01,05,11

Первопринципные исследования тенденции к сегрегации в сплавах Гейслера Ni₂Mn_{1+x}Sb_{1-x} с различным атомным упорядочением

© К.Р. Ерагер¹, В.В. Соколовский^{1,2}, В.Д. Бучельников^{1,2}

¹ Челябинский государственный университет,

Челябинск, Россия

² Национальный исследовательский технологический университет "МИСиС",

Москва, Россия

E-mail: eragerk@rambler.ru

Поступила в Редакцию 8 июля 2021 г. В окончательной редакции 13 июля 2021 г. Принята к публикации 16 июля 2021 г.

С помощью расчетов из первых принципов исследованы вопросы стабильности серии сплавов Гейслера $Ni_2Mn_{1+x}Sb_{1-x}$ (x = 0, 0.25, 0.5, 0.75, 1) с шахматным и послойным упорядочением атомов Mn. Показано, что композиции с избытком Mn являются устойчивыми по отношению к распаду на составляющие элементы и неустойчивыми по отношению к распаду на двухфазную систему, состоящую из ферромагнитной кубической $L2_1$ -фазы Ni_2MnSb и антиферромагнитной тетрагональной $L1_0$ -фазы NiMn. Таким образом, все нестехиометрические составы в аустенитной и мартенситной фазе с учетом различного магнитного и атомного упорядочения проявляют тенденцию к сегрегации. Стабильность сплавов возможна только в стехиометрических составах (x = 0 и 1).

Ключевые слова: Сплавы Гейслера, первопринципные вычисления, сегрегация, фазовая стабильность.

DOI: 10.21883/FTT.2021.11.51569.11s

1. Введение

В настоящее время перспективность сплавов Гейслера на основе Ni и Mn обусловлена наличием ряда различных функциональных свойств [1–18], таких как магнитокалорический эффект [7–10], магнитосопротивление [11,12], эффект памяти формы [9,13–15] и обменное смещение [16–17]. Широкое разнообразие функциональных свойств данных сплавов определяется наличием в них магнитных, структурных и связанных магнитоструктурных фазовых переходов. Благодаря чему, интерметаллические соединения Гейслера представляют особый интерес, как с фундаментальной, так и прикладной точек зрения.

В отличие от семейства Ni-Mn-Ga сплавы Ni-Mn-Z (Z = In, Sn, Sb) претерпевают мартенситное превращение лишь в нестехиометрических составах при определенных соотношениях между Mn и Z [19-23]. Как следствие, проявление тех или иных функциональных свойств напрямую связано с композиционным составом. Общей особенностью сплавов Ni-Mn-Z является наличие сильных ферро (ФМ)-антиферромагнитных (АФМ) корреляций между атомами Mn, расположенными в неэквивалентных позициях кристаллической решетки. Наиболее яркое проявление ФМ-АФМ-корреляций проявляется в низкотемпературной мартенситной фазе в виду того, что атомы Mn располагаются на более близких расстояниях по сравнению с теми же расстояниями в кубической аустенитной фазе. В результате чего, мартенситная фаза обладает существенно меньшей намагниченностью, и в области мартенситного превращения наблюдается скачкообразное изменение намагниченности, влекущее за собой большие значения обратного магнитокалорического эффекта (МКЭ) и магнитосопротивления [7–12].

Важно отметить, что в подавляющем большинстве экспериментальных работ нестехиометрические композиции были термически обработаны стандартными способами закалки и отжигом длительностью в несколько дней. Недавние экспериментальные исследования [24–29] влияния длительного отжига на фазовую стабильность сплавов Ni-Mn-(Ga, Sn, In Al) с высоким содержанием Mn показали следующее: двухступенчатый отжиг в течение 4 недель при температуре ≈ 1200 К и в течение 1 недели при температуре около 770 К приводит к исчезновению мартенситного превращения и сегрегации на двухфазную систему, состоящую из ФМ матрицы Ni₂Mn(Ga, Sn, In Al) с кубической структурой и АФМ тетрагональной фазы NiMn.

