относительная линейная плотность кристалла, $c = (6k_pv/\pi)^{1/3}$ — расстояние между центрами ближайших атомов, v = V/N — удельный объем, V и N — объем и число атомов в кристалле. Полученное пересечение термодинамических потенциалов показано на рис. 1, где k_B — постоянная Больцмана.

При расчете 4-х параметров потенциала (1) для бинарного сплава типа AB, был использован метод "среднего атома" [6,15,16]. В этом методе твердый раствор замещения $A_{1-C}B_C$ из N_A и N_B атомов с разной атомной массой m_A и m_B моделируется изоструктурным виртуальным кристаллом из $N = N_A + N_B$ одинаковых "средних" атомов. Значение m(C) — массы "среднего атома" такого виртуального вещества будет зависеть от концентрации раствора ($C = N_B/N$) и рассчитывается, как среднее гармоническое от масс составляющих сплав атомов по формуле

$$m(C) = \left(\frac{P_{\rm A}}{m_{\rm A}} + \frac{P_{\rm B}}{m_{\rm B}}\right)^{-1}.$$
 (2)

Входящие в (2) функции P_A и $P_B = 1 - P_A$ это геометрические вероятности обнаружить атом A и B в твердом растворе замещения. Они определяются как вероятность того, что точка, случайно поставленная на линию длинной: $(1 - C)r_{oA} + Cr_{oB}$, попадет на отрезки r_{oA} или r_{oB} , соответственно

$$P_{\rm A}(C) = \frac{(1-C)r_{\rm oA}}{(1-C)r_{\rm oA} + Cr_{\rm oB}},$$
$$P_{\rm B}(C) = \frac{(1-C)r_{\rm oB}}{(1-C)r_{\rm oA} + Cr_{\rm oB}}.$$
(3)

Физика твердого тела, 2021, том 63, вып. 11

Для среднего значения какого-либо из четырех *H*-параметра парного межатомного потенциала Ми–Леннард-Джонса (1) сплава АВ было получено выражение [15,16]:

$$H(A_{1-C}B_{C}) = P_{A}^{2}H_{A} + P_{B}^{2}H_{B} + 2P_{A}P_{B}H_{AB}, \quad (4)$$

где H_{AB} — параметр межатомного потенциала (1) для решетки, в которой с равной вероятностью обнаруживаются атомы обеих сортов ($P_i = 0.5$), с учетом релаксации такой решетки к минимуму термодинамического потенциала [15]:

$$r_{\text{oAB}} = \left(\frac{r_{\text{oA}}^3 + C_N r_{\text{oB}}^3}{1 + C_N}\right)^{1/3}, \quad D_{\text{AB}} = (D_{\text{A}} D_{\text{B}})^{1/2},$$
$$b_{\text{AB}} = (b_{\text{A}} + b_{\text{B}})/2, \quad a_{\text{AB}} = (a_{\text{A}} + a_{\text{B}})/2.$$
(5)

Здесь параметр C_N , учитывающий разницу в модулях сжатия (B_i) кристаллов чистых компонент для смешанной решетки, в которой с равной вероятностью можно обнаружить атомы обеих сортов, имеет вид

$$C_N = \frac{B_{\rm B}}{B_{\rm A}} \left(\frac{\nu_{\rm oA}}{\nu_{\rm oB}} \right) = \frac{B_{\rm B}}{B_{\rm A}} \left(\frac{r_{\rm oA}}{r_{\rm oB}} \right)^3. \tag{6}$$

Таким образом, в методе "среднего атома" масса "среднего атома" (2) и параметры потенциала из (4) и (5), зависят от концентрации C и параметров потенциала (1) для чистых однокомпонентных кристаллов. Данный метод был использован для расчета свойств твердых растворов замещения ГЦК-Au-Fe в [6] и Si-Ge в [15,16] и показал хорошие результаты.

В данном случае, ввиду отсутствия экспериментальных данных о модуле упругости для ОЦК-Аu, параметр C_N из (6) для всех фаз Au и Fe рассчитывался из соотношения, которое следует из формулы для модуля упругости при P = 0, T = 0 K и R = 1:

$$C_N = \frac{B_{\rm B}}{B_{\rm A}} \frac{v_{\rm A}}{v_{\rm B}} \cong \frac{(k_n Dab)_{\rm B}}{(k_n Dab)_{\rm A}} \left(\frac{v_{\rm oA}}{v_{\rm oB}}\right)^2 = \frac{(Dab)_{\rm B}}{(Dab)_{\rm A}} \left(\frac{r_{\rm oA}}{r_{\rm oB}}\right)^6.$$
(7)

Таким образом для моделирования ГЦК-ОЦК фазового перехода в сплаве Au-Fe были взяты параметры парного потенциала межатомного взаимодействия Ми–Леннарда-Джонса, которые представлены в табл. 1.

