14,17

Особенности процессов переноса заряда в нанокомпозитах на основе полифениленоксида с фуллереном и эндофуллереном

© А.А. Кононов¹, Н.А. Никонорова², Р.А. Кастро¹

¹ Российский государственный педагогический университет им. А.И. Герцена, Санкт-Петербург, Россия ² Институт высокомолекулярных соединений РАН, Санкт-Петербург, Россия E-mail: kononov aa@icloud.com

Поступила в Редакцию 6 июня 2021 г. В окончательной редакции 6 июня 2021 г. Принята к публикации 9 июня 2021 г.

> Представлены результаты исследования процессов переноса электрического заряда в полимерных нанокомпозитах на основе полифениленоксида с фуллереном C_{60} (1 и 8%) и с эндометаллофуллереном Fe@C₆₀ (1%) в качестве нанонаполнителей. С использованием существующих теоретических моделей рассчитаны значения параметров переноса заряда, такие как концентрация носителей *N*, длина свободного пробега R_{ω} и высота потенциального барьера $W_{\rm M}$. Для всех образцов путем анализа температурных зависимостей показателя степени степени *s* определен тип проводимости.

> Ключевые слова: перенос заряда, прыжковый механизм проводимости, квантово-механическое туннелирование, полимерные нанокомпозиты, фуллерен, эндометаллофуллерен.

DOI: 10.21883/FTT.2021.10.51461.135

1. Введение

Полимеры являются идеальными матрицами для создания новых материалов с заданными свойствами, в частности, для получения мембран широкого назначения. Мембраны используют в процессах концентрирования и фракционирования смесей, очистки продуктов от сопутствующих примесей, при регенерации ценных компонентов, для получения обессоленной и очищенной воды, при решении экологических задач. В последнее время хорошо зарекомендовали себя мембраны из полифениленоксида (ПФО), а также композиты на его основе [1-3]. Модификации ПФО различными видами наполнителей приводят к существенным изменениям его диэлектрических, структурных и диффузионных свойств. Для улучшения мембранных свойств широко внедряют аллотропные формы углерода, одной из которых является фуллерен (С₆₀) [4].

При модификации ПФО фуллереном C_{60} образуются нанокомпозиты с комплексами донорно-акцепторного типа. Изучение растворов этого комплекса реологическими и гидродинамическими методами показало [5], что связь ПФО с C_{60} является достаточно устойчивой, так какдаже при разбавлении комплекс не разделяется на компоненты, хотя и имеет место небольшое уменьшение характеристической вязкости и асимметрии формы сегментов ПФО. Методами масс-спектрометрического термического анализа и дифференциальной калориметрии показано, что добавка фуллерена в ПФО повышает его термостабильность [6]. При исследовании спектров фотолюминесценции установлено наличие молекулярных комплексов в пленках ПФО/ C_{60} , содержащих до 2 wt% C_{60} . При увеличении концентрации, начиная с 4% значительная часть молекул C_{60} находится в несвязанном с молекулами ПФО состоянии [7].

Наряду с хорошо исследованными фуллеренами C₆₀ представляют интерес т. н. эндоэдральные фуллерены, содержащие во внутренней полости фуллеренового каркаса атомы металлов и неметаллов. Такие включения изменяют электрофизические свойства молекулы фуллерена, а соответственно, и полимерного композита.

В настоящей работе исследованы процессы переноса заряда в полимерных нанокомпозитах на основе ПФО с фуллереном C_{60} и эндометаллофуллереном Fe@C₆₀. Цель работы — выявить влияние наполнителей C_{60} и Fe@C₆₀ на электрофизические свойства нанокомпозита.