Что касается сплавов семейства Ni-Mn-Sb, то данные соединения исследованы в меньшей степени в рамках экспериментальных и теоретических подходов. Тем не менее, в работах [30,31] представлены исследования композиционных фазовых диаграмм сплавов Ni₂Mn_{1+x}Sb_{1-x}, из которых следует сложная последовательность магнитных и структурных фазовых превращений при отклонении от стехиометрии (x > 0.3). При этом мартенситный переход и связанные с ним свойства весьма чувствительны к соотношению концентраций между Ni, Mn и Sb. В ряде работ [32,33] исследованы магнитокалорические и транспортные свойства в области мартенситного превращения, демонстрирующие схожие результаты для сплавов Ni-Mn-(In, Sn). Теоретические исследования из первых принципов [34–36] также показывают чувствительность магнитных и структурных свойств аустенитной и мартенситной фазы сплавов Ni-Mn-Sb к изменению химического состава и степени заполнения кристаллографических позиций. Однако, вопросам фазовой стабильности данных сплавов уделено мало внимания.

В настоящей работе мы представляем исследования стабильности магнитной и кристаллической структуры аустенитной и мартенситной фазы сплавов $Ni_2Mn_{1+x}Sb_{1-x}$ в рамках теории функционала плотности.

2. Детали и методология вычислений

Первопринципные вычисления свойств сплавов Ni₂Mn_{1+x}Sb_{1-x} выполнены с помощью метода присоединенных проекционных волн (PAW), реализованного в программном пакете VASP [37,39]. Для описания обменно-корреляционной энергии выбрано обобщенное градиентное приближение в параметризации Пердью-Бурке-Эрнзерхофа [39]. Интегрирование зоны Бриллюэна проведено методом Монкхорста-Пака, используя k-сетку $12 \times 12 \times 12$. Энергия обрезки плоских волн составляла 450 eV, а параметр сходимости по энергии равнялся 10^{-8} eV/atom. В качестве РАW псевдопотенциалов выбраны следующие электронные конфигурации: $3p^{6}4s^{1}3d^{7}$ для Mn, $3p^{6}4s^{2}3d^{8}$ для Ni и $5p^{3}5s^{2}$ для Sb. Геометрическая оптимизация кристаллических структур аустенитной и мартенситной фазы выполнена в рамках электронной и ионной релаксации. Кристаллическая структура аустенитной фазы задана 16-ти атомной кубической суперъячейкой пространственной группы симметрии № 225. Нестехиометрические композиции $Ni_2Mn_{1+x}Sb_{1-x}$ (x = 0.25, 0.5 и 0.75) сформированы путем расположения одного, двух и трех избыточных атомов Mn на позициях Sb.

Поскольку сплавы Гейслера с избытком Мп демонстрируют сложное поведение в дальнодействующих обменных взаимодействиях, особенно в мартенситной фазе, то необходимо учесть различную магнитную структуру. В данной работе рассмотрены два случая упорядочения магнитных моментов атомов Mn и Ni: ферромагнитный — FM (все спины ↑↑) и ферримагнитный — FIM (спины избыточного Mn 11). На рис. 1 представлены кубические структуры соединений Ni₂Mn_{1+x}Sb_{1-x} (x = 0, 0.25, 0.5, 0.75, 1) с расположением атомов Мп в "шахматном" (staggered) и "послойном" порядке (layered). Структура с послойным атомным упорядочением является результатом наличия антисайт дефекта между одной парой атомов Mn и Sb. Дополнительно рассмотрена дефектная структура, описанная авторами работы [36], с частичным расположением избыточных атомов Mn в позициях Ni.

Рис. 1. Кубические структуры соединений $Ni_2Mn_{1+x}Sb_{1-x}$ (x = 0, 0.25, 0.5, 0.75, 1) с шахматным (staggered) и послойным (layered) расположением атомов Mn, формирующих FIM-упорядочение. Зеленым цветом обозначены атомы Mn, замещающие Sb. Затененные области представлены для подчеркивания атомного и магнитного упорядочения.

