06

Физические основы формирования гетероваризонной структуры на основе кремния

© М.К. Бахадирханов, С.Б. Исамов

Ташкентский государственный технический университет, 100095 Ташкент, Узбекистан e-mail: bahazeb@yandex.ru

Поступило в Редакцию 15 марта 2021 г. В окончательной редакции 23 апреля 2021 г. Принято к публикации 28 мая 2021 г.

С формированием бинарных элементарных ячеек на основе элементов A^{II} и B^{VI} , A^{III} и B^{V} в приповерхностной области кремния была получена гетероваризонная структура, не разрушающая кристаллическую структуру, без поверхностных состояний толщиной около 5 μ m. Полученная гетероваризонная структура обладает особыми фундаментальными параметрами, обеспечивающими поглощение света в широком интервале солнечного спектра от УФ до ИК излучения с $\lambda = 0.1-3\mu$ m, т. е. охватывает весь спектр Солнца.

Ключевые слова: кремний, фотоэлемент, солнечный элемент, гетероваризонная структура, фотовольтаика, соединения А^{II} и В^{VI}, А^{III} и В^V.

DOI: 10.21883/JTF.2021.11.51528.60-21

Введение

Благодаря именно кремнию современная электроника достигла очень больших успехов. Все это связанно с достаточно большими запасами кремния на земном шаре, а самое главное освоена доступная технология получения кремневых кристаллов с необходимой чистотой и электрическими параметрами и заданными размерами монокристаллов. Ни для одного полупроводникового материалов ближайшее время не будет разработана технология получения кристаллов такой чистоты и с такими геометрически размерами.

Фотоэнергетика может стать основным источником энергии для человечества не только в далеком будущем, но и в ближайшее время, так как это самый чистый и вечный источник энергии. В настоящее время в фотоэнергетике кремний был и остается основным материалом, более 90% фотоэлектрических станций работают на основе кремниевых фотоэлементов. Однако широкомасштабное использование кремниевых фотоэлементов в фотоэнергетике в наземных условиях ограничено их низким КПД, которое достигло в промышленности 20%, а в лабораторных условиях 25% [1–3].

Фотоэлементы на основе полупроводниковых соединений $A^{III}B^V$ и $A^{II}B^{VI}$ хоть и имеют достаточно высокий КПД, особенно многокаскадные фотоэлементы [4–5], но они не могут быть использованы как источник энергии в наземных условиях, т.е. практически не возможно использовать такие фотоэлементы в более широком масштабе. Это связанно не только с очень высокой ценой таких фотоэлементов (они почти в 50 раз дороже, чем фотоэлементы на основе кремния), но и с ограниченным запасом элементов в составе полупроводников $A^{III}B^V$ и $A^{II}B^{VI}$, их токсичностью, а также слишком сложной технологией получения таких элементов [6–8]. Поэтому единственным выходом остается повышение КПД фотоэлементов на основе кремния или разработка нового класса материла на его основе для будущего фотоэнергетики в наземных условиях.

Более глубокий анализ показывает, что низкое значение КПД кремниевых солнечных элементов в основном связано с фундаментальными параметрами этого материала, т.е. небольшой шириной запрещенной зоны, не прямозонной структурой, не высоким значением подвижности по сравнению с полупроводниковыми соединениями А^{III}В^V [9].

Поэтому можно однозначно утверждать, что без изменения фундаментальных параметров кремния практически невозможно создать более эффективные фотоэлементы [10,11].

Насколько нам известно, в настоящее время не существуют какие-либо физические материалы и технологии, позволяющие изменить фундаментальные параметры кремния, а также разработать какую-либо технологию получения новых перспективных материалов для будущего фотоэнергетики.

Целью настоящей работы являлось физическое обоснование возможности создания нового типа гетероваризонных структур за счет формирования бинарных кластеров атомов III и V групп в решетке кремния, а также раскрытие новых физических и функциональных возможностей такого материала для оптоэлектроники и фотоэнергетики.