Параметр решетки (*l*) связан с расстоянием между центрами ближайших соседних атомов соотношением: $l(\text{fcc}) = 2^{1/2} r_o(\text{fcc})$ и $l(\text{bcc}) = (2/3^{1/2}) r_o(\text{bcc})$. Поэтому из данных табл. 1 получим

$$l(\text{fcc-Au}) = 4.0660, \quad l(\text{fcc-Fe}) = 3.5927 \ [10^{-10} \text{ m}],$$

 $l(\text{bcc-Au}) = 3.2325, \quad l(\text{bcc-Fe}) = 2.8608 \ [10^{-10} \text{ m}].$

Эти значения параметра решетки хорошо согласуются со значениями параметра решетки для ГЦК- и ОЦК-фаз Au и Fe, которые теоретически получены в [17, Fig. 1]:

$$l(\text{fcc-Au}) = 4.1 - 4.2, \quad l(\text{fcc-Fe}) = 3.42 - 3.50 \ [10^{-10} \text{ m}],$$

Таблица 1. Параметры парного потенциала межатомного взаимодействия Ми–Леннарда-Джонса (1) для Au и Fe в ГЦК- и ОЦК-фазах

Crystal	$r_{\rm o}, 10^{-10} {\rm m}$	$D/k_B \mathrm{K}$	b	а	Reference
fcc-Au	2.8751	74-19.160	16.05	2.80	[6,10,11]
bcc-Au	2.7994	11101.0	_"_	_"_	
fcc-y-Fe	2.5404	8374.353	8.37	3.09	[9]
bcc-α-Fe	2.4775	12576.70	8.26	2.95	[12]

 $l(bcc-Au) = 3.25 - 3.32, \quad l(bcc-Fe) = 2.79 - 2.85 \ [10^{-10} \text{ m}].$

При этом, наши значения для *l* лучше согласуются с экспериментальными данными для ГЦК-Аu, и для ГЦК-и ОЦК-фаз Fe из [1]:

$$l(\text{fcc-Au}) = 4.0784, \quad l(\text{fcc-Fe}) = 3.6468,$$

 $l(\text{bcc-Fe}) = 2.8665 \ [10^{-10} \text{ m}].$

Расчеты, проведенные с помощью метода из [6,7], показали, что при изобарном (P = 0) росте температуры точка пересечения термодинамических потенциалов ГЦК- и ОЦК-фаз Au_{1-C}Fe_C чуть смещается в сторону большей концентрации железа. При T = 300 К получено: $C_f = 0.684$ при R = 1 и $C_f = 0.683$ при R = 0.9958 (это соответствует P = 0).

В табл. 2 представлены рассчитанные свойства макрокристаллов Au и Fe в ГЦК- и ОЦК-фазах при T = 300 K и P = 0, которые получены при использовании параметров потенциала (1) из табл. 1. В табл. 2 введены обозначения: $\alpha_p = (\partial \ln V / \partial T)_P$ — изобарный коэффициент теплового объемного расширения, C_v и $C_p = C_v(1 + \gamma \alpha_p T)$ — изохорная и изобарная теплоем-кость, s — удельная (на атом) энтропия кристалла, μ_p — коэффициент Пуассона, σ — удельная (на единицу площади) поверхностная энергия грани (100) кристалла, $\sigma'(T)_v$ и $\sigma'(T)_P$ — изохорная и изобарная производные функции σ по температуре, Δ_p — изотермическая логарифмическая производная функции σ по площади (или по плотности).

Для сравнения можно привести экспериментальные данные по свойствам кристаллов ГЦК-Аu, ГЦК-Fe и ОЦК-Fe, которые известны из литературы: для ГЦК-Au:

 $\Theta/[K] = 165-170 [18], 162.4 \pm 2 [19];$ $\gamma = 2.95-3.215 [18];$ $B_T/[GPa] = 167.5-180.5 [18];$ $B'(P) = 9.58 \pm 0.08 [18];$ $\alpha_p/[10^{-6} \text{ K}^{-1}] = 42-42.8 [18];$ $\sigma(100)/[10^{-3} \text{ J/m}^2] = 1175-1850 [20], 1510 \pm 160 [21];$ $\mu_p = 0.42 [22];$ для ГЦК- γ -Fe (аустенит, при T > 1200 K):

 $\Theta/[K] = 222.5$ [23], 250 [24]; $\gamma = 2.203$ [23], 2.0 [24]; $B_T/[GPa] = 146.2$ [23], 140 [24], 88.9 ± 5.1 [25]; B'(P) = 4.67 [23], 8 [24], 8.9 ± 0.7 [25]; $\sigma(100)/[10^{-3} J/m^2] = 1950-2500$ [20], (2265) [26];