Принимая во внимание экспериментальные данные [24–29], в настоящей работе исследованы возможные эффекты сегрегации сплавов Ni-Mn-Sb, приводящие

Рис. 2. Зависимость разницы энергии кристалла от тетрагонального искажения в системах $Ni_2Mn_{1+x}Sb_{1-x}$ (x = 0, 0.25, 0.5, 0.75) с расположением атомов в "шахматном" (staggered) и "послойном" порядке (layered) с учетом FM- и FIM-упорядочения. Дополнительно приведены результаты расчетов для дефектных структур в нестехиометрических композициях, предложенных в работе [36].

к появлению двухфазных композитов с ФМ кубической стехиометрической фазой Ni₂MnSb и АФМ тетрагональной фазой NiMn. Наша методология состоит из трех этапов. На первом шаге рассчитываются энергии основного состояния с учетом выгодной магнитной конфигурации как для стехиометрических, так и для нестехиометрических составов. Второй шаг — анализ устойчивости соединений по отношению к распаду на составляющие элементы в рамках расчетов энергии (или энтальпии) формирования. Третий шаг — анализ устойчивости соединений по отношению к распаду на Ni₂MnSb и NiMn в рамках расчетов энергии смешивания

$$E_{\text{mix}} = E_{\text{Ni}_2\text{Mn}_{1+x}\text{Sb}_{1-x}} - \left[(1-x)E_{\text{Ni}_2\text{MnSb}}^{L2_1} + xE_{(\text{NiMn})_2}^{L1_0} \right], \quad (1)$$

где $E_{\text{Ni}_2\text{Mn}_{1+x}\text{Sb}_{1-x}}$ — полная энергия соответствующих соединений со структурой аустенита и мартенсита; $E_{\text{Ni}_2\text{MnSb}}^{L2_1}$ и $E_{(\text{Ni}\text{Mn})_2}^{L1_0}$ — полные энергии стехиометрического тройного и бинарного соединений со структурой $L2_1$ и $L1_0$.

3. Результаты вычислений и обсуждение

Перейдем к обсуждению полученных результатов вычислений энергии основного состояния в кубической аустенитной и тетрагональной мартенситной фазах. На рис. 2 представлены зависимости разницы энергии от тетрагонального искажения (c/a) для систем Ni₂Mn_{1+x}Sb_{1-x} (x = 0, 0.25, 0.5, 0.75) с шахматным и послойным упорядочением Mn, формирующих FM- и FIM-упорядочение. Разница энергий взята по отношению к фазе аустенита (c/a = 1) с шахматным упорядочением Mn.

Рассмотрим результаты для стехиометрического состава Ni₂MnSb. Расчеты показывают, что шахматное упорядочение атомов Mn стабилизирует аустенитную $L2_1$ -фазу, также отсутствие мартенситной фазы ввиду ее невыгодности. Напротив, послойное расположение атомов Mn приводит к возникновению метастабильной мартенситной фазы с тетрагональным отношением c/a = 1.35. Примечательно, что фа-

Состав			c/a	a (Å)	<i>b</i> (Å)	c (Å)	$\Delta E \text{ (meV/atom)}$
Ni ₂ MnSh	FM	Staggered	1	6.070	6.070	6.070	0
112111130	FIM	Layered	1.35	5.450	5.450	7.433	4.424
		G(1	5.989	5.989	5.989	0
		Staggered	1.25	5.529	5.528	7.023	0.257
Ni ₂ Mn _{1.25}	Ni2Mn _{1.25} Sb _{0.75} FIM		1.3	5.366	5.366	7.378	47.169
FIN			1	5.992	5.992	5.992	53.336
			1.3	5.481	5.479	7.109	42.802
		G 1	1	5.932	5.932	5.945	17.591
Ni ₂ Mn ₁ s	Ni ₂ Mn _{1.5} Sb _{0.5} FIM		1.35	5.343	5.343	7.200	0
FIM			1.35	5.269	5.269	7.339	36.552
			1.35	5.305	5.305	7.259	45.727
	NisMn, 55hoor		1	5.867	5.867	5.867	48.990
Ni2Mn1 75			1.35	5.247	5.247	7.168	0
FIM	500.23	Layered	1.35	5.240	5.240	7.167	10.982
			1.4	5.219	5.210	7.225	44.869
Ni ₂ Mi	n ₂	Staggered	1.41	5.094	5.094	7.223	60.261
FIM		Layered	1.41	5.125	5.125	7.166	0