1. Физические основы формирования бинарных элементарных ячеек в решетке кремния

В последние 10-15 лет ученые кафедры "Цифровая электроника и микроэлектроника" ТГТУ занимаются

возможностью управления фундаментальными параметрами кремния [12–14]. Ученым этой кафедры удалось физически обосновать оригинальную и доступную технологию получения кремния с управляемыми фундаментальными параметрами. Суть данного технологического решения заключается в формировании в решетке кремния бинарных нанокластеров, т.е. бинарных элементарных ячеек с управляемыми параметрами.

Как известно, элементы III и V групп в кремнии в основном находятся в узлах подрешетки и создают в запрещенной зоне кремния мелкие донорные и акцепторные энергетические уровни. Растворимость этих элементов в кремнии имеет достаточно высокое значение и достигает $N \ge 10^{21}$ cm⁻³. В атомарном состоянии они находятся в виде однократно заряженных ионов A^{III-} , B^{V+} и вокруг себя создают электрический потенциал, также они создают соответствующую дополнительную концентрацию носителей заряда как в зоне проводимости, так и валентной зоне. Все это приводит к существенному нарушению термодинамически равновесного состояния кристалла. Поэтому кристалл в таких условиях находится в термодинамически неравновесном состоянии [15].

Установлено, что можно создать такие термодинамические условия диффузионного легирования кремния, последовательно элементами III и V групп, а также оптимальные термодинамические условия термоотжига, после диффузионного легирования, позволяющего находиться атомам III и V групп в решетке кремния рядом, т. е. они будут занимать места в соседних узлах решетки (рис. 1).

Как видно, при этом формируются электронейтральные молекулы между ионами A^{III-} и B^{V+} . Формирование таких молекул полностью экранирует электрический потенциал каждого иона атомов III и V группы. При этом атомы III и V групп в кремнии действуют не как примесные атомы, а как основные атомы новой элементарной ячейки. Поэтому атомы III и V групп не создают энергетические уровни в запрещенной зоне, т. е. наличие их не создает дополнительные электроны и дырки как в зоне проводимости, так и валентной зоне. Формирование

Рис. 1. Электронейтральные молекулы между ионами A^{III-} и B^{V+} и формирование новых элементарных ячеек $Si_2A^{III}B^V$ в кремнии.

таких молекул не нарушает тетраэдрическую связь в решетке кремния. Это означает, что формирование таких электронейтральных молекул между ионами элементов III и V групп обеспечивает более выгодное термодинамическое равновесное состояние решетки. Это приводит к существенному стимулированию самоорганизации формирования таких электронейтральных молекул между ионами элементов A^{III} и B^V.

Формирование таких электронейтральных молекул интересно тем, что при этом в решетке кремния появляется новая элементарная ячейка $Si_2A^{III-}B^{V+}$ (рис. 1). Эти элементарные ячейки в отличие от элементарной ячейки кремния, которая имеет 100% ковалентную связь, обладают частично ионно-ковалентной связью, т. е. появляется элементарная ячейка, не существующая в природе. Ионная доля в таких новых бинарных элементарных ячейках $Si_2A^{III-}B^{V+}$, согласно [15,16], определяется разностью значений электроотрицательности атомов III и V групп. Расчеты показывают, что при значении разности электроотрицательности в пределах $\Delta x \leq 1$ доля ионной связи в них составляет около 15-20%. Это означает, что при этом ковалентная связь в них будет преобладающей.

Теперь возникает вопрос все ли атомы элементов III и V групп могут образовывать электронейтральные молекулы и будут ли формировать новые бинарные элементарные ячейки в решетке кремния? Теоретически да, но при этом для этого необходимо чтобы выполнялись следующие условия [17,18].

