18,11

Объемные и поверхностные эффекты при образовании и разрушении графена на родии

© Е.В. Рутьков¹, Е.Ю. Афанасьева¹, Н.П. Лавровская², Н.Р. Галль¹

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Санкт-Петербургский государственный университет аэрокосмического приборостроения,

Санкт-Петербург, Россия

E-mail: rutkov@ms.ioffe.ru

Поступила в Редакцию 29 апреля 2021 г. В окончательной редакции 29 апреля 2021 г. Принята к публикации 7 мая 2021 г.

Изучено образование и разрушение графеновых островков на родии при одновременном учете процессов на поверхности и в объеме металла. Показано, что в равновесии атомы углерода распределены между тремя фазами: графеном, твердым раствором в металле и хемосорбированным углеродом, причем увеличение площади островков требует одновременного увеличения концентрации атомов С и в хемосорбированной, и в растворенной фазах. Определены абсолютные концентрации атомов углерода во всех трех фазах на разных стадиях роста и разрушения графена. Определена энергия активации отрыва атома С от периметра графенового островка на родии, составляющая $E_{det} = 2.7$ eV. Оценено количество островков графена, которое составляет порядка 10^{10} на cm².

Ключевые слова: графен, фазовый переход, хемосорбированные атомы углерода, родий, твердый раствор.

DOI: 10.21883/FTT.2021.10.51428.101

1. Введение

Графен обладает уникальными электронными и физико-химическими свойствами, что приковывает к нему внимание многих исследователей [1–13]. Он легко образуется на поверхности металлов как в результате каталитического разложения углеродсодержащих молекул, так и при выделении атомов углерода, растворенных в объеме металла [7,8]. Несмотря на научный интерес к графену на металлах, имеется считанное число работ, где такое взаимодействие изучали в сверхвысоковакуумных условиях с помощью современных методов диагностики поверхности. Наиболее часто в качестве подложек используют платиновые металлы, так как они не образуют химических соединений с углеродом — карбидов [14,15], что существенно упрощает анализ физикохимических процессов в системах металл-углерод.

В наших работах [6–8] ранее был детально изучен двумерный фазовый переход в углеродном слое на иридии, приводящий к образованию островков графена и сплошного слоя графена. Иридий единственный металл практически не растворяющий в объеме углерод. Для остальных металлов, например, рения, родия, никеля, платины условия фазового перехода существенно усложняются из-за активного участия в процессе роста островков графена атомов углерода, растворенных в объеме металла [7].

Можно считать, что настоящая работа в некотором смысле завершает цикл работ посвященных фундаментальному исследованию системы родий-углерод[16–21] и посвящена изучению термостойкости графеновых островков и равновесным процессам с их участием.

2. Методика эксперимента

Эксперименты проводились в сверхвысоковакуумном оже-спектрометре высокого разрешения ($\Delta E/E \leq 0.1\%$) с регистрацией Оже-спектров непосредственно при высоких температурах [7,8]. В приборе имелся специальный модуль для применения метода термоэлектронной эмиссии и поверхностной ионизации (ТЭПИ) [9,22]. Образцами служили тонкие родиевые ленты размерами $50 \times 1 \times 0.02 \,\text{mm}$ с гранью (111) на поверхности и работой выхода $e_{\varphi} = 5.0 \, \text{eV}$ [8]. Температура ленты измерялась оптическим микропирометром (1100-1800 К), а при более низких температурах — путем линейной экстраполяции зависимости температуры от тока накала ленты к комнатной температуре. Однородность температуры в средней части ленты (~ 40 mm) была не хуже ±5 К. Анализируемый участок ленты в ее середине составлял ~ 5 mm. Для абсолютной калибровки интенсивности оже-сигнала углерода рядом с рабочей родиевой лентой помещали иридиевую ленту с одним слоем графена с $N_{\rm Cm} = 3.86 \cdot 10^{15} \, {\rm cm}^{-2}$ [9].