Та	блиц	a 1.	Равнов	есные	значения	параметр	оов решето	к ау	стенитной	И	мартенситной	фазы,	степень	тетрагонального	искаже-
ни	ия (<i>c</i> / <i>a</i>) и р	азница з	энерги	и кристалл	юв по от	юшению к	самы	ым устойчи	вым	м фазам (ΔE) ,	цля каж	дой из ко	омпозиций Ni ₂ Mn	$_{1+x}$ Sb $_{1-x}$
c	учетом	раз	личного	магни	тного и ал	гомного у	порядочени	я							

Таблица 2.	Равновесные	значения	полного и	поэлементного	магнитного	моментов	в аустенитной	и мартенситной	фазах	сплавов
$Ni_2Mn_{1+x}Sb_1$	-x с учетом р	азличного	магнитно	го и атомного у	порядочения	F				

				$M_A \; (\mu_{ m B}/{ m f.u.})$							
	Cocraв			Ni	Mn(I)	Mn(II)	Sb	Total			
NI: MuCl	FM	Staggered	1	0.165	3.439	—	-0.020	3.748			
N12WINSD	FIM	Layered	1.35	0	3.112	-3.112	-0.068	0			
	Ni ₂ Mn _{1.25} Sb _{0.75} FIM		1	0.107	3.358	-3.455	-0.029	2.686			
			1.25	0.219	3.268	-3.325	-0.046	2.841			
Ni ₂ Mn _{1.25}			1.3	0.167	3.007	-3.228	-0.084	2.470			
FIN			1	0.152	3.308	-2.765	-0.008	2.916			
			1.3	0.217	3.155	-2.821	-0.034	2.858			
	Ni ₂ Mn _{1.5} Sb _{0.5} FIM		1	0.049	3.286	-3.424	-0.040	1.652			
Ni ₂ Mn _{1.5}			1.35	0.017	3.072	-3.198	-0.078	1.459			
FIM			1.35	0.039	2.916	-3.119	-0.090	1.389			
			1.35	0.027	2.945	-3.048	-0.060	1.440			
	Ni2Mn1 75Sb0 25		1	0.014	3.240	-3.376	-0.050	0.723			
Ni ₂ Mn _{1.75}			1.35	0.066	3.045	-3.115	-0.074	0.824			
FIM		Layered	1.35	0.088	2.998	-3.042	-0.071	0.877			
			1.4	0.031	2.912	-3.017	-0.064	0.694			
NiMi	n	Staggered	1.41	0	3.027	-3.027	-	0			
FIM		Layered	1.41	0	3.158	-3.158	_	0			

за мартенсита с послойным упорядочением близка по энергии к фазе аустенита с шахматным упорядочением $(\Delta E \approx 4.424 \text{ meV/atom})$. В случае нестехиометрических композиций ферримагнитное шахматное упорядочение атомов Mn становится существеннее выгодным по энергии как в аустенитной, так и мартенситной фазах. Кроме того, для композиции Ni₂Mn_{1.25}Sb_{0.75} можно наблюдать практически вырожденное состояние аустенитной фазы ввиду наименьшей разницы между энергиями кубической и тетрагональной фазы ($\Delta E \approx 0.257 \text{ meV/atom}$). Последующее увеличение содержания Mn приводит к росту разницы энергий между аустенитной и мартенситной фазой для структур с шахматным атомным упорядочением, что косвенно указывает на рост температуры мартенситного перехода. Такая тенденция хорошо согласуется с экспериментальными наблюдениями [31,40,41], согласно которым температура мартенситного превращения Т_М увеличивается с уменьшением концентрации сурьмы. Учет размещения избыточных атомов Mn в позициях Ni и Sb по аналогии с работой [36], приводит к повышению энергии аустенитной и мартенситной фаз примерно на 40 meV/atom. Кроме того, из рисунка можно видеть, что для композиции Ni₂Mn_{1.75}Sb_{0.25} энергия аустенитной фазы, в которой избыточные атомы Мп полностью располагаются в подрешетке Sb, практически равна энергии мартенситной фазы, в которой избыточные атомы Мп занимают позиции Ni и Sb. Данное наблюдение также указывает на вырожденность аустенитной фазы в зависимости от степени заполнения кристаллографических позиций.

