05,11,19

Магнитные и магнитокалорические свойства соединений $Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})_2$

© М.С. Аникин¹, Е.Н. Тарасов¹, Д.С. Незнахин¹, М.А. Сёмкин^{1,2}, Н.В. Селезнёва¹, С.В. Андреев¹, М.В. Рагозина^{1,2}, А.В. Зинин¹

¹ Институт естественных наук, Уральский федеральный университет, Екатеринбург, Россия ² Институт физики металлов УрО РАН им. М.Н. Михеева, Екатеринбург, Россия E-mail: maksim.anikin@urfu.ru

E-mail: maksim.anikin@unu.ru

Поступила в Редакцию 8 июля 2021 г. В окончательной редакции 13 июля 2021 г. Принята к публикации 16 июля 2021 г.

> Представлены результаты исследования кристаллической структуры, температурных и полевых зависимостей намагниченности, высокополевой восприимчивости и магнитокалорического эффекта (МКЭ) поликристаллических соединений $Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})_2$ (x = 0-1), в магнитных полях напряженностью до 90 kOe и диапазоне температур 5–400 K. Из анализа температурных зависимостей намагниченности (σ) установлено, что в зависимости от содержания иттрия (x), на исследованых образцах может одновременно присутствовать от одной до трех "критических" температур: спин-переориентационный переход (T_{sr}), точка магнитной компенсации (T_{comp}) и температура Кюри (T_C). На температурной зависимости высокополевой восприимчивости (χ_{hf}) всех образцов с x < 1 присутствует экстремум в окрестности 100 K, при котором наблюдается значительный МКЭ, связанный с резким изменением намагниченности редкоземельной подрешетки. Кривые температурных зависимостей изменения магнитной части энтропии (ΔS_m) и адиабатического изменения температурых χ .

> Ключевые слова: магнитные свойства, прямой и обратный магнитокалорический эффект, адиабатическое изменение температуры, магнитный момент, фазы Лавеса, температура Кюри, точка компенсации, спинпереориентационный переход.

DOI: 10.21883/FTT.2021.11.51578.05s

1. Введение

Кубические фазы Лавеса RT₂, где R — тяжелый редкоземельный металл, Т — 3*d*-переходный металл, известны достаточно давно как материалы, обладающие большими значениями магнитокалорического эффекта (МКЭ) в окрестности магнитных фазовых переходов, в том числе температуры Кюри $(T_{\rm C})$ [1–3]. В квазибинарных соединениях на их основе реализуется большое количество материалов с Тс вблизи комнатной температуры, обладающих как обычной температурной зависимостью МКЭ, например R(Co-Ni)₂ [4], так и с плато-подобной, например $R(\text{Co}-\text{Fe})_2$ и $R(\text{Ni}-\text{Fe})_2$ [5,6]. Платоподобная температурная зависимость МКЭ в соединениях $R(\text{Co}-\text{Fe})_2$ наиболее ярко выражена в соединениях с R, имеющих относительно низкие значения спинового магнитного момента 4f-электронной оболочки (S_R) . При одной и той же концентрации железа, но с разными R (Gd, Dy, Ho, Er), с увеличением S_R форма температурной зависимости изменения магнитного вклада в энтропию (ΔS_m) трансформируется из платоподобной зависимости в кривую с явно выраженным максимумом при T_C. Платоподобная зависимость МКЭ является суперпозицией пиков МКЭ при Тс и "низкотемпературного" пика МКЭ [5], вызванного ориентационным упорядочением внешним магнитным полем магнитных моментов атомов R-подрешетки, частично разупорядоченных тепловыми флуктуациями, вследствие слабого межподрешеточного f - d обменного взаимодействия на образцах с малыми значениями S_R [7,8].

Для более глубокого понимания роли межподрешеточных обменных взаимодействий в образовании МКЭ в таких системах в данной работе были исследованы соединения $Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})_2$. В данных соединениях магнитоактивный *R*-элемент (Ho) заменен на "немагнитный" — иттрий (Y), что, по нашему мнению, должно дать качественное представление о состоянии намагниченности *R*- и 3*d*-подрешеток и роли взаимодействия *R*- и 3*d*-ионов в формировании магнитных и магнитокалорических свойств.