1. Сумма ковалентных радиусов атомов элементов III $(r_{\rm III})$ и V $(r_{\rm V})$ групп должна быть достаточно близка к сумме ковалентных радиусов двух атомов кремния $(r_{\rm Si})$, т.е. должны выполняться следующие соотношения: $r_{\rm III} + r_{\rm V} - 2r_{\rm Si} \leq \pm 0.2r_{\rm Si}, 2r_{\rm Si} - (r_{\rm III} + r_{\rm V}) \leq \pm 0.2(2r_{\rm Si}).$

2. Разность значений электроотрицательности атомов элементов III и V групп не должна существенно отличаться от значений электроотрицательности атомов в кремнии.

3. Растворимость атомов элементов III и V групп и их коэффициенты диффузии не должны сильно отличаться друг от друга.

4. Необходимо проведение термоотжига после диффузионного легирования материала. Термодинамические условия термоотжига (температура и время) в основном определяются химическими и физическими параметрами элементов III и V групп.

На основе анализа электрических и химических параметров элементов III и V групп, а также их коэффициентов диффузии и растворимости в кремнии установлены следующие группы пар элементов III и V групп. Эти данные показывают возможность формирования достаточно широкого класса бинарных элементарных ячеек с участием атомов III и V групп.

- 1. Наиболее подходящие пары BBi, AlP, GaP, BP.
- 2. Подходящие пары BSb, AlAs, GaAs.
- 3. Возможные пары BAs, GaSb, InP.
- 4. Не подходящие пары AlSb, InAs, InSb.

Рис. 2. Некоторые возможные комбинации бинарных элементарных ячеек в решетке кремния.

Как известно, фундаментальные параметры каждого полупроводникового материала определяются его структурой, составом и химической связью элементарных ячеек, из которых состоит полупроводниковый материал. Поэтому необходимо выбрать оптимальные условия диффузионной технологии легирования кремния атомами элементов III и V групп, позволяющую вводить с максимальной и одинаковой концентрацией, а также распределять эти атомы в образцах кремния с учетом их коэффициентов диффузии как в процессе одновременной, так и последовательной диффузии элементов III и V групп. Т.е. необходимо определить оптимальные температуры и время дополнительного термоотжига, обеспечивающее максимальное участие введенных примесных атомов в формировании электронейтральных молекул.

С повышением концентраций введенных атомов элементов III и V групп существенно увеличивается вероятность формирования электронейтральных атомов между атомами элементов III и V групп, следовательно, увеличивается концентрация бинарных элементарных ячеек, а это в свою очередь приводит к появлению некоторых возможных комбинаций бинарных элементарных ячеек (рис. 2).

Энергетические связи атомов в элементарных ячейках и их комбинации будут существенно отличаться друг от друга. Это означает, что необходимая энергия для освобождения электронов в таких элементарных ячейках с различными их комбинациями существенно отличается, т. е. будут существенно различные значения ширины запрещенной зоны. Поэтому в них не будет одинакового фиксированного значения длины волны света для фундаментального поглощения (λ_b), каждая из них будет иметь свои значения λ_b , т. е. существенно расширяется спектр фундаментального поглощения кремния. Спектр поглощения будет заметнее только при достаточно высокой концентрации таких элементарных ячеек и их комбинаций.

При введении максимальной концентрации примесных атомов III и V групп $N \ge 10^{21} \, {\rm cm}^{-3}$ в кремний, обеспечивающее их одинаковое концентрационное распределение, в отличие от выше указанных различных комбинаций бинарных элементарных ячеек могут формироваться нанокристаллы полупроводникового соединения

на основе введенных примесных атомов элементов III и V групп (рис. 3). Это означает, что появляется локальная область, обогащенная нанокристаллами атомов полупроводниковых соединений $A^{III}B^V$, погруженная в решетку кремния. Размер нанокристаллов полупроводниковых соединений $A^{III}B^V$ может изменяться от нескольких нанометров до нескольких десятков нанометров в зависимости от условий легирования. Энергетическая структура кремния с высокой концентрацией бинарных элементарных ячеек и таких структур существенно меняется, и кремний превращается в новый материал.