Property [unit of measurement]	fcc-Au	bcc-Au	fcc-Fe	bcc-Fe
$R = r_{o}/c$ — relative linear density	0.995699	0.995699	0.996036	0.995857
$V = [\pi N/(6k_p)]c^3 \text{ [cm^3/mol]}$	10.252	10.302	7.0649	7.1378
$c \ [10^{-10} \text{ m}]$	2.8875	2.8115	2.5505	2.4878
l — lattice parameter $[10^{-10} \text{ m}]$	4.0835	3.2464	3.6069	2.8727
Θ — Debye temperature [K]	198.043	203.130	404.941	399.514
$\gamma = -(\partial \ln \Theta / \partial \ln V)_T$ — Gruneisen parameter	3.0008	3.0006	1.7205	1.7023
$q \cdot 10^3 = [(\partial \ln \gamma / \partial \ln V)_T] \cdot 10^3$	7.5662	7.7811	7.9065	7.7075
$z = -(\partial \ln q / \partial \ln V)_T$	3.0158	3.0161	1.7361	1.7176
$B_T = -\nu (\partial P / \partial \nu)_T$ — elastic modulus [GPa]	166.379	165.176	162.835	151.885
$B'(P) = (\partial B_T / \partial P)_T^{(1)}$	8.3501	8.3496	5.8534	5.7695
$\alpha_p = \gamma C_v / (B_T V) [10^{-6} \mathrm{K}^{-1}]$	42.997	43.050	34.275	36.068
$\alpha_p \cdot B_T = (\partial P / \partial T)_{\nu} = (\partial s / \partial \nu)_T [10^{-3} \text{ GPa/K}]$	7.1539	7.1109	5.5811	5.47811
$C_{\nu}/(Nk_B)$ — isochoric heat capacity	2.9395	2.9364	2.7564	2.7626
$C_p/(Nk_B) = [C_v/(Nk_B)](1 + \gamma \alpha_p T)$	3.0532	3.0501	2.8052	2.8135
s/k_B — normalized specific entropy	5.1394	5.0649	3.0881	3.1253
$\Theta'(P) = (\partial \Theta / \partial P)_T [\text{K/GPa}]^{1)}$	3.5708	3.6895	4.2767	4.4782
$C'_{\nu}(P)/(Nk_B) \ [10^{-3}/\text{GPa}]^{(1)}$	-2.1343	-2.2947	-4.8746	-5.0693
$\alpha'_p(P) = (\partial \alpha_p / \partial P)_T [10^{-6} / (\text{K} \cdot \text{GPa})]^{1)}$	-1.9318	-1.9500	-1.0836	-1.2001
$C'_{n}(P)/(Nk_{B}) [10^{-3}/\text{GPa}]^{(1)}$	-7.3343	-7.5425	-6.5048	-6.8582
$\sigma(100)$ — surface energy $[10^{-3} \text{ J/m}^2]$	1531.38	1522.54	2217.38	2204.98
$X_{sc} \cdot 10^3 = 10^3 \cdot \sigma(100)/(c \cdot B_T)$	31.8757	32.7856	53.3909	58.3544
μ_p — Poisson's ratio	0.4274	0.4294	0.3682	0.3768
$\sigma'(T)_{\nu} = (\partial \sigma / \partial T)_{\nu} \left[10^{-6} \mathrm{J} / (\mathrm{m}^2 \mathrm{K}) \right]$	-50.979	-50.756	-61.147	-60.870
$\sigma'(T)_P = (\partial \sigma / \partial T)_P \left[10^{-6} \text{J} / (\text{m}^2 \text{K}) \right]$	-98.927	-98.482	-114.194	-116.345
$\sigma'(P)_T = (\partial \sigma / \partial P)_T [10^{-3} \text{ J}/(\text{m}^2\text{GPa})]^{1}$	6.6997	6.7086	9.5022	10.1238
$\Delta_p = -(\partial \ln \sigma / \partial \ln \Sigma)_T = -0.5(\partial \ln \sigma / \partial \ln c)_T$	1.09228	1.09219	1.04699	1.04632

Таблица 2. Рассчитанные свойства ГЦК- и ОЦК-фаз Au и Fe при P = 0 и T = 300 K

Примечание. ¹⁾ Рассчитано численным дифференцированием параметра по давлению вдоль изотермической зависимости.

для ОЦК- α -Fe (феррит): $\Theta/[K] = 472.7 \pm 6$ [19], 303.0 [23], 300 [24]; $\gamma = 1.736$ [23], 1.55 [24]; $B_T/[GPa] = 164.0$ [23], 170 [24]; B'(P) = 5.50 [23], 6.2 [24]; $\alpha_p/[10^{-6} \text{ K}^{-1}] = 33-39$ [27]; $\sigma(100)/[10^{-3} \text{ J/m}^2] = 2360$, (2179–2463) [26], 2400–2500 [28]; $\mu_p = 0.32$ [29;30, стр. 313].

Из сравнения видно, что результаты из табл. 2 достаточно хорошо согласуются с экспериментальными данными. Заметим, что наши результаты лучше согласуются с экспериментальными данными, чем результаты полученные в [17, таbl. 1; 22, тabl. II] с помощью различных компьютерных моделей.

3. Изменение свойств сплава Au-Fe при ГЦК-ОЦК фазовом переходе

Используя метод "среднего атома" из [6,15,16] и параметры парного потенциала из табл. 1 были рассчитаны свойства сплава Au-Fe. На рис. 2–7 представлены изохорно-изотермические ($R = r_o/c = 1$, T = 300 K) концентрационные зависимости свойств твердого раствора замещения Au_{1-C}Fe_C для ГЦК- (сплошная линия)

и ОЦК-структур (штриховая линия). Точками соединенными тонкими сплошными линиями на рис. 2, 3 и 7 показаны результаты расчетов из [22] для ГЦК сплава Au-Fe, которые получены методом функционала плотности (density functional theory). Пунктирными прямыми линиями показаны линейные зависимости среднего арифметического по концентрации Fe от рассчитанных соответствующих свойств чистых кристаллов Au и Fe.

