10,05

Ab initio и экспериментальное исследование колебательных свойств кристаллов TIFeS₂ и TIFeSe₂

© З.А. Джахангирли^{1,2}, Р.Г. Велиев¹, И.А. Мамедова¹, З.И. Бадалова¹, Д.А. Мамедов¹, Н.Т. Мамедов¹, Н.А. Абдуллаев^{1,2,¶}

 ¹ Институт физики Национальной академии наук Азербайджана, AZ1143 Баку, Азербайджан
² Бакинский государственный университет, AZ1148 Баку, Азербайджан

[¶] E-mail:abnadir@mail.ru

Поступила в Редакцию 27 апреля 2021 г. В окончательной редакции 27 апреля 2021 г. Принята к публикации 7 мая 2021 г.

Решеточные колебательные свойства кристаллов TIFeS₂ и TIFeSe₂ исследованы экспериментально с использованием комбинационного рассеяния (КР) и инфракрасного отражения (ИК) света, а также теоретически с использованием теории функционала плотности (DFT). Полное колебательное представление, составленное на основе анализа фактор групп симметрии, содержит 12 КР активных мод и 9 ИК активных мод. Из них экспериментально обнаружены и идентифицированы 6 КР активных и 3 ИК активных мод для TIFeS₂, и 4 КР активных 3 ИК активных мод для TIFeSe₂.

Ключевые слова: оптические фононы, динамика решетки, первопринципные вычисления, группа симметрии, фононные спектры, дисперсия фононов.

DOI: 10.21883/FTT.2021.10.51416.099

1. Введение

TlFeS₂ известен как кристаллоструктурный аналог природного минерала "рагинит" [1], обладающего характерными прямолинейными тетраэдрическими FeS4 цепочками, то есть в структуре TlFeS₂ трехвалентный атом железа, связанный с четырьмя атомами серы посредством сил ковалентной химической связи, образует тетраэдр, в центре которого расположен катион железа, а в вершинах расположены анионы серы. Эти Fe³⁺S₄²⁻ тетраэдры, сочлененные общими ребрами, образуют цепочки вытянутые вдоль кристаллографической оси с, а одновалентные атомы таллия Tl располагаются слоями в тригонально-призматических пустотах кристаллической структуры вдоль кристаллографической оси а псевдотетрагональной призмы TlFeS2 с моноклинной сингонией. В пространственном кристаллоструктурном строении соединения TlFeS₂, слоевые пакеты катионов таллия взаимодействуют с цепочками тетраэдров посредством сил ионной химической связи. Между тетраэдрическими цепочками и между слоями из катионов таллия действуют слабые связи ван-дер-ваальсового типа.

Отметим, что вышеизложенное относится и к TlFeSe₂, поскольку TlFeS₂, TlFeSe₂ изоструктурны [2] и кристаллическая структура этих соединений предполагает сильную зависимость их физических свойств от основных кристаллографических направлений, в частности магнитноактивные свойства TlFeS₂, TlFeSe₂ проявляются вдоль оси c [3], то есть вдоль цепи тетраэдров по линейным цепочкам ионов $-Fe^{3+}-X^{2-}-Fe^{3+}-$

(X - xалькоген, S или Se). По цепочкам же ионов $-Fe^{3+}-X^{2-}-Tl^{1+}-X^{2-}-Fe^{3+}-$, вытянутых вдоль красталлографической оси *а* кристаллической структуры соединений TlFeS₂ и TlFeSe₂, которые примерно перпендикулярны цепи тетраэдров FeX₄, магнитноактивные свойства TlFeS₂, TlFeSe₂ не проявляются [3].

Следует отметить, что выводы о природе магнитного фазового превращения в TIFeS₂, TIFeSe₂ весьма противоречивы [1,3–10]. По нашему мнению, магнитная структура полупроводников TIFeS₂ и TIFeSe₂ квазиодномерноантиферромагнитная [11]. По-видимому, авторы вышеперечисленных работ при интерпретации экспериментальных результатов, не акцентировались на кристаллоструктурных особенностях кристаллов TIFeS₂ и TIFeSe₂, которые следовало бы обнаружить методами рассеяния электромагнитного излучения (рентгеноструктурный метод, комбинационное рассеяние света, ИК-спектроскопия) в таких кристаллах, убедившись прежде всего в их однофазности.