3. Экспериментальные результаты и их обсуждение

3.1. Образование графена на родии: одновременный учет роли поверхности и объема

Графен на родии образовывали стандартным способом — разложением паров бензола C₆H₆, напускаемых в рабочую камеру до давления $P(C_6H_6) \approx 1 \cdot 10^{-5}$ Torr, на нагретом образце [16-21]. При этом водород десорбируется и откачивается из камеры, а углерод растворяется в объеме металла и накапливается на поверхности и в объеме образца. На рис. 1 представлена зависимость количества N_b углерода, поступающего на 1 ст² поверхности и растворяющегося в объеме металла (1), и концентрация N₀ углерода, остающегося на поверхности в фазе графеновых островков (2), от времени науглероживания образца при T_C = 1360 K и потоке углерода $\nu_{\rm C} = 2.4 \cdot 10^{14} {\rm cm}^{-2} \cdot {\rm s}^{-1}$, поступающего на каждую сторону ленточного образца. Концентрация углерода в фазе хемосорбированного "газа" находится на уровне $\sim 10^{14}\,cm^{-2}$ и на графике не отражена. Концентрацию N₀ находили методом зондирования поверхности потоком молекул CsCl, позволяющим определять относительную площадь s₀ графеновых островков с точностью ~ 1% непосредственно в процессе науглероживания, в этом случае $N_0 = s_0 \cdot N_{\rm Cm}$, где $N_{\rm Cm} = 3.86 \cdot 10^{15} \, {\rm cm}^{-2}$ — концентрация углерода в графене [9].

Из рис. 1 видно, что вначале вплоть до $t = 5 \min$ накопление углерода идет в основном в объеме ленты, при этом $N_b = v_C t$. При $t \ge 5 \min$ происходит фазовый переход первого рода типа конденсации и на поверхности зарождаются и растут островки графена — кривая 2 на рис. 1. При $t \ge 6.5 \, \text{min}$ процесс науглероживания заканчивается, на поверхности образовывается сплошной слой графена, на котором диссоциация как молекул бензола, так и молекул CsCl прекращается. Для времени $5\min \le t \le 6.5\min$ учтено, что на островках графена диссоциация молекул бензола не происходит, что уменьшает эффективный поток атомов углерода: $N_b = v_{\rm C}(1 - s_0(t))t - N_{\rm Cm}s_0(t)$. Отметим, что за счет быстрой диффузии атомов углерода в объеме родия при $T_{\rm C} = 1360 \,{\rm K}$, зависимость $N_0 = f(t)$ равновесная, т.е. если прекратить науглероживание, скажем, в момент времени t = 5.5 min, то s_0 или N_0 не изменяются на рис. 1 для этого времени $N_0 = 1.6 \cdot 10^{15} \,\mathrm{cm}^{-2}$ или $s_0 = 0.4$. Иначе говоря, при равновесии поток v_1 атомов углерода с островков графена равен потоку v2 атомов углерода из хемосорбированной фазы углерода на островки, а поток растворения v₃ равен потоку углерода v4 из объема на поверхность (см. вставку на рис. 1).

Самостоятельный интерес представляет распределение углерода между поверхностью и объемом образца на заключительной стадии науглероживания родия, когда на поверхности появляются графеновые островки — время от $t_{\rm min} = 5$ до $t_{\rm min} = 6.5$ на рис. 1. За это время $\Delta t = 6.5 - 5 = 1.5$ min на образец поступил углерод в количестве $N_{\rm C} = 9 \cdot 10^{15}$ сm⁻² — учитывали уменьшение потока за счет роста островков по площади (см. выше). Отметим, что все расчеты в статье сделаны для толщины ленты равной половине реальной величины, поскольку углерод из бензола поступал симметрично с двух сторон ленточного образца.

Рис. 1. Зависимости от времени количества углерода N_b , поступившего на 1 ст² поверхности родия и растворившегося в объеме металла (1) и концентрации углерода на поверхности родия в фазе графеновых островков N_0 (2). На вставке — упрощенная картина процессов в системе Rh-углерод: 1 — металлическая подложка (родий), 2 — атомы углерода, растворенные в его объеме; 3 — атомы углерода на поверхности в хемосорбированной фазе; 4 — атомы С в составе островков графена; v_1 — поток атомов углерода с краев графеновых островков; 3 — поток углерода из объема металла на его поверхность; 4 — поток растворения атомов углерода с поверхности в объем металла.