Как видно и рис. 2–7 концентрационные зависимости указанных свойств нелинейные. Зависимости $\Theta(C)$ и $C_p(C)$ для ГЦК- и ОЦК-фаз пересекаются в точках

$$\Theta(C=0.723)=357.37 \text{ K}$$
 и $C_p(C=0.61)/(Nk_B)=2.897.$

Расчеты показали, что при T = 300 K и P = 0 пересечение термодинамических потенциалов ГЦК- и ОЦК-фаз твердого раствора замещения $\text{Au}_{1-C}\text{Fe}_C$ происходит при

Таблица 3. Значения массы "среднего атома" и параметров парного потенциала межатомного взаимодействия (1) для $Au_{1-C}Fe_C$ при $C_f = 0.683$ в ГЦК- и ОЦК-фазах

Crystal	<i>m</i> , a.m.u.	$r_{\rm o},$ 10^{-10} m	$D/k_B,$ K	b	а
fcc-Au-Fe	74.3614	2.64963	8035.86	11.0389	2.9892
bcc-Au-Fe	74.3355	2.58475	12053.99	10.9643	2.8979

 $C_f = 0.683$. При такой концентрации значения массы "среднего атома" и параметров потенциала (1) для ГЦКи ОЦК-структур сплава Au-Fe будут иметь значения, которые представлены в табл. 3. Разница в значениях массы "среднего атома" для ГЦК- и ОЦК-структур обусловлена использованием при усреднении в (2) геометрических вероятностей обнаружить атом Au или Fe в твердом растворе замещения.

Используя параметры из табл. 3 и метод из [6], были рассчитаны свойства ГЦК- и ОЦК-фаз твердого раствора

Рис. 2. Концентрационные зависимости температуры Дебая для ГЦК- (сплошная линия) и ОЦК-структур (штриховая линия) сплава Au-Fe. Точками показаны результаты из [22] для ГЦК-Au-Fe. Пунктирной прямой показана линейная зависимость среднего арифметического по концентрации Fe от температуры Дебая чистых ГЦК кристаллов Au и Fe. Пересечение зависимостей для ГЦК и ОЦК структур происходит при C = 0.723 и $\Theta = 357.37$ K.

Рис. 3. Концентрационные зависимости модуля упругости для ГЦК- (сплошная линия) и ОЦК-структур (штриховая линия) сплава Au-Fe. Точками показаны результаты из [22] для ГЦК-Au-Fe. Пунктирными прямыми показаны линейные зависимости среднего арифметического по концентрации Fe от модулей упругости чистых ГЦК и ОЦК кристаллов Au и Fe.

7

Рис. 4. Концентрационные зависимости коэффициента теплового расширения для ГЦК- (сплошная линия) и ОЦК-структур (штриховая линия) сплава Au-Fe при R = 1 и T = 300 K.

Рис. 5. Концентрационные зависимости нормированной изобарной теплоемкости для ГЦК- (сплошная линия) и ОЦКструктур (штриховая линия) сплава Au-Fe. Пунктирной прямой показана линейная зависимость среднего арифметического по концентрации Fe от нормированных изобарных теплоемкостей чистых ГЦК-кристаллов Au и Fe. Пересечение зависимостей для ГЦК- и ОЦК-структур происходит при C = 0.61 и $C_p/(Nk_B) = 2.897$.

Аu_{1-C}Fe_C при $C_f = 0.683$, T = 300 К и P = 0. Полученные значения свойств и их относительного изменения (в %): $\Delta X = [X(bcc) - X(fcc)]/X(fcc)$, представлены в табл. 4.

Как видно из табл. 4, такие свойства как: R, Θ, γ, z , $B'(P), C_v, C_p, s, \sigma 100), \sigma'(T)_v, \sigma'(T)_P$ и Δ_p практически не изменяются при ГЦК-ОЦК-переходе в сплаве Au-Fe при P = 0 и T = 300 K. Остальные рассчитанные свойства изменяются в пределах 1-7.6%, а параметр решетки испытывает наибольшее изменение: 20%.

Относительное изменение объема при ГЦК-ОЦК в сплаве Au-Fe при P = 0 и T = 300 K переходе такое