Наиболее вероятные структуры на основе распределения элементарных ячеек по глубине кремния Si₂A^{III–}B^{V+} представлены на рис. 4. Как видно в приповерхностной области толщиной d = 1-100 nm, появляется область, обогащенная нанокристаллами с различным размером. Дальше от 0.1 до 1 μ m появляется область, обогащенная различными комбинациями бинарных элементарных ячеек. После этой области существует область, обогащенная в основном отдельными элементарными ячейками $d = 1-1.5 \mu$ m, затем

Рис. 3. Нанокристаллы полупроводникового соединения на основе элементов III и V групп в решетке кремния $(Si_2A^{III-}B^{V+})$.

Рис. 4. Наиболее вероятные структуры на основе распределения элементарных ячеек по глубине кремния. А^{III} — концентрационное распределение элементов III группы после диффузии элементов V группы (первая стадия диффузии), В^V — концентрационное распределение элементов V группы (вторая стадия диффузии), Si₂A^{III}B^V — концентрационное распределение бинарных элементарных ячеек в решетке кремния.

Рис. 5. Концентрационное распределение электронов (атомов фосфора) и дырок (галлия) в решетке кремния: *а* — диффундированных независимо друг от друга, *b* — при последовательной диффузии. Кривая *1* — распределение электронов (фосфора). Кривая *2* — распределение дырок (галлия).

до $d = 1.5 - 3\,\mu\text{m}$ следует область кремния с наименьшей концентрацией бинарных элементарных ячеек.

Толщиной каждой области и их распределением можно управлять в широком интервале в зависимости от условий диффузии. Таким образом, из рис. 5 видно, что в кремнии, начиная от поверхности до глубины X, появляется область, в которой структура, состав и химические связи меняются от полупроводниковых соединений $A^{III}B^V$ до чистого кремния без существенного изменения кристаллической структуры кремния и тетраэдрической связи, но естественно свойства каждой структуры различаются, и они существенно отличаются фундаментальными параметрами друг от друга.

Эта структура не похожа на существующие варизонные структуры и не похожа на гетероструктуру, т. е. возникает структура нового типа — гетероваризонная структура без всяких нарушений структуры и поверхностных состояний. Это структура создается с помощью диффузионной технологии, так как здесь применяется диффузионный способ формирования структур.

Для доказательства формирования таких гетероваризонных структур были проведены предварительные эксперименты с участием примесных атомов галлия и фосфора, входящих в ряд более подходящих пар. В качестве исходного материала был использован монокристаллический кремний КЭФ-100 ($N_{\rm P} \sim 10^{13} \, {\rm cm}^{-3}$) с содержанием кислорода $N_{\rm O_2} \approx (5-6) \cdot 10^{17} \, {\rm cm}^{-3}$ и плотностью дислокаций $N_D \sim 10^3 \, {\rm cm}^{-2}$. Размер образцов составлял $V \sim 1 \times 4 \times 8 \, {\rm mm}$. После необходимых механических и химических обработок образцов проводилась диффузия фосфора из нанесенного слоя фосфорнокислого аммония на воздухе при $T = 1000^{\circ}$ С в течение t = 2 h. После диффузии во всех образцах снималось с поверхности фосфоросиликатное стекло методом трав-

ления с HF и NH₄F. Концентрации атомов фосфора и галлия исследовались 4-х зондовым методом. При этом предполагалось, что эти атомы находятся в решетке в электроактивном состоянии. Наряду с этим учитывались зависимости подвижности носителей заряда от концентрации примесных атомов. При этом концентрация электронов (фосфора) на поверхности образцов составляла $N_{\rm P} = 2 \cdot 10^{20} \, {\rm cm}^{-3}$.