Из поступившего на поверхность углерода за время $\Delta t = 1.5 \text{ min}$ на рост графена ушло $N_0 = N_{\text{Cm}} = 3.86 \cdot 10^{15} \text{ cm}^{-2}$, следовательно, за это время в объеме дополнительно растворился углерод в количестве $\Delta N_b = v_{\text{C}}(1 - s_0(t))t - N_{\text{Cm}} = 5.1 \cdot 10^{15} \text{ at} \cdot \text{cm}^{-2}$. Это составляет $\sim 7\%$ от концентрации уже растворенных атомов в нашем образце. Этот опыт показывает, что для роста островков графена по площади при T = const, требуется дополнительное растворение атомов углерода в объеме образца. Это не удивительно, так как в условиях равновесия, когда $v_1 = v_2$ и $v_3 = v_4$ (см. вставку на рис. 1), увеличение одного потока v_1 за счет роста островков графена по площади (растет периметр островков) должно приводить к изменению потоков v_2 , v_3 и v_4 .

В условиях равновесия потоки атомов углерода с поверхности в объем и обратно равны и пропорциональный концентрациями этих атомов в соответствующей фазе. Поэтому, увеличение общего количества углерода в объеме ленты при росте островков графена на 7%, должно приводить к такому же увеличению количества углерода в фазе хемосорбированного "газа", что экспериментально зарегистрировать крайне сложно.

Таким образом, с ростом островков по площади растет общий периметр островков, т.е. растет общий поток v_1 атомов углерода с краев островков. Поэтому для дальнейшего роста островков требуется увеличение кон-

центрации поверхностного углеродного покрытия, что возможно при дополнительном растворении углерода в объеме ленты, что и наблюдается экспериментально. Отметим, что при росте островков графена по площади s_0 неизбежен эффект их коалесценции, т. е. в нашем случае изменяется как общий периметр *L*, так и концентрация островков графена *m* и между ними нет простой связи: $L = f(s_0, m)$.

3.2. Кинетика и энергетика разрушения графеновых островков на родии

На рис. 2 показана кинетика разрушения слоя графена на родии для разных температур, при этом следили за изменением относительной площади островков. Начальное состояние — сплошной слой графена ($s_0 = 100\%$), образованный при $T_{\rm C} = 1150$ K, при этом объем родия практически свободен от углерода. Видно, что для каждой $T = {\rm const}$ площадь островков резко уменьшается и затем стабилизируется на некотором равновесном уровне $s_{\rm eq}$. Например, для T = 1230 K (кривая I) $s_{\rm eq} = 35\%$, а для T = 1280 (кривая 3) $s_{\rm eq} = 7\%$.

Зависимость $s_{eq} = f(T)$ наблюдается во многих системах Me-графен [7,8] и определяется динамическим равновесием, когда поток атомов углерода с краев островков v_1 равен потоку атомов v_2 из "газовой" хемосорбированной фазы углерода на края островков. Отметим, что минимальная температура начала заметного разрушения графеновых островков $T \ge 1150$ К позволяет оценить энергию связи E_{det} краевого атома углерода с островком. Действительно известно, что время жизни τ частицы на поверхности (на краю островка) связано с энергией отрыва E_{det} соотношением $\tau = \tau_0 \exp(E_{det}/kT)$ [22]. Если положить $\tau_0 \approx 10^{13}$ с [22], то для T = 1150 К и $\tau \approx 1$ с получим $E_{det} \approx 3$ eV.

Воспользуемся, тем не менее, математическим формализмом развитым нами в работе [23] для описания

Рис. 2. Зависимость относительной площади s_0 островков графена на родии от времени при их разрушении (начальное состояние — сплошной слой графена). Температура образца T, К: 1 - 1205, 2 - 1230, 3 - 1280.

Рис. 3. Зависимость $I - (s/s_0)^{1/2} = f(t)$ — обработка начальных участков кривых на рис. 2 для T = 1205 К (I) и T = 1280 К (2).

разрушения двумерных бариевых островков на графене. Обработаем только начальные участки кинетики разрушения островков графена в предположении, что обратным потоком v_2 на островки в этом случае можно пренебречь (рис. 2). Примем упрощенную модель, когда все островки графена это диски одинакового радиуса R. В этом случае количество частиц в отдельном островке уменьшается со временем при подъеме температуры согласно уравнению [23]:

$$-dN/dt = n(t)F\exp(-E_{det}/kT),$$
 (1)

где n — число атомов углерода на периметре островка, F — предэкспоненциальный множитель, E_{det} — энергия активации отрыва краевого атома углерода от графенового островка. Уравнение (1) легко преобразовать к виду [23]:

$$1 - (N/N_0)^{1/2} = -\left[\pi m^{1/2} \operatorname{F} \exp(-E_{\text{det}}/kT)\right] t/2N_0^{1/2}, \quad (2)$$

где m — концентрация островков на поверхности, $N_0 = N_{\rm Cm}$. Величина $N/N_0 = s/s_0$ и находится экспериментально (рис. 2).