С учетом вышеизложенного, нашей целью являлось синтезирование однофазных кристаллов TlFeS₂ и TlFeSe₂ и характеризация полученных кристаллов экспериментальными исследованиями и первопринципными вычислениями динамики кристаллической решетки.

Синтез соединений и характеризация образцов

Синтез составов TIFeS₂ и TIFeSe₂ осуществлялся методом высокотемпературного синтеза — сплавлением

Crystals	a, Å	<i>b</i> , Å	<i>c</i> , Å	β , angle $^{\circ}$	
TlFeS ₂	11.636(28) [12]	5.304(02) [12]	6.799(27) [12]	116.71(21) [12]	
	11.795	5.054	6.746	117.425	
TlFeSe ₂	11.9730(15) [12]	5.4900(05) [12]	7.1105(15) [12]	118.17(10) [12]	
	12.156	5.465	7.302	118.235	

Таблица 1. Параметры элементарной ячейки, определенные из данных рентгеновской дифракции [12], и оптимизированные равновесные значения этих параметров из теоретических расчетов

химических элементов особой чистоты, взвешенных в стехиометрическом соотношении — в вакуумированных ампулах, изготовленных из плавленого кварца. Ампулы поочередно помещались в электропечь, предварительно нагретую до $\sim 1150^{\circ}$ С, при этом одна треть длины каждой ампулы была вне печи.

Когда часть ампулы, находящийся внутри печи, принимала ее температуру, начиналась бурно протекающая реакция (экзотермическая) образования сплава, с интенсивным свечением внутри ампулы. В процессе постепенного вхождения ампулы внутрь печи производилось медленное вращение ампулы и после полного прохождения ампулы внутрь печи, ее температура опускалась до температуры приблизительно на тридцать градусов больше температур плавления TIFeS₂ и TIFeSe₂ соответственно [2]. Переплавка продукта реакции длилась 72 h, после чего вращение ампулы пресекалось и температура печи опускалась до ~ 350°C, при которой каждый сплав отжигался 240 h.

Для рентгеноструктурных исследований синтезированные сплавы приводились в порошкообразное состояние, а для оптических же исследований (комбинационное рассеяние света, ИК-отражение) экспериментальные образцы были приготовлены в форме прямоугольных параллепипедов (прямоугольных призм), грани которых тщательно полировались.

3. Дифракция рентгеновского излучения

Рентгеновские порошковые дифракционные данные получены на дифрактометре "D2 Phaser", а фазовые анализы проведены методом Ритвельда с использованием стандартных программ EVA и TOPAS-4.2 (Bruker, Germany).

В интервале углов $10^{\circ} \le 2\theta \le 60^{\circ}$ в кристаллах TlFeS₂ и TlFeSe₂ были зафиксированы характерные рентгеновские рефлексы (рис. 1, *а* и *b* соответственно). Уточнение параметров элементарной ячейки (ЭЯ) кристаллов TlFeS₂ и TlFeSe₂ подтвердило, что они изоструктурны и относятся к моноклинной сингонии (табл. 1). Следует отметить, что выявленные нами значения параметров ЭЯ TlFeS₂ и TlFeSe₂ удовлетворительно согласуются с приведенными в работе [12].

4. Комбинационное рассеяние света в соединениях TIFeS₂ и TIFeSe₂

Комбинационное рассеяние света в экспериментальных образцах исследовалось на конфокальном рамановском микроспектрометре "Nanofinder 30" (Tokyo Instr., Japan). Исследования проводились в геометрии обратного рассеяния. В качестве источника возбуждающего света использовался лазер YAG:Nd с длиной волны излучения на второй гармонике $\lambda = 532$ nm. Приемником излучения служила охлаждаемая ССД камера (-70°С), работающая в режиме счета фотонов. Время экспозиции обычно составляло 1 min, мощность падающего на образец излучения 10 mW, диаметр луча 4 mkm. В спектрометре использовалась дифракционная решетка 1800 lines/mm, точность определения спектрального положения линий была не хуже $0.5 \, \mathrm{cm}^{-1}$. Спектры комбинационного рассеяния (КР) света в кристаллах TlFeS₂ и TlFeSe₂ приведены на рис. 2 (а и b соответственно).

Как видно из рис. 2, a, наблюдаются следующие частоты КР-активных фононов в кристаллах TIFeS₂: 47, 116, 125, 163, 300, 354, 380 сm⁻¹.