2. Методика эксперимента

Поликристаллические соединения $Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})_2$ были выплавлены в дуговой электропечи в защитной атмосфере гелия. Для предотвращения формирования фаз богатых 3d-элементом, в шихту добавляли избыток гольмия и иттрия в количестве 7 wt% для образцов с x = 0.4 и 0.6, для остальных

x - 5 wt%. Гомогенизация сплавов была произведена в вакууме при 1271 К в течение суток. Фазовый анализ и уточнение параметров кристаллической структуры выполнено с помощью метода рентгеновской дифракции, с применением порошкового дифрактометра D8 Advance (Bruker) с источником излучения Cu-К α ($\lambda = 1.5406$ Å). Расшифровка рентгенограмм проводилась с помощью полнопрофильного метода Ритвельда с применением программного обеспечения FullProfSuite [9].

Магнитные свойства образцов исследовались на установке PPMS DynaCool (Quantum Design) в интервале температур 2–400 К в магнитном поле до 90 kOe. Прямое измерение адиабатического изменения температуры (ΔT_{ad}) осуществлялось на экспериментальной установке MagEq MMS SV3 в температурном диапазоне 80–370 К при изменении напряженности магнитного поля (ΔH) на 17.5 kOe.

3. Результаты и обсуждения

3.1. Аттестация образцов

На рис. 1 представлены приведенные рентгенограммы исследованных порошковых образцов $Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})_2$ при комнатной температуре. Анализ рентгенограмм показал, что все образцы практически однофазны. Основу соединений формируют фазы Лавеса, стихеометрического состава 1:2, принадлежащие гранецентрированной кубической $Fd\bar{3}m$ пространственной группе. Содержание примесных фаз (преимущественно R_2O_3), для различных образцов от 0 до 2.5%. Уточненные значения параметра кристаллической решетки (*a*) представлены на рис. 3.

3.2. Намагниченность

На рис. 2 представлены температурные зависимости удельной результирующей намагниченности (σ) исследованных образцов в магнитном поле 1 kOe. Вид зависимостей $\sigma(T)$ подтверждает отсутствие примесных магнитных фаз во всей магнитоупорядоченной области температур.

Все исследуемые соединения являются двухподрешеточными ферримагнетиками [10], в которых магнитоактивные атомы гольмия в *R*-подрешетке замещаются на "немагнитный" иттрий, постепенно уменьшая намагниченность *R*-подрешетки (σ_R) до нуля. На основе анализа зависимостей $\sigma(T)$ соединенений Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})₂ можно выделить 4 типа реализующихся в них магнитоструктурных состояний. Для образцов с $x \le 0.4$ намагниченность *R*-подрешетки во всей температурной области превышает намагниченность 3*d*-подрешетки (σ_{3d}). На температурных зависимостях намагниченностей соединений с x = 0.60 и 0.75 наблюдаются температуры магнитной компенсации (T_{comp}). Выше этих температур намагниченности σ_{3d} превышают по модулю намагниченности σ_R , и результирующие намагниченности этих соединений сонаправлены с намагниченностью

Рис. 1. Экспериментальные рентгенограммы порошковых образцов соединений $Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})_2$. Под рентгенограммой образца с x = 0, указаны положения брэгговских рефлексов основной фазы RT_2 . Пики от примесных фаз отмечены звездочками.

Рис. 2. Температурные зависимости удельной намагниченности образцов соединений $Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})_2$ во внешнем магнитном поле 1 kOe.

3*d*-подрешетки. В соединениях с x = 0.80 и 0.85 σ_{3d} превышает σ_R во всей температурной области. При x = 1 намагниченность *R*-подрешетки равна нулю и соединение Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})₂ становится ферромагнетиком [11].