Диффузия галлия в кремнии (КЭФ 100) проводилась из газовой фазы при температуре $T = 1250^{\circ}$ С в течение 4 h. Такой выбор диффузии галлия дает возможность получить максимальную концентрацию на поверхности и в объеме кремния.

Затем в образцах, легированным фосфором, проводилась диффузия галлия при $T = 1250^{\circ}$ С в течение 4 h. При этом одновременно подвергались термоотжигу образцы кремния, легированного фосфором (без галлия), также при $T = 1250^{\circ}$ С, t = 4 h, чтобы определить изменения концентрационного распределения фосфора при дополнительных отжигах.

На рис. 5, *а* представлено концентрационное распределение атомов фосфора в кремнии после диффузии $T = 1000^{\circ}$ C, t = 2 h. Также представлено концентрационное распределение галлия после диффузии $T = 1250^{\circ}$ C, t = 4 h в образцах КЭФ-100.

Как видно из экспериментальных результатов, концентрация фосфора в приповерхностной области составляет $N_{\rm P} = 2 \cdot 10^{20} \,{\rm cm}^{-3}$, при этом на глубине $x = 2.5 \,\mu{\rm m}$, его концентрация уменьшена до $\sim 10^{14} \,{\rm cm}^{-3}$ (кривая *I*) при этом образцы все время остаются *n*-типом.

Полученные данные соответствуют литературным данным [12–14]. Как видно из рисунка, концентрационное распределение фосфора и галлия при их диффузии по отдельности существенно отличаются друг от друга.

На рис. 5, *b* представлено концентрационное распределение электронов (фосфора) в контрольных образцах, которые подвергались дополнительному термоотжигу при $T = 1250^{\circ}$ C, t = 4 h (кривая *I*), а также концентрационное распределение носителей заряда в образцах кремния, легированного галлием, при $T = 1250^{\circ}$ C, t = 4 h, которые были предварительно легированы фосфором при 1000°C, t = 2 h (кривая 2). Как видно в результате дополнительного отжига, при $T = 1250^{\circ}$ C, t = 4 h поверхностная концентрация фосфора незначительно уменьшается, а глубина проникновения достигает $x = 25 \,\mu$ m (кривая *I*), в области $x = 0-25 \,\mu$ m образцы приобретают явно *n*-тип.

Концентрационное распределение в образцах легированных галлием при $T = 1250^{\circ}$ С, t = 4 h, после легирования фосфором при 1000°С, t = 2 h (рис. 5, b, кривая 2) показывает, что в исследуемых образцах до глубины $x = 7.5-8 \,\mu$ m имеется *n*-тип проводимости. При этом концентрация электронов (фосфора) существенно уменьшается, а при $x > 7.5-8 \,\mu$ m образцы приобретают *p*-тип проводимости. В области $x = 7.5-10 \,\mu$ m, концентрация дырок незначительно увеличивается, а в области $x = 8-15 \,\mu$ m концентрация дырок (галлия) практически остается постоянной, а при $x > 17 \,\mu$ m достаточно резко уменьшается.

Эти полученные результаты показывают, что при диффузии галлия (при наличии высокой концентрации фосфора), концентрация фосфора в области $x = 0-7.5 \,\mu$ m уменьшается на 1.5–1 порядок, затем концентрация галлия становится больше чем фосфора и материал обладает р-типом проводимостью. Хотя как видно из рис. 5, *b* (кривая *I*) концентрация фосфора до области 15 μ m больше, чем концентрация галлия. Эти результаты дают возможность предполагать, что наличие фосфора в кремнии приводит к повышению концентрации галлия.