На рис. 2, *b* приведен спектр комбинационного рассеяния света в кристаллах TIFeSe₂. Последовательно наблюдаются следующие частоты КР-активных фононов: 36.5, 141, 158, 209 сm⁻¹. Из сравнения частот КР-активных фононов в изоструктурных кристаллах TIFeS₂ и TIFeSe₂ отчетливо прослеживается, что частоты фононов кристаллов TIFeSe₂ меньше частот фононов в TIFeS₂, что обусловлено, по-видимому, тем, что масса атомов селена Se больше массы атомов серы S.

5. Инфракрасное отражение света на кристаллах TIFeS₂, TIFeSe₂

Инфракрасные спектры (ИК) исследовались на инфракрасном Фурье-спектрометре Vertex70 (Bruker, Germany) в вакуумной камере с приставкой диффузного отражения, в спектральном диапазоне от 4000 до $40 \,\mathrm{cm^{-1}}$, стандартное спектральное разрешение — не хуже $0.5 \,\mathrm{cm^{-1}}$. Температура образцов во всех проведенных исследованиях, как и в случае исследований комбинационного рассеяния света, была равной 300 К.

Рис. 1. Рентгеновские дифрактограммы кристаллов $TlFeS_2(a)$ и $TlFeSe_2(b)$.

Рис. 2. Спектры комбинационного рассеяния света в кристаллах TIFeS₂ (a) и TIFeSe₂ (b).

Рис. 3. Спектры инфракрасного отражения света в кристаллах $TlFeS_2(a)$ и $TlFeSe_2(b)$.

На рис. 3, *а* приведен спектр ИК-отражения света на кристаллах TlFeS₂. Отражение света происходило под углом 45 градусов. Из рис. 3, *а* видны особенности спектра отражения, обусловленные наличием характерных ИК-активных фононов с частотами: 72, 324, 384 cm⁻¹.

На рис. 3, *b* приведен спектр ИК-отражение света на кристаллах TlFeSe₂, из которого видны особенности спектра отражения, обусловленные наличием характерных ИК-активных фононов с частотами: 59, 248, 290 cm⁻¹. Отметим, что и как в случае со спектрами комбинационного рассеяния света, величины ИК-активных частот кристаллов TlFeSe₂ меньше частот фононов в TlFeS₂, что также обусловлено, по-видимому, тем, что масса атомов селена Se больше массы атомов серы S. Следует еще отметить, что спектры ИК-отражения света на кристаллах TlFeS₂ и TlFeSe₂ имеют очень похожий вид, и тем самым косвенно подтверждается изоструктурность этих соединений.

6. *Ab initio* расчеты колебательных спектров кристаллов TIFeS₂, TIFeSe₂

Ранее нами были рассчитаны электронная структура и плотность состояний TlFeSe₂ и TlFeS₂ [13], а также расчеты *ab initio* дисперсии фононов в халькопиритах CdGa₂S₄ [14] и CdGa₂Te₄ [15]. Ниже представлены результаты *ab initio* расчетов дисперсии фононов и плотности фононных состояний в высокосимметричных точках и линиях зоны Бриллюэна (3Б) кристаллов TlFeSe₂ и TlFeS₂. Как нам известно, в литературе отсутствуют первопринципные расчеты фононного спектра TlFeSe₂ и TlFeS₂.

Ab-initio расчеты динамических характеристик проводились с помощью теории возмущений функционала плотности DFPT (Density Functional Perturbation Theory) [16–18] с использованием метода псевдопотенциала на основе плоских волн, реализованного в коде