Температуры магнитных фазовых переходов и точки магнитной компенсации исследованных образцов были определены по экстремуму первой производной $d\sigma/dT$ зависимостей $\sigma(T)$, измеренных по протоколу ZFC и FC в магнитном поле 100 Ос. Полученные концентра-

Рис. 3. Концентрационные зависимости параметра кристаллической решетки и точек магнитной компенсации (T_{comp}) , температур Кюри (T_C) и спиновой переориентации оси легкого намагничивания (T_{sr}) в соединениях $Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})_2$. Вертикальными стрелками условно обозначены относительные намагниченности R- и 3d-подрешеток для соответствующих областей концентраций x и температур.

Рис. 4. Кривые намагничивания образцов соединений $Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})_2$ измеренные при температуре 5 К. Пунктирные линии — линейная экстраполяция данных.

ционные зависимости $T_{\rm C}$ и $T_{\rm comp}$ представлены на рис. 3. На температурных зависимостях намагниченности $\sigma(T)$ в 100 Ое образцов с x = 0.4 и 0.6, кроме $T_{\rm C}$ и $T_{\rm comp}$, были обнаружены магнитные фазовые переходы при температурах 23 и 13 К соответственно, которые могут быть связаны с изменением оси легкого намагничивания в этих соединениях [12–14], т.е. при данных температурах происходит спин-переориентационный переход ($T_{\rm sr}$). Температуры $T_{\rm sr}$ указаны на рис. 3. На рис. 4 представлены кривые намагничивания исследованных образцов, измеренные при 5 К в полях до 90 kOe. Намагниченность выражена в магнетонах Бора на формульную единицу (молекулярный магнитный момент μ_m).

Молекулярный магнитный момент был рассчитан из полевых зависимостей удельной намагниченности по формуле $\mu_m = \sigma A / N_a \mu_B$, где A — молярная масса, N_a — постоянная Авогадро, $\mu_{\rm B}$ — магнетон Бора. Как видно, намагниченность большинства образцов не достигает насыщения даже в магнитном поле 90 kOe, что свидетельствует о значительной величине магнитокристаллической анизотропии (МКА) [12,15]. Дополнительно причина отсутствия насыщения на кривых намагничивания может быть связана с образованием сперимагнитной структуры при наличии флуктуаций обменных и магнитокристаллических взаимодействий в магнетике, состоящем из двух (или более) магнитных подсистем, связанных между собой отрицательными обменными взаимодействиями [16]. Следует отметить, что намагничивание образца с x = 0.8 происходит наиболее трудно, что, вероятно, обусловлено парамагнетизмом части атомов кобальта из-за слабости обменного взаимодействия R-3d.

Определение величины магнитного момента на атом гольмия (μ_{Ho}) в исследованных интерметаллидах производилось по формуле $\mu_{\text{Ho}} = (\mu_s \pm \mu_{3d})/(1-x)$, где *µ*_{3*d*} — магнитный момент 3*d*-подрешетки, знак "-", если результирующий магнитный момент соединения в магнитном поле 90 kOe при 5 K (μ_s) сонаправлена с намагниченностью *R*-подрешетки, знак "+" — для соединений с преобладанием намагниченностей 3*d*-подрешетки. Значение μ_{3d} принималось неизменным во всех соединениях и равным μ_s соединения $Y(Co_{0.84}Fe_{0.16})_2$. Определенная при таком подходе величина μ_{Ho} составила 8.8 μ_B , 9.1 μ_B , $9.8\,\mu_{\rm B}, 9.5\,\mu_{\rm B}, 9.6\,\mu_{\rm B}, 7.4\,\mu_{\rm B}$ и $8.3\,\mu_{\rm B}$ соответственно в соединениях с x = 0.0, 0.20, 0.40, 0.60, 0.75, 0.80 и 0.85. Во всех случаях величина оказались ниже таковой для свободного иона Ho^{3+} , равного $10 \mu_B$ [17]. Общая тенденция роста величины μ_{Ho} , при увеличении x от 0.0 до 0.75, вероятно, обусловлена уменьшением энергии МКА в *R*-подрешетке (эффект разбавления), что приближает значение μ_s к реальной величине намагниченности насыщения этих интерметаллидов. Существенно меньшее его значение в соединении с x = 0.8, можно объяснить парамагнетизмом части ионов кобальта.