Property [unit of measurement]	fcc-Au-Fe	bcc-Au-Fe	$\Delta X \times 100$
$R = r_{\rm o}/c$ — relative linear density	0.99600	0.99588	-0.012
$V = [\pi N/(6k_p)]c^3 \text{ [cm}^3/\text{mol]}$	8.0169	8.10496	1.098
$c [10^{-10} \text{ m}]$	2.6603	2.5955	-2.436
l — lattice parameter $[10^{-10} \text{ m}]$	3.7622	2.9970	-20.339
Θ — Debye temperature [K]	340.063	340.506	0.130
$\gamma = -(\partial \ln \Theta / \partial \ln V)_T$ — Gruneisen parameter	2.1645	2.1521	-0.573
$q \cdot 10^3 = [(\partial \ln \gamma / \partial \ln V)_T] \cdot 10^3$	8.6904	8.6519	-0.443
$z = -(\partial \ln q / \partial \ln V)_T$	2.1817	2.1693	-0.568
$B_T = -\nu (\partial P / \partial \nu)_T$ — elastic modulus [GPa]	173.750	165.346	-4.837
$B'(P) = (\partial B_T / \partial P)_T^{(1)}$	6.720	6.664	-0.833
$\alpha_p = \gamma C_v / (B_T V) [10^{-6} \mathrm{K}^{-1}]$	36.508	37.723	3.328
$\alpha_p \cdot B_T = (\partial P / \partial T)_{\nu} = (\partial s / \partial \nu)_T [10^{-3} \text{ GPa/K}]$	6.343	6.237	-1.671
$C_{\nu}/(Nk_B)$ — isochoric heat capacity	2.82565	2.82522	-0.015
$C_p/(Nk_B) = [C_v/(Nk_B)](1 + \gamma \alpha_p T)$	2.89264	2.89402	0.048
s/k_B — normalized specific entropy	3.57574	3.57206	-0.103
$\Theta'(P) = (\partial \Theta / \partial P)_T \ [\text{K/GPa}]^{1)}$	4.2354	4.4327	4.658
$C'_{\nu}(P)/(Nk_B) \ [10^{-3}/\text{GPa}]^{(1)}$	-4.1782	-4.3911	5.095
$\alpha'_p(P) = (\partial \alpha_p / \partial P)_T [10^{-6} / (\text{K} \cdot \text{GPa})]^{1}$	-1.2573	-1.3525	7.572
$C'_{p}(P)/(Nk_{B}) \ [10^{-3}/\text{GPa}]^{(1)}$	-6.5877	-6.9689	5.787
$\sigma(100)$ — surface energy $[10^{-3} \text{ J/m}^2]$	1955.30	1941.13	-0.725
$X_{sc} \cdot 10^3 = 10^3 \cdot \sigma(100)/(cB_T)$	42.302	45.232	6.926
μ_p — Poisson's ratio	0.3949	0.4006	1.443
$\sigma'(T)_{\nu} = (\partial \sigma / \partial T)_{\nu} \left[10^{-6} \mathrm{J} / (\mathrm{m}^2 \mathrm{K}) \right]$	-57.650	-57.223	-0.741
$\sigma'(T)_P = (\partial \sigma / \partial T)_P \left[10^{-6} \mathrm{J} / (\mathrm{m}^2 \mathrm{K}) \right]$	-108.168	-109.017	0.789
$\sigma'(P)_T = (\partial \sigma / \partial P)_T [10^{-3} \text{ J}/(\text{m}^2 \text{GPa})]^{1)}$	7.9617	8.3012	4.264
$\Delta_p = -(\partial \ln \sigma / \partial \ln \Sigma)_T = -0.5(\partial \ln \sigma / \partial \ln c)_T$	1.06156	1.06099	-0.054

Таблица 4. Рассчитанные	свойства ГЦК- и ОЦК-с	груктур сплава Au _{1-C} Fe _C	при $C_f = 0.683$, T = 300 К и P = 0
-------------------------	-----------------------	--	-------------------	---------------------

Примечание. ¹⁾ — Рассчитано численным дифференцированием параметра по давлению вдоль изотермической зависимости.

Рис. 6. Концентрационные зависимости удельной поверхностной энергии грани (100) для ГЦК- (сплошная линия) и ОЦК-структур (штриховая линия) сплава Au-Fe. Пунктирной прямой показана линейная зависимость среднего арифметического по концентрации Fe от удельных поверхностных энергий чистых ГЦК-кристаллов Au и Fe.

же как при $\gamma - \alpha$ -переходе в чистом железе при P = 0и T = 1184 К [9,31,32]. Это указывает на главную роль железа при этом переходе в сплаве. Но изменения параметров: γ , z, B_T , B'(P), α_p , $\alpha'_p(P)$, $C'_v(P)$, $C'_p(P)$, X_{sc} , μ_p и $\sigma'(P)_T$ при данном переходе в сплаве Au-Fe много больше, чем при $\gamma - \alpha$ -переходе в чистом железе.

Рис. 7. Концентрационные зависимости коэффициента Пуассона для ГЦК- (сплошная линия) и ОЦК-структур (штриховая линия) сплава Au-Fe. Точками показаны результаты из [22] для ГЦК-Au-Fe. Пунктирной прямой показана линейная зависимость среднего арифметического по концентрации Fe от коэффициентов Пуассона чистых ГЦК-кристаллов Au и Fe.

Из рис. 1 видно, что в широкой области концентраций около ГЦК-ОЦК-перехода энергетическая разница между ГЦК- и ОЦК-структурами сплава Au-Fe очень мала. Отсюда можно сделать в ывод о большой склонности к метастабильному сосуществования ГЦК- и ОЦК-структур в сплаве Au-Fe в широкой области концентраций вокруг ГЦК-ОЦК-перехода. Именно этим можно объяснить существование метастабильной рентгеноаморфной структуры в сплаве Au_{1-C}Fe_C при 45 < C < 90% [1,2,4].

