03,09

The Optical Blueshift Saturation Behavior of $Mg_x Zn_{1-x}O$ Films

© C. Xue¹, J. Zhang¹, X. Lu², M. Geng², T. Huang², T. Zhang¹, D. Gu¹, L. Shen¹, L. Wang¹, ¶

 ¹ Department of Physics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing, 211816 China
² School of 2011, Nanjing Tech University, Nanjing, 211816 China
[¶] E-mail: wangl055@njtech.edu.cn
Received: June 16, 2021

Revised: June 16, 2021 Revised: June 16, 2021 Accepted: June 24, 2021

A phenomenon of blueshift saturation was observed from cathodoluminescence (CL) spectra of $Mg_x Zn_{1-x}O$ films $(0.069 \le x \le 0.8)$ that were grown by pulsed laser deposition technology. By analyzing the results of composition-dependent *X*-ray diffraction spectra, scanning electron microscopy images, absorption spectra, and CL spectra, the crystalline structural disorder was determined via Urbach energy value. Furthermore, a competition mechanism between band-filling effect and band tail states was proposed in the composition-dependent CL spectra. This competition is believed to be responsible for the composition-induced blueshift saturation often observed in the disordered alloy semiconductors. The results of this research can provide important reference in energy-band engineering.

Keywords: $Mg_x Zn_{1-x}O$, luminescence, Urbach energy, band tail state.