3.3. Высокополевая восприимчивость

Для анализа поведения магнитной структуры исследованных соединений в больших магнитных полях во всей магнитоупорядоченной области были рассчитаны температурные зависимости высокополевой восприимчивости $\chi_{hf}(T)$ по формуле $\chi_{hf} = d\sigma/dH$ из линейных участков кривых намагничивания, в диапазоне магнитных полей 20–70 kOe, полученные зависимости $\chi_{hf}(T)$ представлены на рис. 5.

Рис. 5. Температурные зависимости высокополевой восприимчивости $\chi_{hf}(T)$ соединений $\text{Ho}_{1-x}Y_x(\text{Co}_{0.84}\text{Fe}_{0.16})_2$ в диапазоне изменении внешнего магнитного поля 20–70 kOe. Температуры Кюри отмечены стрелкой без подписи.

На представленных температурных зависимостях $\chi_{hf}(T)$ помимо упомянутых выше пиков, соответствующих магнитным фазовым переходам и точкам магнитной компенсации, отмеченных стрелками, присутствуют "низкотемпературные" пики в районе 100–130 К. О подобных "низкотемпературных" пиках на кривых $\chi_{hf}(T)$ сообщалось ранее в родственных соединениях $R(\text{Co-Fe})_2$ с тяжелыми R [5] и в редкоземельных ферритах-гранатах [18]. Данный "низкотемпературный" пик возникает из-за упорядочения внешним магнитным полем магнитных моментов R-ионов, частично разупорядоченных тепловыми флуктуациями вследствие сла-

бого обменного взаимодействия между подрешетками *R*- и 3*d*-ионов. Именно при таких температурах, как при других магнитных фазовых переходах, реализуется значительный отклик подсистемы магнитных моментов *R*-ионов на внешнее магнитное поле, что фактически является фазовым переходом типа порядок–порядок.

Таким образом, в представленных соединениях с гольмием следует ожидать появления нескольких экстремумов на температурных зависимостях магнитного вклада в энтропию (ΔS_m).

3.4. Магнитокалорический эффект

Магнитный вклад в энтропию был рассчитан из серии изотерм намагничивания, с помощью уравнения [19]:

$$\Delta S_m(\Delta H, T) = \int_0^{H_f} \left(\frac{\partial \sigma}{\partial T}\right)_H dH, \qquad (1)$$

где H_f — конечное значение магнитного поля, $\Delta H = H_f - 0$ и T — абсолютная температура. Расчет по формуле (1) проводился с использованием данных полевых зависимостей намагниченности образцов, измеренных с шагом по температуре 5 K для всех образцов, кроме Y(Co_{0.84}Fe_{0.16})₂, где при температуре < 100 K шаг составлял 25 K. На рис. 6 представлены температурные зависимости изменения магнитной части энтропии $\Delta S_m(T)$ для всех исследованных соединений Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})₂ при $\Delta H = 20$ kOe и 70 kOe. Как следует из анализа температурных зависимостей высокополевой восприимчивости $\chi_{hf}(T)$, для всех соединений наблюдается несколько экстремумов ΔS_m , даже для Y(Co_{0.84}Fe_{0.16})₂.

На образцах с $x \le 0.4$ есть как пик ΔS_m при $T_{\rm C}$, так и "низкотемпературный" пик в окрестности 100 К.

Рис. 6. Температурные зависимости изменения магнитной части энтропии $\Delta S_m(T)$ при $\Delta H = 20$ kOe (*a*) и 70 kOe (*b*) для соединений Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})₂.