2. Обсуждение

Полученные экспериментальные результаты невозможно объяснить взаимной компенсацией донорных (фосфор) и акцепторных (галлий) примесных атомов, так как атомы фосфора и галлия в решетке кремния распределены хаотически и пространственно разделены, что соответственно не должно приводить к повышению концентрации атомов галлия при наличии атомов фосфора. Поэтому можно предлагать, что эти явления связаны с взаимодействием атомов фосфора и галлия. Поскольку атомы фосфора в решетке кремния находятся в узлах кристаллической решетки в виде положительно заряженных ионов Р+, создавая дополнительные электроны в зоне проводимости, концентрация которых равна $N_{P^+} = n$. Наличие достаточно большой концентрации положительно заряженных атомов фосфора (Р⁺) создает значительный электрический потенциал. Этот потенциал распределен от поверхности кристалла вглубь образца кремния, что стимулирует повышение

Рис. 6. Спектральная зависимость тока короткого замыкания образцов кремния с p-n-переходом, полученным с помощью: 1 - P, 2 - Ga и 3 - GaP.

концентрации атомов галлия в процессе диффузии, которые в кремнии действуют как акцепторная примесь в виде отрицательных ионов Ga⁻ [19,20]. Поэтому можно предполагать, что в результате таких взаимодействий в решетке кремния появляются донорно-акцепторные комплексы, т. е. квазимолекулы в виде $[P^+Ga^-]$. В свою очередь, квазимолекулы $[P^+Ga^-]$ в решетке кремния и их распределение по глубине образуют гетероваризонную структуру, которые изменяют энергетическую структуру кремния.

Для оценки вклада в энергетические параметры кремния с гетероваризонными структурами на основе $[P^+Ga^-]$ мы создали p-n-переходы в кремнии с участием примесных атомов галлия и фосфора по отдельности, и с гетероваризонными структурами. При этом в качестве исходного материала был использован монокристаллический кремний дырочного типа проводимости легированный бором марки КДБ-0.5 (для легирования фосфором) и монокристаллический кремний электронного типа проводимости легированный фосфором марки КЭФ-0.3 (для легирования галлием), гетероваризонная структура создавалась на основе кремния КДБ-0.5. Диффузия во всех образцах была проведена при одинаковых условиях $T = 1250^{\circ}$ С, t = 0.5 h.

Результаты эксперимента (рис. 6) показывают, что в p-n-переходах, образованных галлием и фосфором, их спектральные зависимости тока короткого замыкания (I_{sc}) соответствуют друг другу. В случае сформированной квазимолекулы Ga⁻P⁺ в кремнии $I_{sc}(hv)$ существенно отличается от легированного фосфором и галлием в отдельности.

1) Максимальное значение Isc в образцах с квазимолекулами Ga⁻P⁺ наблюдается не при hv = 1.1 eV, а при hv = 1.35 eV;

1683

2) при этом наблюдаются существенно повышенные значения I_{sc} в области hv = 1.3-2.8 eV;

3) имеет место расширение спектральной области чувствительности I_{sc} .

Полученные результаты позволяют предполагать, что такие существенные отличия $I_{sc}(hv)$ связаны с формированием бинарных элементарных ячеек Si₂GaP, в результате которых создается гетероваризонная структура на основе кремния. Так как формирование квазимолекулы [GaP] в решетке кремния не создает никакие энергетические уровни в запрещенной зоне кремния. Это также может служить доказательством формирования гетероваризонных структур с учетом галлия и фосфора в кремнии. Более достоверные данные могут дать результаты рентгеноструктурных и масс-спектроскопических анализов, над чем работают в настоящее время авторы.