ABINIT [19]. В качестве псевдопотенциалов использовались сохраняющие нормы псевдопотенциалы Hartwigsen-Goedecker-Hutter (HGH) [20]. Обменно-корреляционное взаимодействие описывалось в обобщенном градиентном приближении (GGA) [21]. В разложении волновых функций были учтены плоские волны с максимальной кинетической энергией до 80 Ry, которые обеспечивают хорошую сходимость полной энергии. Численное интегрирование по зоне Бриллюэна (ЗБ) проводилось с помощью разбиения $4 \times 4 \times 4$ со сдвигом (0.5, 0.5, 0.5) от начала координат, согласно схеме Монкхорста-Пака [22]. Параметры решетки и равновесные положения атомов в элементарной ячейке определялись минимизацией сил Геллмана-Фейнмана (табл. 1). При этом равновесные положения атомов внутри элементарной ячейки кристалла были найдены методом BFGS (Broyden-Fletcher-Goldfarb-Shanno) с использованием экспериментальных данных в качестве начальных значений. Процедура минимизации проводилась до тех пор, пока не достигалось значение модуля сил, меньше 10-8 Ry/Bohr. С помощью 40×40×40 — разбиения 3Б определена фононная плотность состояний. Для получения LO-TO (продольные и поперечные оптические фононы) расщепления в центре ЗБ при полярных модах, учтено дальнодействующее кулоновское поле и в динамическую матрицу добавлен неаналитический член, который зависит от тензоров эффективного заряда Борна и электронной диэлектрической проницаемости. Зависимость сходимости полной энергии и сил Геллмана-Фейнмана от сетки Монхорста-Пака и от максимальной энергии плоских волн с учетом оптимальной употребляемой машинной времени для вычислений показали, что сетка 4×4×4 и максимальная энергия плоских волн 80 Ry в разложении волновых функций дают достаточно хорошие результаты для описания электронных и динамических свойств TlFeS₂ и TlFeSe₂.

В примитивной ячейке исследуемых соединений имеется 8 атомов, соответственно колебательный

спектр состоит из 24 нормальных мод и описывается следующими неприводимыми представлениями: $\Gamma\!=\!6A_g\!+\!4A_u\!+\!6B_g\!+\!8B_u$, акустические моды $\Gamma_{acoustic}=$ = A_u+2B_u и оптические моды $\Gamma_{optic}=6A_g+3A_u$ + $6B_g+6B_u$.

Нормальные моды A_g и B_g симметрии активны в комбинационном рассеянии (КР), а моды A_u и B_u активны в спектрах инфракрасного (ИК) поглащения и отражения. Вследствие наличия центра симметрии, действует правило альтернативного запрета и в КР не могут проявляться ИК-активные моды.

На рис. 2, a и b представлены спектры комбинационного рассеяния и ИК-отражения, соответственно для TIFeS₂ и TIFeSe₂. Результаты *ab-initio* расчетов фононных мод были использованы для идентифицирования этих колебаний. На рис. 4 и 5 показаны дисперсия фононных мод TIFeS₂ и TIFeSe₂ вдоль высокосимметричных линий ЗБ. ИК активные A_u и B_u моды вызывают LO-TO расщепление в центре 3Б и видны как разрывы в спектре (рис. 4, 5). Сравнение фононных спектров изоструктурных соединений TlFeS₂ и TlFeSe₂ показывает, что характер дисперсии фононов в общем совпадают. Только, с уменьшением атомной массы аниона значения максимума оптических мод увеличивается. Проектированные на атомы плотности фононных состояний (PDOS) показаны на рис. 6 и 7. Анализ собственных векторов для каждого атома в примитивной ячейке и PDOS показывает, что акустические и низкочастотные оптические ветви в частотном интервале от 0 до $60\,{\rm cm^{-1}}$ с максимумом при $\sim 35\,{\rm cm^{-1}}$ в основном, связаны с колебанием атома Tl, с небольшим вкладом атомов Fe и аниона для обоих кристаллов. Второй частотный интервал для TlFeS₂ (TlFeSe₂) от 60

Рис. 6. Проектированный на атомы плотности фононных состояний в TIFeS₂.

Рис. 7. Проектированный на атомы плотности фононных состояний в TIFeSe₂.

TlFeSe ₂				TlFeS ₂		
Mode	$\omega_{\rm th},{\rm cm}^{-1},$ theory	$\omega_{\rm exp},{\rm cm}^{-1}$		$\omega_{\rm th},{\rm cm}^{-1},$	$\omega_{\rm exp},{\rm cm}^{-1}$	
		IR	R	theory	IR	R
Ag(R)	35.5		36.5	41.2		47
	41.2			46.5		
	82.4			119.4		116
	148.5		158	200.4		
	223.1		209	311.3		300
	299.3			479.6		
Bg(R)	18.5			17.6		
	92.9			138.0		125
	109.1			159.2		163
	133.7		141	339.6		354
	262.1			346.4		
	268.3			412		
Au(IR)	24.3			22.7		
	175.3			316.0	324	
	273.8	248		383.0		380
Bu(IR)	42.5			56.6		
	56.8	58		65.8	72	
	111.3			182.4		
	116.9			196.1		
	293.8	290		379.6	384	
	302.4			392.9		