На рис. 3 показаны типичные графики экспериментально полученных зависимостей $1 - (N/N_0)^{1/2} = f(t)$. Видно, что они соответствуют формуле (2).

Из наклона графиков $\ln(1 - (s/s_0)^{1/2}) = f(1/kT)$ при каждой t = const найдено значение E det = = 2.7 eV, а из уравнения (2) найдено значение $m^{1/2}$ F = $1 \cdot 10^{18}$ cm⁻¹s⁻¹. Отметим, что ранее для системы Ir(111) — графен найдено $E_{\text{det}} = 4.5$ eV, для системы Re(1010) — графен $E_{\text{det}} = 3.0$ eV, для системы Ni(111) — графен $E_{\text{det}} = 2.5$ eV [8]. Полученная в данной работе величина $E_{\text{det}} = 2.7$ eV хорошо согласуется с температурным интервалом разрушения графеновых островков в указанном ряду подложек. Например, для иридия это 1650–1850 K, для рения 1300–1400 K, а для никеля 950–1050 K [8].

Рис. 4. Упрощенная иллюстрация к методу определения среднего размера графенового островка: R — радиус островка; λ — длина миграционного перемещения молекул CsCl за время их жизни на поверхности графена.

3.3. Оценка концентрации m графеновых островков на родии

Для оценки применяли зондирование поверхности потоком молекул CsCl. Ранее мы показали, что на графене длина миграции λ молекул CsCl за время их жизни на поверхности определяется уравнением λ (Å) = 10 exp(0.13/kT) [6,8]. Например, для T = 1700 К $\lambda = 24$ Å, т.е. крайне мала и может служить своего рода "линейкой" для определения размера островков. Действительно, в области высоких температур 1000-1700 К $s_0 \neq f(T)$, т.к. радиус островков $R \gg \lambda$. Эксперимент показывает, что при T ≤ 1000 К измеренная площадь островков графена s₀ начинает уменьшаться, т.к. длина миграции λ становится соизмеримой с размером островка и заметная часть молекул CsCl промигрирует с островка на металл и там продиссоциирует, что приведет к росту измеренного тока ионов Cs⁺ и, соответственно, приведет к уменьшению измеренной площади островка (рис. 4).

Разумно положить, что экспериментально регистрируется уменьшение площади s_0 когда $\lambda \le 0.1R$, где R радиус островка. Пусть $s_0 = 50\%$ или $s_0 = 0.5$ сm⁻², тогда для случая T = 1000 К длина миграции молекулы CsCl по графену будет равна $\lambda = 45$ Å и значит R = 450 Å. В этом случае $s_0 = m\pi R^2$, откуда $m \approx 10^{10}$ сm⁻², что кажется разумным. Например, на Ir(111) концентрация островков, определенная методом термодесорбционной спектроскопии при взаимодействии молекул кислорода с краевыми атомами углерода равнялась $m \approx 10^{11}$ сm⁻² для $s_0 = 0.4-0.6$ [24].

Выше мы определили величину $m^{1/2}F = 1 \cdot 10^{18} \text{ cm}^{-1}\text{s}^{-1}$ для системы Rh — графен. Если положить $m \approx 10^{10} \text{ cm}^{-2}$, то $F \approx 10^{13} \text{ s}^{-1}$, что кажется также разумным для кинетических процессов 1-го порядка (адсорбция, десорбция, миграция) для атомов на поверхности твердых тел [22].