2. Методика эксперимента

Полимерной матрицей служил ПФО с молекулярной массой (MM) = 178000 g/mol и плотностью 1.06 g/cm³. В качестве нанодобавки использовали фуллерен C_{60} и эндометаллофуллерен Fe@C₆₀ с содержанием более 99.5 mass% C_{60} (ООО "Фуллереновые технологии", Россия). Композиты ПФО/C₆₀ и ПФО/Fe@C₆₀ получали смешением растворов ПФО в хлороформе и фуллерена/эндофуллерена в толуоле. Пленки получали на поверхности целлофана в круглой форме, которую заполняли рассчитанным количеством 2%-го раствора полимера. Толщина пленок составляла 30–100 μ m. В настоящей работе представлены результаты иссле-

дования образцов следующего состава: ПФО/С_{60(1%)}, ПФО/С_{60(8%)}, ПФО/Fe@С_{60(1%)} и чистого ПФО. Выбор образцов определялся именно тем обстоятельством, что для ПФО/С_{60(1%)} и ПФО/Fe@С_{60(1%)} наполнитель находится в матрице полимера в молекулярно-диспергированном виде, когда между молекулами полимера и наполнителя есть химическая связь [8,9]. Дальнейшее увеличение содержания наполнителя (уже при 4%) приводит к формированию кластеров фуллерена, которых в пленке ПФО/С_{60(8%)} будет заведомо больше. Поэтому интересно было сопоставить электрофизические свойства нанокомпозитов с качественно различной структурой.

Измерения электропроводящих спектров были выполнены на диэлектрическом спектрометре "Concept-81" (Novocontrol Technologies GmbH). Для получения экспериментальных данных пленочные образцы помещали между латунными электродами (диаметр верхнего электрода 20 mm). Для образцов систем ПФО, ПФО/С_{60(1%)}, ПФО/Ге@С_{60(1%)} в интервале частот $10^{-1}-10^{6}$ Hz и температур $-100 - + 250^{\circ}$ C получены температурно-частотные зависимости действительной части комплексной проводимости σ' . Точность поддержания температуры на образце составляла $\pm 0.5^{\circ}$ C. Напряжение, подаваемое на образец, составляло U = 1.0 V.

3. Результаты и обсуждение

Частотные зависимости действительной части комплексной проводимости $\sigma'(f)$ в двойном логарифмическом масштабе для ПФО/С_{60(1%)} в интервале температур от 150 до 250°С представлены на рис. 1.

В интервале температур от -100 до 150° С зависимости $\sigma'(f)$ показывают линейный рост проводимости при увеличении частоты (рис. 2). Затем, при более высоких температурах, появляется излом (при частоте f_0) при переходе к частотно-независимой области $\sigma'(f)$ на низких частотах. Частота излома f_0 на зависимости $\sigma'(f)$ возрастает с ростом температуры. Для образцов других составов зависимости $\sigma'(f)$ качественно подобны.

Во многих аморфных полупроводниках и диэлектриках проводимость в электрическом поле имеет вид [10]

$$\sigma'(\omega) = A\omega^s. \tag{1}$$

Линейный рост σ' с увеличением частоты (по степенному закону), свидетельствует о прыжковом механизме проводимости. Переход от частотно-независимой к частотно-зависимой области означает начало релаксации проводимости [11].

В области низких частот $(f < 10^1 \text{ Hz})$ в материале активировано максимальное число процессов поляризации, при этом пространственное движение заряженных частиц в почти постоянном (квазистационарном) электрическом поле ограничено потенциальными барьерами и дефектами структуры, которые препятствуют переносу электрических зарядов от электрода к электроду. При

повышении частоты электрического поля заряженные частицы не успевают ориентироваться и, непрерывно следуя за изменением электрического поля, дают вклад

Рис. 1. Зависимость действительной части комплексной проводимости от частоты переменного поля при температурах от 150 до 250°C для $\Pi \Phi O/C_{60(1\%)}$. Температурный шаг равен 10°C.

в проводимость. Одновременно "выключается" их вклад в поляризацию, что проявляется в уменьшении (дисперсии) диэлектрической проницаемости [8,9]. Данное явление называется релаксацией проводимости.

Непрерывный рост проводимости в очень широком интервале частот (от 10^1 Hz) объясняется разницей в величинах потенциальных барьеров, которые требуется преодолеть заряженным частицам для рекомбинации, из-за отсутствия какого-либо порядка в полимерном материале. Следует ожидать, что при более высоких частотах зависимость $\sigma'(f)$ снова выйдет на "плато". Это будет означать, что все переносчики заряда не успевают достигнуть локализованных состояний, а, следовательно, станут участвовать в переносе заряда — проводимость в материале достигнет максимума.