В окрестности $T_{\rm C}$ значения ΔS_m непрерывно убывают с увеличением содержания иттрия. В то же время, в окрестности 100 К, при $\Delta H = 70$ kOe, значения ΔS_m почти равны. Таким образом, наблюдается более быстрое снижение величин ΔS_m в окрестности $T_{\rm C}$ в сравнении со значениями ΔS_m в окрестности 100 К, что можно объяснить, если принять во внимание, что энергия 4f - 3dмежподрешеточного обменного взаимодействия быстро уменьшается с увеличением содержания иттрия. Для составов с большим содержанием иттрия степень магнитного разупорядочения 4f-подсистемы в окрестности "низкотемпературного" максимума будет наибольшая, это отражается в большем магнитном вкладе в энтропию соединений. В окрестности температуры Кюри МКЭ обусловлен как 4f-подрешеткой, так и 3d-подрешеткой, имеющих разные знаки. Из-за уменьшения доли Но при увеличении х снижается прямой МКЭ, связанный с изменением намагниченности 4f-подрешетки, из которого вычитается обратный МКЭ, связанный с изменением намагниченности 3*d*-подрешетки [20], где количество атомов Со и Fe неизменно, следовательно, обратный МКЭ должен быть практически постоянным для разных х.

На зависимости $\Delta S_m(T)$ для соединений с x = 0.4и 0.6, наглядно виден пик ΔS_m , соответсвующий спинпереориентационному переходу.

В соединениях с x = 0.6 и 0.75, обладающих точкой магнитной компенсации, с увеличением температуры последовательно наблюдаются прямой МКЭ ниже T_{comp} , обратный МКЭ выше T_{comp} и снова прямой МКЭ при приближении к $T_{\rm C}$. Физическая причина изменения знака при переходе через точку магнитной компенсации подробно описана в работе [20].

Обратный и прямой МКЭ наблюдается и на зависимости $\Delta S_m(T)$ в соединениях с x = 0.8 и 0.75. Вид зависимости $\Delta S_m(T)$ сопоставим с таковым для состава с x = 0.75 в области температур выше T_{comp} .

В соединении с немагнитным иттрием, кроме пика ΔS_m в окрестности $T_{\rm C}$, наблюдается платоподобная зависимость при температурах ниже $T_{\rm C}$. Предположительно, наличие МКЭ при температурах ниже $T_{\rm C}$ может быть связано с парамагнетизмом части атомов кобальта в данном соединении.

На рис. 7 представлены температурные зависимости адиабатического изменения температуры (ΔT_{ad}) исследованных образцов, измеренные прямым способом. Зависимости $\Delta T_{ad}(T)$ для соединений с $x \ge 0.4$ являются усреднением экспериментальных данных. Отклонение экспериментальных данных не превышает ± 0.06 K от усредненной зависимости. Больший разброс экспериментальных значений наблюдался на участках зависимости $\Delta T_{ad}(T)$ соответствующих обратному МКЭ, где отклонение экспериментальных данных достигало ± 0.15 K, в связи с чем данные участки зависимости $\Delta T_{ad}(T)$ должны рассматриваться как качественный результат.

Из сравнения температурных зависимостей $\Delta T_{ad}(T)$ при $\Delta H = 17.5$ kOe и $\Delta S_m(T)$ при $\Delta H = 20$ kOe, следует,

Рис. 7. Температурные зависимости адиабатического изменения температуры $\Delta T_{ad}(T)$ при $\Delta H = 17.5$ kOe для соединений Ho_{1-x}Y_x(Co_{0.84}Fe_{0.16})₂.

что они качественно идентичны. В частности, присутствует выраженная платоподобная зависимость МКЭ на образцах с $x \le 0.6$, и чередование прямого и обратного МКЭ на образцах с x = 0.6-0.85. Главным отличием является относительная величина МКЭ в окрестности 100 К. Например, для состава с $x = 0.4 \Delta S_m$ при температуре 100 К больше, чем при $T_{\rm C}$, а значение ΔT_{ad} , наоборот, больше при $T_{\rm C}$.

4. Заключение

Таким образом, при замещении магнитного Ho^{3+} на "немагнитный" Y^{3+} в системе $\text{Ho}_{1-x}Y_x(\text{Co}_{0.84}\text{Fe}_{0.16})_2$ поочередно реализуются три ферри- и одна ферромагнитная структуры. Для каждого типа магнитной структуры характерны свои температурные зависимости удельной намагниченности (σ), высокополевой восприимчивости (χ_{hf}), изменения магнитной части энтропии (ΔS_m) и адиабатического изменения температуры (ΔT_{ad}).