3.4. Равновесные процессы в системе родий-графеновые островки

На рис. 5 представлены зависимости относительной площади графеновых островков seq от температуры образца. Каждая точка на кривых равновесная-поток атомов углерода с краев островков равен потоку углерода на края островков из "газовой" хемосорбированной фазы (вставка на рис. 1). Параметром кривых являются разные температуры науглероживания образца. В этом случае при переходе от кривой 1 к кривой 2 растет концентрация углерода в объеме металла. В работах [6-9] подробно изучен фазовый переход в углеродном слое на поверхности Ir(111) и впервые определено равновесное углеродное покрытие $\vartheta_{eq} = N_s/N_{Cm} = f(T)$ при котором островки графена находятся в равновесии с углеродным "газом" на поверхности. Иридий практически не растворяет в объеме углерод, поэтому увеличение температуры приводит к уменьшению площади островков графена и увеличению ϑ_{eq} углерода на поверхности. При определенной температуре все островки разрушаются и на поверхности находится только хемосорбированный углеродный "газ" [7]. В системе Rh-графен ситуация похожая, но более сложная поскольку атомы углерода активно растворяются в объеме металла. Подъем температуры уменьшает равновесную площадь островков, при этом атомы углерода пополняют не только поверхностную концентрацию N_s углерода, но и растворяются в объеме металла, увеличивая объемную концентрацию углерода N_h .

Оценим в какой пропорции N_b/N_s находятся в равновесии углеродный "газ" на поверхности и углерод в объеме нашего образца с известными геометрическими параметрами: площадь ленты — 1 сm², а толщина — 15 μ m (половина реальной толщины ленты). Рассмотрим кривую 2 на рис. 5. Для $T_{\rm C} = 1370$ К $N_b = 3.5 \cdot 10^{16}$ атомов в нашей ленте, а на поверхности только хе-

Рис. 5. Зависимость равновесной относительной площади s_{eq} островков графена на родии от температуры. Концентрация углерода в объеме родия (at.%): *1* — 0.05; *2* — 0.069.

мосорбированный углеродный "газ" с концентрацией $N_s \approx 5 \cdot 10^{14} \, {\rm cm}^{-2}$. Таким образом, в условиях равновесия $N_b/N_s \approx 70$.

При подъеме температуры, например, от $T_1 = 1290$ К до $T_2=1340$ К для кривой 2 на рис. 5 относительная равновесная площадь островков графена уменьшается от 100 до 50%. Дополнительный углерод за счет разрушения графена в количестве $\Delta N = 0.5 \cdot N_{\rm Cm} = 1.9 \cdot 10^{15}$ сm⁻² поделится между объемом и поверхностью в соотношении 1 : 70, т.е. поверхностная концентрация увеличится на $\Delta N/70 = 2.6 \cdot 10^{13}$ сm⁻², т.е. примерно на 5%.

Новое равновесное покрытие позволяет получить новое равновесное состояние для островков графена при повышении температуры, но с меньшей относительной площадью и, возможно, с меньшим общим периметром островков. если m = const (рис. 5). В любом случае система "автоподстраивается" к новым равновесным условиям, где может меняться s_0 , L, m, при этом L = f(m) в условиях коалесценции [25]. Малое увеличение равновесной степени покрытия ϑ_{eq} с ростом температуры согласуется с очень слабой зависимостью $\vartheta_{\text{eq}} = f(T)$ определенной нами ранее для системы Rh-графен [6, 8].

Рассмотрим сечение двух кривых (1 и 2) для температуры $T = 1300 \,\mathrm{K}$ на рис. 5 и учтем тот факт, что общее количество углерода в объеме ленты много больше количества углерода на поверхности. Для кривой 1 в равновесии находятся островки графена площадью $s_1 = 10\%$, а для кривой 2 $s_2 = 95\%$. Казалось бы, если T = const, то равновесное покрытие ϑ_{eq} должно сохраняться постоянным независимо от относительной площади островков, как показано в нашей работе для системы Іг-графен [7]. В нашем случае концентрация растворенных атомов углерода при переходе от кривой 1 к кривой 2 увеличилось в 1.5 раза [8] и, следовательно, равновесное покрытие $\vartheta_{\rm eq}$ также должно вырасти в 1.5 раза при переходе от кривой 1 к кривой 2. Отметим, что измерить равновесное покрытие ϑ_{eq} напрямую невозможно, т. к. метод ЭОС не позволяет количественно разделить углеродные фазы на поверхности. На наш взгляд ключевую роль в равновесных процессах играет общий периметр L двумерных графеновых островков. В нашем примере, чем больше N_b , тем больше ϑ_{eq} , тем больший периметр островков L может находиться в "равновесии" с углеродным "газом", тем больше равновесная площадь островков графена.