Очевидно, что проводимость в исследуемых материалах зависит также и от температуры. Однако влияние температуры является более явным в низкочастотном диапазоне, тогда как в области высоких частот значения σ' близки для разных температур и составляют $\approx 10^{-10} \,\Omega^{-1} \,\mathrm{cm^{-1}}$, свидетельствуя о том, что исследуемые материалы лежат на границе между полупроводниками с проводимостью $\sigma = 10^4 - 10^{-10} \,\Omega^{-1} \,\mathrm{cm^{-1}}$ и диэлектриками с $\sigma = 10^{-10} - 10^{-22} \,\Omega^{-1} \,\mathrm{cm^{-1}}$.

Переход от частотно-независимой части спектра к частотно-зависимой происходит при частоте f_0 и свидетельствует о начале релаксации проводимости. С повышением температуры значение f_0 сдвигается в область высоких частот, что связано с уменьшением потенциального барьера между локализованными состояниями носителей заряда. Как видно из рис. 1, релаксация проводимости при температуре 250°С начинается уже при частоте $f_0 = 3 \cdot 10^1$ Hz. С понижением температуры уже при 150°С вышеупомянутый переход исчезает, и на графике остается только частотно-зависимая область спектра (рис. 2).

Динамика изменения значения показателя степени *s* (формула (1)) от температуры является важным фактором при определении типа проводимости в материале. В случае квантово-механического туннелирования (QMT) показатель степени *s* растет с повышением температур [12]; в рамках модели классического прыжкового механизма через потенциальный барьер (HOB) s = 1 [13]; в модели коррелированных прыжков (CBH) через потенциальный барьер *s* уменьшается с ростом температуры [14]. В полимерных материалах чаще всего наблюдаются две модели переноса заряда: квантовомеханическое туннелирование и коррелированные прыжки через потенциальный барьер.

Согласно модели CBH (correlated barrier hopping), в электрическом поле электроны совершают прыжки, преодолевая потенциальный барьер

$$W = W_{\rm M} - \frac{ne^2}{\pi\varepsilon\varepsilon_0 r},\tag{2}$$

где $W_{\rm M}$ — максимальная высота потенциального барьера, ε —диэлектрическая проницаемость материала,

Рис. 3. Зависимость показателя степени *s* от температуры для образцов чистого ПФО (*a*), ПФО/С_{60(1%)} (*b*), ПФО/Ге@С_{60(1%)} (*c*), ПФО/С_{60(8%)} (*d*).

 ε_0 — диэлектрическая проницаемость вакуума, r — расстояние между двумя положениями носителя заряда, n — число электронов, совершающих прыжок (n принимает значения 1 и 2 для случаев поляронного и биполяронного процессов соответственно).

В рамках модели СВН выражение для проводимости на переменном токе имеет вид

$$\sigma'(\omega) = \frac{\pi^3 N^2 \varepsilon \varepsilon_0 \omega R_\omega^6}{24}.$$
 (3)

Здесь *N* — плотность пар состояний, между которыми совершают прыжки носители заряда.

Связь между длиной прыжка R_{ω} и высотой потенциального барьера выражается соотношением

$$R_{\omega} = \frac{e^2}{\pi \varepsilon \varepsilon_0} \left[W_{\rm M} - kT \ln\left(\frac{1}{\omega \tau_0}\right) \right]^{-1}.$$
 (4)

С другой стороны, показатель степени s связан с высотой потенциального барьера $W_{\rm M}$ выражением

$$s = 1 - \frac{6kT}{[W_{\rm M} - kT/(\omega\tau_0)]}.$$
 (5)

Формулу (5) можно упростить в первом приближении

$$s = 1 - \frac{6kT}{W_{\rm M}}.\tag{6}$$

С целью выявления типа проводимости в исследуемых материалах, значения показателя степени *s* были рассчитаны путем линейной аппроксимации экспериментальных кривых (рис. 2); зависимости показателя степени *s* от температуры представлены на рис. 3.