Рассмотрим энергетическую структуру полученного материала в зависимости от природы введенных примесных атомов элементов III и V групп, где формируются нанокристаллы полупроводниковых соединений А^{ШВV} с большими значениями энергии ширины запрещенный зоны как у GaP, BP, GaAs, а также с малыми значениями как у GaSb, InSb и др. Это позволяет создать различные комбинации бинарных элементарных ячеек, т.е. получить структуру на глубине $d = 0.1 - 5\,\mu m$ в кремнии с энергетической структурой, отличной от энергетической структуры полупроводниковых соединений А^{ШВV}. А также с изменяющейся шириной запрещенной зоны начиная от GaP, GaAs, PB до ширины запрещенной зоны кремния $E_g = 1.12 \text{ eV}$, что обеспечивает максимальное поглощение УФ, видимой и ИК области светового излучения. Также формирование таких структур в приповерхностной области материала может образовывать соединения с запрещенной зоной меньше чем запрещенная зона кремния (GaSb, InAs, InSb), в которой значение E_g от поверхности кристалла непрерывно увеличивается до Eg кремния на глубине d. В этом случае создается материал поглощающий ИК излучение с $\lambda > 1.2 \,\mu$ m. При этом необходимо отметить, что ширина запрещенной зоны нанокристаллов A^{III}B^V и различных комбинаций бинарных элементарных ячеек может отличаться от ширины запрещенной зоны как самих соединений А^{III}В^V, так и нанокристаллов А^{III}В^V, находящихся в кристаллической решетке кремния.

Таким образом, оптимальные условия легирования кремния различными парами атомов элементов III и V групп позволяют создать практически новый класс материалов с управляемой шириной запрещенной зоны на основе главного материала кремния.

Образование локальной области в решетке кремния, обогащенной нанокластерами A^{III}B^V, приводит к появлению в решетке кремния области с прямозонной структурой, похожей на зонную структуру соответствующих полупроводниковых соединений A^{III}B^V. Это означает, что существенно повышается коэффициент поглощения во всей области спектра Солнца. Таким образом, с формированием бинарных элементарных ячеек можно изменить более важный фундаментальный параметр кремния — зонную структуру, которую практически невозможно изменить какими либо другими методами.

В результате формирования бинарных элементарных ячеек с управляемыми параметрами в приповерхностной области можно получить достаточно толсты (5 μ m) слой кремния. С помощью материала с новыми фундаментальными параметрами, обеспечивающими поглощение света в широком интервале солнечного спектра от УФ до ИК излучения $\lambda = 0.1-3 \mu$ m, охватывается весь спектр Солнца. Этим свойством не обладает ни один из существующих полупроводниковых материалов. Самое главное, что это получается на основе основного материала кремния.

Заключение

Особо следует отметить, что эта диффузионная технология получения таких материалов достаточно отработана, надежна, доступна, а самое главное она основана на действующей диффузионной планарной технологии, не требующей дорогостоящего оборудования, приборов и устройств.

Теперь несколько слов о функциональных возможностях кремния с бинарными, элементарными ячейками. Как показали предварительные расчеты, получение такого материала на основе кремния с бинарными элементарными ячейками с участием Ga-P, P-Al и B-P может увеличивать КПД фотоэлементов на 25-30%. Расчеты также показывают, что при использовании оптимальной технологии, позволяющей получать элементарные ячейки с участием атомов GaP, GaAs, BP с необходимой концентрацией и распределением, можно изготовить фотоэлементы на основе кремния с КПД более 50%. Это означает, что в ближайшем будущем (3-5 лет) дорогостоящие и сложные многокаскадные фотоэлементы на основе А^{ШВV} будут заменены фотоэлементами с более высоким КПД на основе кремния с бинарными элементарными ячейками. Таким образом, предлагаемая научно-обоснованная модель управления фундаментальными параметрами кремния обеспечивает широкомасштабное использование фотоэнергетики в наземных условиях. Такие материалы также позволяют создать новые, надежные и дешевые приборы для оптоэлектроники.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- X. Ru, M. Qu, J. Wang, T. Ruan, M. Yang, F. Peng, W. Long, K. Zheng, H. Yan, X. Xu. Solar Energy Mater. Solar Cells, 215, 110643 (2020).
- [2] M.A. Green, E.D. Dunlop, D.H. Levi, J. Hohl-Ebinger, M. Yoshita, A.W.Y. Ho-Baillie. Progr. Photovoltaics: Res. Applicat., 27, 565 (2019).