4. Заключение

Таким образом, определены абсолютные концентрации атомов углерода при его распределении между поверхностью и объемом родия в условиях равновесного роста островков графена. Найдена энергия связи краевого атома углерода с графеновым островком $E_{det} = 2.7 \text{ eV}$. Оценена концентрация *m* островков графена на родии, $m \approx 10^{10} \text{ cm}^{-2}$. Показано, что в условиях равновесия для

 $T = {\rm const}$ увеличение островков по площади требует дополнительного увеличения концентрации углерода как на поверхности, так и растворенного в объеме металла, поскольку в равновесии концентрация углерода в фазе хемосорбированного "газа" зависит от общего суммарного периметра L островков, который в свою очередь зависит от площади s_0 островков $(L \propto (s_0)^{1/2})$ и от их концентрации $m(L \propto m)$.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] К.С. Новоселов. УФН 81, 12, 1299 (2011).
- [2] А.К. Гейм. УФН 81, 12, 1284 (2011).
- [3] W. Zhao, F. Duan. Tribology Lett. 68, 32 (2020).
- [4] S. Xu, Lipeng Zhang, B. Wang, R.S. Ruoff. Cell Rep. Phys. Sci. 2, 3, 100372 (2021).
- [5] X. Zhang, S. Wang. RSC Adv. 9, 32712 (2019).
- [6] E.V. Rut'kov, N.R. Gall. Physics and Applications of Graphene–Experiments / Ed. S. Mikhailov. In Tech, Rijeka, Croatia (2011). C. 209.
- [7] N.R. Gall, E.V. Rut'kov, A.Ya. Tontegode. Int. J. Mod. Phys. 11, 1865 (1997).
- [8] Н.Р. Галль, Е.В. Рутьков. Физика поверхности твердых тел. Графен и графит на поверхности твердых тел. Изд-во Политех. ун-та, СПб (2013). 160 с.
- [9] A.Ya. Tontegode. Prog. Surf. Sci. 38, 201 (1991).
- [10] J. Wintterlin, M.-L. Bosquet. Surf. Sci. 603, 1841 (2009).
- [11] S.M. Kozlov, F. Vifies, A. Görling. J. Phys. Chem. C 116, 13, 7360 (2012).
- J. Wouter, F. Craes, C. Busse. Phys. Rev. B 91, 115419 (2015).
 DOI:https://doi.org/10.1103/PhysRevB.91.115419
- [13] E.N. Voloshina, Yu.S. Dedkov. Phys. Chem. Chem. Phys. 14, 13502 (2012).
- [14] Е. Фромм, Е. Гебхардт. Газы и углерод в металлах. Металлургия, М. (1980). 711 с.
- [15] Г.В. Самсонов. Тугоплавкие соединения. Металлургия, М. (1963). 398 с.
- [16] Е.В. Рутьков, Е.Ю. Афанасьева, Н.Р. Галль. ФТП 54, 6, 552 (2020).
- [17] Е.В. Рутьков, Н.П. Лавровская, Е.С. Шешеня, Н.Р. Галль. ФТП 51, 4, 517 (2017).
- [18] Е.В. Рутьков, Н.Р. Галль. Письма ЖЭТФ 100, 10, 708 (2014).
- [19] Е.В. Рутьков, А.В. Кузмичев, Н.Р. Галль. Письма ЖЭТФ 93, 3, 166 (2011).
- [20] Е.В. Рутьков, Н.Р. Галль. ФТП 52, 9, 111 (2018).
- [21] Е.В. Рутьков, А.В. Кузмичев, Н.Р. Галль.ФТТ 53, 5, 1026 (2011).
- [22] Э.Я. Зандберг, Н.И. Ионов. Поверхностная ионизация. Наука, М. (1969). 432 с.
- [23] Э.Я. Зандберг, Е.В. Рутьков, А.Я. Тонтегоде, Н.Д. Потехина. ФТТ 9, 1665 (1977).
- [24] В.Н. Агеев, С.М. Соловьев, А.Я. Тонтегоде. ФТТ 23, 2280 (1981).
- [25] Е.В. Рутьков, Н.Р. Галль. ФТТ 62, 3, 508 (2020).

Редактор К.В. Емцев