В табл. 1 представлены равновесные параметры решетки для сплавов $Ni_2Mn_{1+x}Sb_{1-x}$ в аустенитной и мартенситной фазе с учетом различного атомного и магнитного упорядочения. Установлено, что с увеличением содержания Mn постоянные решеток обеих фаз уменьшаются, что может быть обусловлено меньшим атомным радиусом Mn (1.40 Å) по сравнению с Sb (1.45 Å). Рассчитанные значения согласуются с экспериментальными данными [31] и теоретическими исследованиями других авторов [36].

В табл. 2 представлены значения полного и поэлементного магнитных моментов для рассмотренных соединений. Наибольшая величина полного магнитного момента наблюдается для стехиометрической композиции с учетом шахматного расположения атомов Мп. Последующее уменьшение концентрации сурьмы приводит к снижению значения магнитного момента в фазах аустенита и мартенсита с шахматным и послойным ферримагнитным упорядочением. Наблюдаемая тенденция в поведении намагниченности хорошо согласуется с экспериментом [31]. АФМ-упорядочение наблюдается для стехиометрических составов Ni₂MnSb с послойным атомным упорядочением и NiMn с шахматным и послойным атомным упорядочением.

На рис. 3, а представлены зависимости энергии формирования от концентрации Mn для аустенитной и мартенситной фазы исследуемых композиций, которые

Рис. 3. Зависимость энергии (*a*) формирования и (*b*) смешивания от содержания Mn для кубической $L2_1$ и тетрагональной $L1_0$ -фазы сплавов Ni₂Mn_{1+x}Sb_{1-x} с учетом различного магнитного и атомного упорядочения.

упорядочены ферро-, антиферро- и ферримагнитно. Из рисунка следует, что все композиции являются устойчивыми по отношению к распаду на составляющие элементы в силу того, что энергия формирования принимает отрицательные значения и ее величина возрастает по модулю с ростом содержания Мп. Однако, если рассмотреть более сложные продукты распада, наблюдаемые экспериментально [24-29], то можно наблюдать противоположную тенденцию (рис. 3, b). Все нестехиометрические композиции в аустенитной и мартенситной фазе с различным атомным и магнитным упорядочением оказываются нестабильными ввиду положительного значения энергии смешивания, т.е. однофазность в таких соединениях в условиях равновесия может остаться под вопросом. Стоит упомянуть, что богатые марганцем сплавы Гейслера характеризуются сильными конкурирующими ферро- и антиферромагнитными обменными взаимодействиями, которые носят дальнодействующий колебательный характер. Следовательно, чем больше избыточных атомов Mn будет появляется в подрешетке Sb, тем сильнее будет данная конкуренция. Из рис. 3, b следует, что энергия смешивания, как и ее разница для аустенитной и мартенситной фазы увеличиваются для всех составов с уменьшением содержания сурьмы, тем самым, подтверждая тенденцию к сегрегации на Φ M кубическую $L2_1$ фазу Ni₂MnSb и A Φ M тетрагональную $L1_0$ фазу NiMn. Стабильными остаются лишь стехиометрические составы Ni₂MnSb и NiMn.