Удельная энтропия при переходе из ГЦК- в ОЦКструктуру в сплаве Au-Fe уменьшается. Это указывает на поглощение скрытой теплоты при этом фазовом переходе, аналогично тому как это происходит при $\gamma-\alpha$ -переходе в чистом железе. При этом, относительное изменение энтропии при ГЦК-ОЦК-переходе в сплаве Au-Fe на порядок меньше, чем в чистом железе при $\gamma-\alpha$ -переходе

$$\Delta s (\text{Au-Fe})/k_B = -0.00368,$$

 $\Delta s (\gamma - \alpha - \text{Fe})/k_B = -0.0746 \ [9], \quad -0.083 \ [31].$ (8)

Малая разница между удельными энтропиями ГЦК- и ОЦК-фаз указывает на большую склонность к аморфизации сплава Au-Fe при ГЦК-ОЦК-переходе. Причем, как следует из (8), склонность сплава Au-Fe к аморфизации при ГЦК-ОЦК-переходе намного выше, чем склонность к аморфизации чистого Fe при $\gamma - \alpha$ -переходе. Появление рентгеноаморфного состояния чистого Fe при $\gamma - \alpha$ -переходе было экспериментально обнаружено в работе [32].

Изменение параметров ГЦК-ОЦК фазового перехода при уменьшении размера наночастицы сплава Au-Fe

Используя метод из [6,7] и параметры межатомного потенциала (1) из табл. 1, были рассчитаны свойства наночастицы сплава Au-Fe как с ГЦК-, так и с ОЦКструктурами. При этом, чтобы не нарушались аксиомы равновесной термодинамики, мы полагали, что компоненты сплава распределены по объему равномерно и градиентов плотности либо концентрации в наночастице нет.

В табл. 5 представлены значения концентрации C_f , при которой происходит пересечение термодинамических потенциалов ГЦК- и ОЦК-фаз сплава $Au_{1-C}Fe_C$ для макрокристалла ($N = \infty$, $k_n(fcc) = 12$, $k_n(bcc) = 8$) и для наночастицы кубической формы из N = 60000 атомов. При этом значения средних по наночастице первых координационных чисел для ГЦК- и ОЦК-структур равны

$$k_n(\text{fcc}) = 11.756617, \quad k_n(\text{bcc}) = 7.828296$$

Таблица 5. Изменение концентрации С _f , при которой про-
исходит ГЦК-ОЦК-переход в сплаве Au _{1-C} Fe _C с изменением
температуры и плотности для макрокристалла и для нанокри-
сталла из 60000 атомов

Ν	<i>Т</i> , К	$R = r_{\rm o}/c$	C_{f}
∞	10 300	1	0.680
	300	0.9958	0.683
60000	10	1	0.970
	10	0.9958	0.969
	300	1	0.944
	300	0.9958	0.943

Из табл. 5 видно, что при изохорно-изотермическом уменьшении числа атомов в наночастице $Au_{1-C}Fe_C$ значение C_f увеличивается, т. е. ГЦК-ОЦК-переход смещается в сторону больших концентраций железа. Для наночастицы с фиксированным числом атомов и неизменной формой поверхности значение C_f увеличивается при изохорном росте температуры, а при изотермическом уменьшении плотности значение C_f уменьшается.

Расчеты показали, что при N < 59900 пересечение термодинамических потенциалов ГЦК- и ОЦК-фаз сплава Au-Fe при P = 0 и $T \le 300$ К уже не происходит. Т.е. при N < 59900 (т.е. при диаметре наночастицы $d < 150 \cdot 10^{-10}$ m) для сплава Au-Fe ГЦК-структура более стабильна чем ОЦК-структура при любой концентрации железа. При больших концентрациях железа (C > 0.9) относительно крупные (40000 < N < 59900) наночастицы сплава Au-Fe могут иметь метастабильную аморфную структуру из смеси ГЦК- и ОЦК-структур, но по мере уменьшения размера наночастицы ГЦК-структура становится для нее более энергетически выгоднее.

Отметим, что изменение структуры наночастиц при уменьшении их размера было экспериментально обнаружено для многих однокомпонентных веществ и сплавов [33-36]. Например, в [33] было обнаружено, что при уменьшении размера наночастицы железа структура в ней изменяется из ОЦК- на ГЦК-структуру, которая стабильна для макрожелеза только при высоких температурах. В [34] было экспериментально показано, что наночастицы сплава Au-Fe меньше определенного размера уже не испытывают структурный фазовый переход в ОЦК-фазу. В [35] было экспериментально показано, что для сплава Au-Fe, подвергнутому ГЦК-ОЦК-переходу, высокотемпературная ГЦК-фаза имеет стабильный мелкий размер, меньший, чем ее низкотемпературная ОЦК-фаза. В обзоре [36] указаны экспериментальные работы, в которых были получены наночастицы Au, имеющие стабильные кристаллические структуры, которые были отличны от ГЦК-структуры.

5. Заключение

Самосогласованным образом определены параметры парного потенциала межатомного взаимодействия Ми–Леннард-Джонса для ГЦК- и ОЦК-структур золота и железа. Данные параметры были получены путем подгонки параметров потенциала для ОЦК-золота под точку пересечения термодинамических потенциалов для ГЦК- и ОЦК-фаз неупорядоченного сплава замещения $Au_{1-C}Fe_C$ при T = 10 K, R = 1 и при концентрации железа $C_f = 0.68$.

На основе полученных параметров межатомного потенциала (1), в рамках аналитического метода из [6,9] рассчитаны свойства ГЦК- и ОЦК-фаз золота и железа при P = 0 и T = 300 К. Расчеты показали хорошее согласие с экспериментальными оценками, что позволяет утверждать корректность данного метода расчета.