Из рис. З видно, что для чистого ПФО (a), ПФО/С_{60(1%)} (b) и ПФО/С_{60(8%)} (d) показатель степени *s* уменьшается с ростом температуры. Для ПФО

<i>t</i> , °C	f, Hz	s	$N, \mathrm{m}^{-3} \cdot 10^{22}$	$R_{\omega}, \mathrm{m} \cdot 10^{-10}$	$W_{\rm M},{ m eV}$
100	$1.1 \cdot 10^{6}$ 9838.8 1.5	0.88	10.1 6.9 4.7	28.4 32.6 44.8	1.5
50	$ \begin{array}{r} 1.1 \cdot 10^6 \\ 9838.8 \\ 1.5 \end{array} $	0.90	10.0 5.9 5.9	28.2 31.5 40.6	1.6
30	$1.1 \cdot 10^{6}$ 9838.8 1.5	0.96	213.1 133.7 225.2	10.2 10.5 11.2	3.7

Таблица 1. Значение параметров переноса заряда в чистом ПФО

Таблица 2. Значение параметров переноса заряда в композите $\Pi \Phi O/C_{60(1\%)}$

<i>t</i> , °C	f, Hz	s	$N, m^{-3} \cdot 10^{22}$	$R_{\omega}, \mathrm{m} \cdot 10^{-10}$	W _M , eV
100	$1.1 \cdot 10^{6} \\9838.8 \\1.5$	0.92	44.0 41.9 36.6	13.8 14.9 17.7	2.4
50	$ \begin{array}{r} 1.1 \cdot 10^6 \\ 9838.8 \\ 1.5 \end{array} $	0.95	233.1 216.2 200.6	8.1 8.4 9.2	3.7
30	$ \begin{array}{r} 1.1 \cdot 10^6 \\ 9838.8 \\ 1.5 \end{array} $	0.99	3537.0 12132.1 13586.6	2.1 2.1 2.2	13.1

Таблица 3. Значение параметров переноса заряда в композите $\Pi \Phi O/C_{60(8\%)}$

<i>t</i> , °C	f, Hz	s	$N, \mathrm{m}^{-3} \cdot 10^{22}$	$R_{\omega}, \mathrm{m} \cdot 10^{-10}$	W _M , eV
100	$\begin{array}{c} 1.1 \cdot 10^6 \\ 9838.8 \\ 1.5 \end{array}$	0.86	3.9 1.4 1.7	36.4 43.7 69.0	1.3
50	$\begin{array}{c} 1.1 \cdot 10^6 \\ 9838.8 \\ 1.5 \end{array}$	0.93	53.2 22.6 38.2	15.5 16.5 18.9	2.5
30	$\begin{array}{c} 1.1 \cdot 10^6 \\ 9838.8 \\ 1.5 \end{array}$	0.97	608.9 316.6 517.3	6.7 6.9 7.2	5.2

с эндоэдральным фуллереном обнаруживается сравнительно медленный рост показателя *s* с увеличением температуры.

Можно полагать, что образцам $\Pi \Phi O/C_{60(1\%)}$, чистому $\Pi \Phi O$ и $\Pi \Phi O/C_{60(8\%)}$ соответствует модель СВН.

Из формул (2)-(6) рассчитаны значения параметров N, R_{ω} и $W_{\rm M}$ при разных температурах для исследуемых образцов (см. таблицы 1–3). Получено, что высота потенциального барьера уменьшается с повышением температуры.

В отличие от чистого ПФО, ПФО/С_{60(1%)} и ПФО/С_{60(8%)}, пленка ПФО/Fe@С_{60(1%)} обнаруживает рост показателя степени *s* с повышением температуры, что наблюдается в рамках модели квантово-механического туннелирования (QMT). Молекулярный механизм такого поведения требует дальнейшего изучения.