4. Заключение

В данной работе представлены исследования магнитных и структурных свойств сплавов Гейслера $Ni_2Mn_{1+x}Sb_{1-x}$ в зависимости от атомного и магнитного упорядочения. Показано, что для всех нестехиометрических композиций наиболее энергетически выгодным упорядочением является ферримагнитное с шахматным порядком атомов Mn, при этом мартенситный переход возможен для композиций x > 0.25. Напротив, послойное упорядочение атомов Mn для каждой композиции приводит к возникновению только мартенситной фазы. Обнаружено, что в стехиометрии кубическая фаза с шахматным атомным упорядочением и тетрагональная фаза с послойным расположением атомов Мп близки по энергиям, разница с более выгодной кубической фазой составляет около 4.424 meV/atom, что говорит о возможной вырожденности аустенитной фазы и ее многофазности. Исследование тенденций к сегрегации сплавов с избыточным содержанием марганца в аустенитной и мартенситной фазе с учетом различного магнитного и атомного упорядочения показывает их неустойчивость по отношению к распаду на двухфазную систему, состоящую из трехкомпонентного стехиометрического соединения кубической фазы L21 и бинарного соединения тетрагональной фазы L1₀. Устойчивость демонстрируют только стехиометрические составы Ni₂MnSb и NiMn.

Финансирование работы

Расчеты структур с расположением атомов в шахматном порядке выполнены при поддержке проекта РНФ № 17-72-20022. Расчеты структур с расположением атомов в послойном порядке выполнены при поддержке Министерства науки и высшего образования РФ в рамках госзадания № 075-00992-21-00.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- K. Ullakko, J. Huang, C. Kantner, R. O'Handley, V. Kokorin. Appl. Phys. Lett. 69, 1966 (1996).
- [2] S.J. Murray, M. Marioni, S. Allen, R. O'Handley, T.A. Lograsso. Appl. Phys. Lett. 77, 886 (2000).