Таблица 2. Экспериментально определенные и вычисленные с учетом макроскопического электрического поля в направлении [100] (в декартовых координатах) частоты оптических фононов в TIFeS₂ и TIFeSe₂

до $240 \,\mathrm{cm^{-1}}$ (150 $\mathrm{cm^{-1}}$) с максимумом при $218 \,\mathrm{cm^{-1}}$ (133 cm⁻¹) в основном, связан с колебанием атома S (Se), с небольшим вкладом Fe. В этом интервале атомы Tl в фононных колебаниях почти не участвуют. В частотном интервале 178–258 сm $^{-1}$ для кристалла TlFeSe $_2$ в колебаниях участвует только атомы Se. Аналогичный частотный интервал для TlFeS2 отсутствует. Высокочастотный интервал $338-500\,\mathrm{cm}^{-1}$ и $260-335\,\mathrm{cm}^{-1}$ для TlFeSe2 и TlFeS2, соответственно, состоят из колебаний Fe и атомов аниона. Надо отметить, что атомы Tl участвуют в колебаниях только в частотном интервале до 100 cm⁻¹. В средних и высоких частотах их вклад почти отсутствует. Кристаллоструктура изоструктурных соединений TlFeS2 и TlFeSe2 обладает двумя структурными построениями: тетраэдрическими FeX₄ (X атом халькогена, S, Se) цепочками и подрешеткой со слоевыми пакетами из атомов ТІ. Между слоями действуют слабые связи ван-дер-ваальсового типа, поэтому атомы Tl фактически участвуют лишь в низкочастотной динамике кристаллической решетки TlFeS₂, TlFeSe₂.

Наиболее интенсивный пик в спектрах КР при 116 и 158 ст $^{-1}$ для TIFeSe $_2$ и TIFeS $_2$, соответственно, соответствует A_g моде, в колебаниях которых участвуют атомы Fe, S и Se. В табл. 2 приведены рассчитанные

фононные частоты с учетом макроскопического электрического поля (с направлением [100] в декартовых координатах) и экспериментальные данные исследований ИК- и КР-спектров TIFeSe₂ и TIFeS₂. Появление слабоинтенсивной ИК-моды 380 сm⁻¹ в спектре КР кристалла TIFeS₂, по-видимому, обусловлено нарушением симметрии вследствие дефектности структуры.

7. Заключение

На основе расчетов из первых принципов в рамках теории функционала плотности выполнен расчет колебательных спектров и плотности фононных состояний кристаллов TlFeSe₂ и TlFeS₂ с моноклинной структурой кристаллической решетки. Результаты расчетов показывают, что при переходе от S-содержащего соединения к Se-содержащему происходит понижение частот верхних колебательных мод, что связано с увеличением массы аниона. При этом, характер дисперсии фононов в общем совпадает. Из экспериментальных исследований комбинационного рассеяния света в геометрии обратного рассеяния выявлены следующие частоты КР-активных фононов в кристаллах TlFeS₂: 47, 116, 125, 163, 300, 354, 380 cm⁻¹ и частоты КР-активных фононов кристаллах TlFeSe₂: 36.5, 141, 158, 209 ст⁻¹. Появление слабоинтенсивной ИК-моды 380 сm⁻¹ в спектре КР кристалла TlFeS₂, по-видимому, обусловлено нарушением симметрии вследствие наличия дефектов структуры. Из данных изучения ИК-отражения света определены частоты ИК активных фононов в кристаллах TlFeS₂ (72, 324, 384 cm⁻¹) и TlFeSe₂ (59,248, 290 cm⁻¹). Полученные расчетные результаты хорошо согласуются с экспериментальными данными из КР- и ИК-спектров кристаллов TlFeSe₂ и TlFeS₂. Планируется провести исследования магнитной восприимчивости соединений TlFeS₂, TlFeSe₂ в интервале температур 0.5-400 К.

Благодарности

Авторы выражают благодарность А.С. Бондякову (ОИЯИ, Россия) и Д.А. Кулиеву (Институт физики НАН Азербайджана), а также всему коллективу Дата-центра Института физики НАН Азербайджана, за предоставленные ресурсы и техническую поддержку теоретических расчетов.