Рассчитаны концентрационные зависимости свойств сплава Au-Fe в ГЦК- и ОЦК-фазах при R = 1 и T = 300 K. Расчеты показали, что данные зависимости имеют нелинейный характер и согласуются с результатами, полученными для ГЦК-Au-Fe методом функционала плотности в [22]. Объяснено появление метастабильной аморфной структуры в широком интервале концентраций вокруг ГЦК-ОЦК-перехода в сплаве Au-Fe.

Рассчитаны изменение свойств сплава Au-Fe при структурном фазовом переходе ГЦК-ОЦК при P = 0 и T = 300 К. Расчеты показали, что такие свойства как: R, Θ , γ , z, B'(P), C_{ν} , C_{p} , s, $\sigma(100)$, $\sigma'(T)_{\nu}$, $\sigma'(T)_{P}$ и Δ_{p} практически не изменяются при ГЦК-ОЦК-переходе. Наибольшее изменение испытывает параметр решетки, а остальные свойства изменяются в пределах 1-7.6%. По изменению параметров при ГЦК-ОЦК-переходе сделан вывод о главной роли железа при фазовом переходе в сплаве Au-Fe.

Рассчитано смещение концентрации C_f , при которой происходит пересечение термодинамических потенциалов ГЦК- и ОЦК-фаз сплава $Au_{1-C}Fe_C$ при уменьшении размера наночастицы. Показано, что при изохорноизотермическом уменьшении числа атомов в наночастице Au-Fe значение C_f смещается в сторону больших концентраций железа.

Для наночастицы с фиксированным числом атомов и неизменной формой поверхности значение C_f увеличивается при изохорном росте температуры, а при изотермическом уменьшении плотности значение C_f уменьшается. Расчеты показали, что при P = 0, $T \leq 300$ К и N < 59900 для наночастицы сплава $Au_{1-C}Fe_C$ при любой концентрации железа ГЦК-структура более стабильна чем ОЦК-структура.

Благодарности

Автор выражает благодарность С.П. Крамынину, Н.Ш. Газановой, З.М. Сурхаевой и М.М. Гаджиевой за плодотворные дискуссии и помощь в работе.

Финансирование работы

Работа выполнена при финансовой поддержке РФФИ (грант № 18-29-11013_мк).

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- H. Okamoto, T.B. Massalski, L.J. Swartzendruber, P.A. Beck. Bull. Alloy Phase Diagrams 5, 6, 592 (1984). DOI: 10.1007/BF02868322
- [2] T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak. Binary Alloy Phase Diagrams (ASM, USA, 1992), V. 1–3.
- [3] J.A. Munoz, M.S. Lucas, L. Mauger, I. Halevy, J. Horwath, S.L. Semiatin, Y. Xiao, P. Chow, M.B. Stone, D.L. Abernathy, B. Fultz. Phys. Rev. B 87, 1, 014301 (2013). DOI: 10.1103/PhysRevB.87.014301
- [4] I.A. Zhuravlev, S.V. Barabash, J.M. An, K.D. Belashchenko. Phys. Rev. B 96, 13, 134109 (2017).
 DOI: 10.1103/PhysRevB.96.134109
- [5] A. Tymoczko, M. Kamp, O. Prymak, C. Rehbock, J. Jakobi, U. Schürmann, L. Kienle, S. Barcikowski. Nanoscale 10, 35, 16434 (2018). DOI: 10.1039/c8nr03962c
- [6] М.Н. Магомедов. ФТТ 62, 12, 2034 (2020). [М.N. Magomedov. Phys. Solid State 62, 12, 2280 (2020).]
 DOI: 10.1134/S1063783420120197
- [7] М.Н. Магомедов. Кристаллография 62, 3, 487 (2017).
 [М.N. Magomedov. Crystallography Rep. 62, 3, 480 (2017).]
 DOI: 10.1134/S1063774517030142
- [8] Э.А. Мелвин-Хьюз. Физическая химия. В 2-х т. Изд-во ИЛ, М. (1962). 1148 с. [Е.А. Moelwyn-Hughes. Phys. Chem. Pergamon Press, London (1961).]
- [9] Μ.Η. ΜαγομεζοΒ. ΦΤΤ 63, 2, 191 (2021). [M.N. Magomedov. Phys. Solid State 63, 2, 215 (2021).]
 DOI: 10.1134/S1063783421020165
- [10] М.Н. Магомедов. ФТТ 62, 7, 998 (2020). [М.N. Magomedov. Phys. Solid State 62, 7, 1126 (2020).]
 DOI: 10.1134/S1063783420070136
- [11] М.Н. Магомедов. Поверхность. Рентген., синхротр., и нейтрон. исслед. 11, 88 (2020). [М.N. Magomedov. J. Surface Investigation. X-ray, Synchrotron Neutron Techniques 14, 6, 1208 (2020).] DOI: 10.1134/S1027451020060105
- [12] М.Н. Магомедов. ЖТФ 85, 11, 48 (2015). [М.N. Magomedov. Technical Phys. 60, 11, 1619 (2015).]
 DOI: 10.1134/S1063784215110195
- [13] R. Briggs, F. Coppari, M.G. Gorman, R.F. Smith, S.J. Tracy, A.L. Coleman, A. Fernandez-Pañella, M. Millot, J.H. Eggert, D.E. Fratanduono. Phys. Rev. Lett. **123**, *4*, 045701 (2019). DOI: 10.1103/PhysRevLett.123.045701
- [14] S.S. Batsanov, A.S. Batsanov. Introduction to structural chemistry. Springer Science & Business Media, Heidelberg (2012). 545 p. DOI: 10.1007/978-94-007-4771-5
- [15] М.Н. Магомедов. ФТТ 60, 5, 970 (2018). [М.N. Magomedov. Phys. Solid State 60, 5, 981 (2018).] DOI: 10.1134/S1063783418050190
- [16] М.Н. Магомедов. ФТТ 61, 11, 2169 (2019). [М.N. Magomedov. Phys. Solid State 61, 11, 2145 (2019).]
 DOI: 10.1134/S1063783419110210