Как уже говорилось ранее, в большинстве полимеров, включая ПФО, наблюдаются оба механизма переноса заряда, однако один всегда является преобладающим. В данной работе обнаружено, что при введении атома железа в фуллерен в композиционном материале наблюдаются изменения, в результате которых происходит смена лидирующего типа проводимости, т.е. переход от прыжков носителей заряда через потенциальный барьер к квантово-механическому туннелированию. Это может быть вызвано ярко выраженными металлическими свойствами железа. Атом железа, инкапсулированный в молекулу фуллерена, выполняет роль электродонора. Атомы металла передают свои валентные электроны на внешнюю поверхность фуллереновой оболочки, тем самым изменяя общий заряд частиц наполнителя.

4. Заключение

В результате исследования процессов переноса электрического заряда в нанокомпозитах на основе ПФО с фуллереном и эндометаллофуллереном обнаружен переход от частотно-независимой к частотно-зависимой области на зависимостях $\sigma'(f)$, при котором начинается процесс релаксации проводимости. Проводимость в образцах ПФО и в ПФО с фуллереном носит преимущественно прыжковый характер, т.е. согласуется с моделью прыжков через потенциальный барьер (СВН). В случае внедрения Fe в C₆₀ тип проводимости меняется; в материале начинает преобладать перенос заряда за счет квантово-механического туннелирования. Для образцов $\Pi \Phi O/C_{60(1\%)}$, чистого $\Pi \Phi O$ и $\Pi \Phi O/C_{60(8\%)}$ рассчитаны значения параметров переноса заряда. Обнаружено, что высота потенциального барьера, который преодолевают заряженные частицы, следуя за электрическим полем, уменьшается с повышением температуры. Самые высокие значения высоты потенциального барьера WM соответствуют составу ПФО/С_{60(1%)}, когда наполнитель находится в матрице полимера в молекулярно-диспергированном виде, а между молекулами полимера и наполнителя наблюдается химическая связь.

Финансирование работы

Работа выполнена в рамках государственного задания при финансовой поддержке Министерства просвещения России (проект № FSZN-2020-0026).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- А.Ю. Пулялина, В.А. Ростовцева, Л.В. Виноградова, Г.А. Полоцкая. Мембраны и мембранные технологии 8, 2, 93 (2018).
- [2] В.М. Юдович, М.Е. Юдович, А.М. Тойкка, А.Н. Пономарёв. Вестн. Санкт-Петербургского ун-та. Сер. 4. Физика. Химия 3, 59 (2009).
- [3] Г.А. Полоцкая, С.В. Гладченко, А.В. Пенькова, В.М. Кузнецов, А.М. Тойкка. ЖПХ 78, 9, 1493 (2005).
- [4] Ю.А. Михайлин. Термоустойчивые полимеры и полимерные материалы. Изд-во "Профессия", СПб (2006). 624 с.
- [5] П.Н. Лавренко, Н.П. Евлампьева, Д.М. Волохова, Л.В. Виноградова, Е.Ю. Меленевская, В.Н. Згонник. Высокомолекулярн. соединения А 44, 2, 289 (2002).
- [6] Л.А. Шибаев, И.М. Егоров, В.Н. Згонник. Высокомолекулярн. соединения А **43**, *1*, 211 (2001).
- [7] Ю.Ф. Бирюлин, Е.Ю. Меленевская, С.Н. Миков, С.Е. Орлов, В.Д. Петриков, Д.А. Сыкманов, В.Н. Згонник. ФТП 37, 1, 110 (2003).
- [8] N.A. Nikonorova, A.A. Kononov, G.A. Polotskaya, R.A. Castro. Polymer Sci. A **62**, *2*, 116 (2020).
- [9] N.A. Nikonorova, G.A. Polotskaya, A.A. Kononov, B.R. Hinderliter, K.L. Levine, R.A. Castro. J. Non-Cryst. Solids 483, 99 (2018).
- [10] N.F. Mott. Electronic processes in non-crystalline solids. Clarendon, Oxford (1979). 465 p.
- [11] J. Colmenero. Phys. Rev. Lett. 69, 3, 478 (1992).
- [12] A.R. Long. Adv. Phys. 31, 5, 553 (1982).
- [13] M. Pollak. Phys. Rev. Lett. 28, 22, 1449 (1972).
- [14] G.E. Pike. Phys. Rev. B 6, 4, 1572 (1972).

Редактор Е.В. Толстякова