Финансирование работы

Работа выполнена при финансовой поддержке Фонда развития науки при Президенте Азербайджанской республики (гранты № EİF/MQM/Elm-Tehsil-1-2016-1(26)-71/16/1 и № EİF-BGM-3-BRFTF-2⁺/2017-15/02/1).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Welz, P. Deppe, W. Schafer, H. Sabrowsky, M. Rosenberg. Phys. Chem. Solids 50, 3, 297 (1989).
- [2] Г.И. Маковецкий, Е.И. Касинский. Изв. АН СССР. Неорган. материалы **20**, *10*, 1752 (1984).
- [3] M.A. Aldzhanov, N.G. Guseinov, G.D. Sultanov, M.D. Nadzafzade. Phys. Status SolidiB 159(2), K107 (1990).
- [4] H. Sabrowsky, M. Rosenberg, D. Welz, P. Deppe, W. Schafer. J. Magn. Magn. Mater. 54-5, 3, 1497 (1986).
- [5] Г.Д. Султанов, Г.Д. Гусейнов, С.Г. Ибрагимов, А.С. Шукюров. Докл. АН АзССР, 43, 2, 16 (1987).
- [6] Г.Д. Султанов, Р.М. Мирзабабаев, С.Г. Ибрагимов, А.С. Шукюров, М.Т. Касумов. ФТТ 29, 7, 2138 (1987).
- [7] Э.М. Керимова, Ф.М. Сеидов, С.Н. Мустафаева, С.С. Абдинбеков. Изв. РАН, Неорган. материалы 35, 2, 157 (1999).
- [8] Z. Seidov, H.-A. Krug von Nidda, J. Hemberger, A. Loidl, G. Sultanov, E. Kerimova, A. Panfilov. Phys. Rev. B 65, 1, 014433 (2001).
- [9] Э.Б. Аскеров, А.И. Мададзада, А.И. Бескровный, Д.И. Исмаилов, Р.Н. Мехдиева, С.Г. Джабаров, Э.М. Керимова, Д. Неов. Поверхность, Рентгеновские, синхротронные и нейтронные исследования 12, 1 (2014).
- [10] Z. Seidov, H.-A. Krug von Nidda, V. Tsurkan, I. Filippova, A. Günther, A. Najafov, M.N. Aliyev, F.G. Vagizov, A.G. Kilamov, L.R. Tagirov, T. Gavrilova, A. Loidl. Bull. RAS: Phys. 81, 7, 885 (2017).
- [11] Р.Г. Велиев. ФТП 45, 2, 162 (2011).
- [12] K. Klepp, H. Boller, Monatsh. Chem. 110 (1979) 1045 (in German).
- [13] K. Mimura, S. Motonami, Y. Shim, K. Wakita, Z. Jahangirli, O. Alekperov, N. Mamedov, H. Sato, Y. Utsumi, S. Ueda, K. Shimada, Y. Taguchi, K. Kobayashi, G. Bihlmayer, H. Namatame, M. Taniguci. Phys. Status Solidi C 10, 7-8, 989 (2013).
- [14] З.А. Джахангирли, Т.Г. Керимова, И.А. Мамедова, Н.А. Абдуллаев, Н.Т. Мамедов. ФТТ 60, 11, 2265 (2018).
- [15] З.А. Джахангирли, Т.Г. Керимова, И.А. Мамедова, С.А. Набиева, Н.А. Абдуллаев. ФТТ 62, 8, 1270 (2020).
- [16] P. Gianozzi, S. deGironcoli, P. Pavone, S. Baroni. Phys. Rev. B 43, 7231 (1991).
- [17] S. Baroni, S. deGironcoli, A. Dal Corso, P. Gianozzi. Rev. Mod. Phys. 73, 515 (2001).
- [18] X. Gonze. Phys. Rev. B 55, 10337 (1997).
- [19] X. Gonze, J.M. Beuken, R. Caracas, F. Detraux, M. Fuchs., G.M. Rignanese, L. Sindic, M. Verstraete, G. Zerah, F. Jallet. Comput. Mater. Sci. 25, 478 (2002).
- [20] C. Hartwigsen, S. Goedecker, J. Hutter. Phys. Rev. B 58, 3641 (1998).
- [21] J.P. Perdew, A. Zunger. Phys. Rev. B 23, 5048 (1981).
- [22] H. Monkhorst, J. Pack. Phys. Rev. B 13, 5188 (1976).

Редактор К.В. Емцев