- [17] F. Calvo, N. Combe, J. Morillo, M. Benoit. J. Phys. Chem. C 121, 8, 4680 (2017). DOI: 10.1021/acs.jpcc.6b12551
- M.G. Pamato, I.G. Wood, D.P. Dobson, S.A. Hunt, L. Vočadlo.
 J. Appl. Crystallography 51, 2, 470 (2018).
 DOI: 10.1107/S1600576718002248
- [19] M.M. Shukla, N.T. Padial. Rev. Brasil. Física **3**, *1*, 39 (1973). http://sbfisica.org.br/bjp/download/v03/v03a03.pdf
- [20] V.K. Kumikov, Kh.B. Khokonov. J. Appl. Phys. 54, 3, 1346 (1983). DOI: 10.1063/1.332209
- [21] A. Patra, J.E. Bates, J. Sun, J.P. Perdew. Proc. Nat. Acad. Sci. 114, 44, E9188-E9196 (2017).
 DOI: 10.1073/pnas.1713320114
- [22] J. Kangsabanik, R.K. Chouhan, D.D. Johnson, A. Alam. Phys. Rev. B 96, 10, 100201 (2017).
 DOI: 10.1103/PhysRevB.96.100201
- [23] P.I. Dorogokupets, A.M. Dymshits, K.D. Litasov, T.S. Sokolova. Sci. Rep. 7, 41863, 1 (2017). DOI: 10.1038/srep41863
- [24] S.K. Saxena, G. Eriksson. J. Phys. Chem. Solids 84, 70 (2015).DOI: 10.1016/j.jpcs.2015.03.006
- [25] Y. Nishihara, Y. Nakajima, A. Akashi, N. Tsujino, E. Takahashi, K.I. Funakoshi, Y. Higo. Am. Mineralogist 97, 8–9, 1417 (2012). DOI: 10.2138/am.2012.3958
- [26] H. Chamati, N.I. Papanicolaou, Y. Mishin, D.A. Papaconstantopoulos. Surface Science 600, 9, 1793 (2006).
 DOI: 10.1016/j.susc.2006.02.010
- [27] С.И. Новикова. Тепловое расширение. Nauka, М. (1974). 294 р.
- [28] S. Schönecker, X. Li, B. Johansson, S.K. Kwon, L. Vitos. Sci. Rep. 5, 14860 (2015). DOI: 10.1038/srep14860
- [29] D.J. Dever. J. Appl. Phys. 43, 8, 3293 (1972).
 DOI: 10.1063/1.1661710
- [30] В.Е. Зиновьев. Теплофизические свойства металлов при высоких температурах. Справочник, Металлургия, М. (1989). 384 с. [V.E. Zinov'ev. Teplofizicheskie svoistva metallov pri vysokikh temperaturakh (The Thermophysical Proper ties of Metals at High Temperatures). Metallurgiya, Moscow (1989). 384 p.]
- [31] L.J. Swartzendruber. Bull. Alloy Phase Diagrams 3, 2, 161 (1982). DOI: 10.1007/BF02892374
- [32] А.М. Балагуров, И.А. Бобриков, И.С. Головин. Письма в ЖЭТФ 107, 9, 583 (2018).
 [А.М. Balagurov, I.A. Bobrikov, I.S. Golovin. JETP Lett. 107, 9, 558 (2018).]
 DOI: 10.7868/S0370274X18090084
- [33] P.A. Montano, J. Zhao, M. Ramanathan, G.K. Shenoy, W. Schulze. In: Small Particles and Inorganic Clusters / Ed. C. Chapon, M.F. Gillet, C.R. Henry. Springer, Berlin, Heidelberg (1989). DOI: 10.1007/978-3-642-74913-1_23
- [34] P. Mukherjee, X. Jiang, Y.Q. Wu, M.J. Kramer, J.E. Shield.
 J. Phys. Chem. C 117, 45, 24071 (2013).
 DOI: 10.1021/jp409015y
- [35] D. Amram, C.A. Schuh. Phys. Rev. Lett. 121, 14, 145503 (2018). DOI: 10.1103/PhysRevLett.121.145503
- [36] C. Sow, G. Mettela, G.U. Kulkarni. Annu. Rev. Mater. Res. 50, 345 (2020). DOI: 10.1146/annurev-matsci-092519-103517

Редактор Т.Н. Василевская