- [3] A. Sozinov, A. Likhachev, N. Lanska, K. Ullakko. Appl. Phys. Lett. 80, 1746 (2002).
- [4] M. Chmielus, X. Zhang, C. Witherspoon, D. Dunand, P. Müllner. Nature Mater. 8, 863 (2009).
- [5] J. Marcos, A. Planes, L. Mañosa, F. Casanova, X. Batlle, A. Labarta, B. Martínez. Phys. Rev. B 66, 224413 (2002).
- [6] F.-X. Hu, B.-G. Shen, J.-R. Sun, G.-H. Wu. Phys. Rev. B 64, 132412 (2001).
- [7] T. Krenke, E. Duman, M. Acet, E.F. Wassermann, X. Moya, L. Mañosa, A. Planes, E. Suard, B. Ouladdiaf. Phys. Rev. B 75, 104414 (2007).
- [8] M. Pasquale, C.P. Sasso, L.H. Lewis, L. Giudici, T. Lograsso, D. Schlagel. Phys. Rev. B 72, 094435 (2005).
- [9] А.П. Каманцев, Ю.С. Кошкидько, Э.О. Быков, В.С. Калашников, А.В. Кошелев, А.В. Маширов, И.И. Мусабиров, М.А. Пауков, В.В. Соколовский. ФТТ 62, 727 (2020).
- [10] О.Н. Мирошкина, В.В. Соколовский, М.А. Загребин, С.В. Таскаев, В.Д. Бучельников. ФТТ 62, 697 (2020).
- [11] C. Biswas, R. Rawat, S. Barman. Appl. Phys. Lett. 86, 202508 (2005).
- [12] V. Sharma, M. Chattopadhyay, K. Shaeb, A. Chouhan, S. Roy. Appl. Phys. Lett. 89, 222509 (2006).
- [13] R. Kainuma, Y. Imano, W. Ito, Y. Sutou, H. Morito, S. Okamoto, O. Kitakami, K. Oikawa, A. Fujita, T. Kanomata, K. Ishida. Nature **439**, 957 (2006).
- [14] R. Kainuma, Y. Imano, W. Ito, H. Morito, Y. Sutou, K. Oikawa, A. Fujita, K. Ishida, S. Okamoto, O. Kitakami, T. Kanomata. Appl. Phys. Lett. 88, 192513 (2006).
- [15] V. Khovaylo, K. Skokov, O. Gutfleisch, H. Miki, R. Kainuma, T. Kanomata. Appl. Phys. Lett. 97, 052503 (2010).
- [16] Z. Li, C. Jing, J. Chen, S. Yuan, S. Cao, J. Zhang. Appl. Phys. Lett. 91, 112505 (2007).
- [17] M. Khan, I. Dubenko, S. Stadler, N. Ali. Appl. Phys. Lett. 91, 072510 (2007).
- [18] О.Н. Мирошкина, М.А. Загребин, В.В. Соколовский, В.Д. Бучельников. ФТТ 60, 1127 (2018).
- [19] K. Koyama, H. Okada, K.Watanabe, T. Kanomata, R. Kainuma, W. Ito, K. Oikawa, K. Ishida. Appl. Phys. Lett. 89, 182510 (2006).
- [20] S. Yu, Z. Liu, G. Liu, J. Chen, Z. Cao, G.Wu, B. Zhang, X. Zhang. Appl. Phys. Lett. 89, 162503 (2006).
- [21] M.K. Ray, B. Maji, M. Modak, S. Banerjee. J. Magn. Magn. Mater. 429, 110 (2017).
- [22] N.V. Rama Rao, R. Gopalan, V. Chandrasekaran, K.G. Suresh. Appl. Phys. A **99**, 265 (2010).
- [23] Z. Han, D. Wang, C. Zhang, H. Xuan, B. Gu, Y. Du. Appl. Phys. Lett. 90, 042507 (2007).
- [24] W.M. Yuhasz, D.L. Schlagel, Q. Xing, K.W. Dennis, R.W. McCallum, T.A. Lograsso. J. Appl. Phys. 105, 07A921 (2009).
- [25] W.M. Yuhasz, D.L. Schlagel, Q. Xing, R.W. McCallum, T.A. Lograsso. J. Alloys Compd. 492, 681 (2010).
- [26] T. Krenke, A. Çakir, F. Scheibel, M. Acet, M. Farle. J. Appl. Phys. 120, 243904 (2016).
- [27] A. Çakir, M. Acet, M. Farle. Sci. Rep. 6, 28931 (2016).
- [28] A. Çakir, M. Acet. AIP Adv. 7, 056424 (2017).
- [29] A. Çakir, M. Acet, U. Wiedwald, T. Krenke, M. Farle. Acta Mater. 127, 117 (2017).
- [30] Y. Sutou, Y. Imano, N. Koeda, T. Omori, R. Kainuma, K. Ishida, K. Oikawa. Appl. Phys. 85, 4358 (2004).
- [31] M. Khan, I. Dubenko, S. Stadler, N. Ali. J. Phys.: Condens. Matter 20, 235204 (2008).

- [32] W.J. Feng, Q. Zhang, L.Q. Zhang, B. Li, J. Du, Y.F. Deng, Z.D. Zhang. Solid State Commun. 150, 949 (2010).
- [33] B. Kwon, Y. Sakuraba, H. Sukegawa, S. Li, G. Qu, T. Furubayashi, K. Hono. J. Appl. Phys. **119**, 023902 (2016).
- [34] J. Rusz, L. Bergqvist, J. Kudrnovský, I. Turek. Phys. Rev. B 73, 214412 (2006).
- [35] J. Rusz, J. Kudrnovskyý, Ilja Turek. J. Magn. Magn. Mater. 310, 1654 (2007).
- [36] S. Ghosh, S. Ghosh. Phys. Rev. B 99, 064112 (2019).
- [37] G. Kresse, J. Furthmüller. Phys. Rev. B 54, 11169 (1996).
- [38] G. Kresse, D. Joubert. Phys. Rev. B 59, 1758 (1999).
- [39] J.P. Perdew, K. Burke, M. Ernzerhof. Phys. Rev. Lett. 77, 3865 (1996).
- [40] M. Khan, N. Ali, S. Stadler. J. Appl. Phys. 101, 053919 (2007).
- [41] W.J. Feng, J. Du, B. Li, W.J. Hu, Z.D. Zhang, X.H. Li, Y.F. Deng. J. Phys. D 42, 125003 (2009).

Редактор Т.Н. Василевская