Параметр кристаллической решетки (*a*) при увеличении содержания иттрия (*x*) имеет общую тенденцию к увеличению, а концентрационная зависимость $T_{\rm C}$ — к уменьшению. При этом на обеих зависимостях наблюдаются локальные отклонения от общей тенденции для составов с x = 0.75 и 0.8. В то же время, из анализа концентрационных зависимостей $\mu_m(H)$, μ_s , $\Delta T_{ad}(T)$ и $\Delta S_m(T)$ следует, что данные соединения соответствуют своему составу, а отклонения на концентрационных зависимостях *a* и $T_{\rm C}$ могут быть связаны с неоднородным размещением атомов гольмия и иттрия по узлам кубической кристаллической решетки 8*b*.

Величина ΔS_m в окрестности 100 К при $\Delta H = 70$ kOe, остается постоянной даже при замещении 40% Но на Y в Ho(Co_{0.84}Fe_{0.16})₂, в то же время уменьшается в 2 раза в окрестности $T_{\rm C}$.

Финансирование работы

Исследование выполнено за счет гранта Российского научного фонда (проект № 19-72-00038).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] S.A. Nikitin, A.M. Tishin. Cryogenics 31, 3, 166 (1991).
- [2] A. Giguere, M. Foldeaki, W. Schnelle, E. Gmelin. J. Phys.: Condens. Matter 11, 6969 (1999).
- [3] N.H. Duc, D.T. Kim Anh. J. Magn. Magn. Mater. 242–245, 873 (2002).
- [4] L. Li, K. Nishimura, D. Tamei, K. Mori. Solid State Commun. 145, 427 (2008).
- [5] M. Anikin, E. Tarasov, N. Kudrevatykh, A. Inishev, M. Semkin, A. Volegov, A. Zinin. J. Magn. Magn. Mater. 418, 181 (2016).
- [6] M. Anikin, E. Tarasov, N. Kudrevatykh, A. Inishev, M. Semkin, A. Volegov, A. Zinin. J. Magn. Magn. Mater. 449, 353 (2018).
- [7] М.С. Аникин, Е.Н. Тарасов, Н.В. Кудреватых, А.А. Инишев, А.В. Зинин. МиТОМ. 8, 36 (2018).
- [8] E. Belorizky, M.A. Fremy, J.P. Gavigan, D. Givord, H.S. Li. J. Appl. Phys. 61, 3971 (1987).
- [9] J. Rodriguez-Carvajal. Phys. B 192, 55 (1993).
- [10] K.N.R. Taylor. Adv. Phys. 20, 551 (1971).
- [11] S.H. Kilcoyne. Physica B 276–278, 660 (2000).
- [12] D. Gignoux, F. Givord, R. Lemaire. Phys. Rev. B: Condens. Matter 12, 9, 3878 (1975).
- [13] M. Khan, D. Paudya, K.A. Gschneidner, Jr., V.K. Pecharsky. J. Appl. Phys. **113**, 17E106 (2013).
- [14] R. Mondal, R. Nirmala, J. Arout Chelvane, A.K. Nigam. Physica B 448, 9 (2014).
- [15] Н.В. Кудреватых, В.Н. Москалев, А.В. Дерягин, А.В. Андреев, С.М. Задворкин. Укр. физ. журн. 26, 1734 (1981).
- [16] С.А. Никитин. Магнитные свойства редкоземельных металлов и их сплавов. МГУ, М. (1989). 248 с.
- [17] M.S.S. Brooks, L. Nordstrom, B. Johansson. J. Phys.: Condens. Matter 3, 2357 (1991).
- [18] К.П. Белов. УФН 166, 669 (1996).
- [19] K.A. Gschneidner Jr., V.K. Pecharsky. Annu. Rev. Mater. Sci. 30, 387 (2000).
- [20] А.С. Андреенко, К.П. Белов, С.А. Никитин, А.М. Тишин. Усп. физ. наук. 158, 553 (1989).

Редактор Ю.Э. Китаев