- [3] V.A. Milichko, A.S. Shalin, I.S. Mukhin, A.E. Kovrov, A.A. Krasilin, A.V. Vinogradov, P.A. Belov, C.R. Simovski. Phys. Usp., 59 (8), 727 (2016).
- [4] Ж.И. Алфёров, Избранные труды. Нанотехнологии (Магистр-пресс, М., 2013)
- [5] A. Louwen, W. Sark, R.Schropp, A. Faaij. Solar Energy Mater. Solar Cells, 147, 295 (2016).
- [6] M. Yamaguchi, K.H. Lee1, K. Araki, N. Kojima. J. Phys. D: Appl. Phys., 51, 133002 (2018).
- [7] S. Abdul Hadi, E.A. Fitzgerald, S. Griffiths, A. Nayfeh. J. Renewable Sustainable Energy, **10**, 015905 (2018).
- [8] М.А. Путято, Н.А. Валишева, М.О. Петрушков, В.В. Преображенский, И.Б. Чистохин, Б.Р. Семягин, Е.А. Емельянов, А.В. Васев, А.Ф. Скачков, Г.И. Юрко, И.И. Нестеренко. ЖТФ, 89 (7), 1071 (2019).

DOI: 10.21883/JTF.2019.07.47802.438-18

- [9] K. Chen, R. Kapadia, A. Harker, S. Desai, J.S. Kang, S. Chuang, M. Tosun, C.M. Sutter-Fella, M. Tsang, Y. Zeng, D. Kiriya, J. Hazra, S.R. Madhvapathy, M. Hettick, Yu-Ze Chen, J. Mastandrea, M. Amani, S. Cabrini, Yu-Lun Chueh, J.W. Ager III, D.C. Chrzan, A. Javey. Nature Commun., 7, 10502 (2016). DOI: 10.1038/ncomms10502
- [10] Н.Д. Гудков. ЖТФ, **63** (5), 105 (1993).
- [11] C.-X. Zhao, Y. Huang, J.-Q. Wang, C.-Y. Niu, Y. Jia. Phys. Lett. A. 383, 125903 (2019).
- [12] M.K. Bakhadyrhanov, U.X. Sodikov, D. Melibayev, Tuerdi Wumaier, S.V.Koveshnikov, K.A. Khodjanepesov, Jiangxiang Zhan. J. Mater. Sci. Chem. Eng., 6, 180 (2018). DOI: 10.4236/msce.2018.64017
- [13] M.K. Bakhadyrkhanov, S.B. Isamov, Kh.M. Iliev, S.A. Tachilin, K.U. Kamalov. Appl. Sol. Energy, **50** (2), 61 (2014).
- [14] M.K. Bakhadyrhanov, U.X. Sodikov, Kh.M. Iliev, S.A. Tachilin, T. Wumaier, Mater. Phys. Chem., 1, 89 (2019).
- [15] S. Adachi. Properties of group-IV, III-V and II-VI semiconductors (England: John Wiley & Sons Ltd, 2005)
- [16] Б.И. Болтакс. Диффузия и точечные дефекты в полупроводниках (Наука, Л., 1972)
- [17] D.V. Saparov, M.S. Saidov, A.S. Saidov. Appl. Solar Energy. 52 (3), 236 (2016).
- [18] A.S. Saidov, M.S. Saidov, Sh.N. Usmonov, K.T. Kholikov, D. Saparov. Appl. Solar Energy, 43 (3), 183 (2007).
- [19] S. Haridoss, F. Bénière, M. Gauneau, A. Rupert. J. Appl. Phys., 51 (11), 5833 (1980).
- [20] Y. Sato, I. Sakaguchi, H. Haneda. Jpn. J. Appl. Phys., 43 (12), 8024 (2004).