07

Особенности упрочнения структурированного интенсивной пластической деформацией сплава AI—Cu—Zr

© Т.С. Орлова¹, Д.И. Садыков², М.Ю. Мурашкин^{3,4}, В.У. Казыханов³, Н.А. Еникеев^{3,4}

¹ Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

² Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики,

Санкт-Петербург, Россия

³ Уфимский государственный авиационный технический университет

Институт физики перспективных материалов,

Уфа, Россия

⁴ Санкт-Петербургский государственный университет,

Санкт-Петербург, Россия

E-mail: orlova.t@mail.ioffe.ru

Поступила в Редакцию 5 мая 2021 г. В окончательной редакции 5 мая 2021 г. Принята к публикации 7 мая 2021 г.

> Исследовано влияние малых добавок меди на микроструктуру и физико-механические свойства ультрамелкозернистого сплава Al–1.47Cu–0.34Zr (wt.%), структурированного интенсивной пластической деформацией кручением после предварительного отжига при температуре 375° C в течение 140 h. В результате обработки достигнуты высокие значения прочностных характеристик (условный предел текучести 430 MPa, предел прочности 574 MPa) при приемлемом уровне электропроводности (46.1% IACS) и пластичности (относительное удлинение до разрушения $\sim 5\%$). С учетом микроструктурных параметров, определенных методами рентгеноструктурного анализа и просвечивающей электронной микроскопии, проведен анализ действующих механизмов упрочнения, обеспечивающих такую высокую прочность. Показано, что ключевую роль в упрочнении играет Cu. Добавка меди способствует значительному измельчению зерна и, как следствие, увеличивает зернограничное упрочнение. Кроме того, легирование медью приводит к значительному дополнительному упрочнению (~ 130 MPa) в ультрамелкозернистом сплаве, нетипичному для крупнозернистого состояния. Наиболее вероятными причинами такого упрочнения могут быть сегрегация Cu на границах зерен и формирование нанокластеров Cu.

> Ключевые слова: алюминиевые сплавы, интенсивная пластическая деформация, микроструктура, механизмы упрочнения, электропроводность.

DOI: 10.21883/FTT.2021.10.51408.104

1. Введение

Проводниковые сплавы на основе алюминия широко применяются в различных отраслях промышленности в силу хорошего сочетания таких физико-технических характеристик как высокая электропроводность, коррозионная стойкость, легкость и нетоксичность в различных соединениях с другими металлами. Однако, несмотря на широкую распространенность алюминиевых сплавов, для современных применений в электротехнической промышленности требуются материалы, обладающие не только высокой электропроводностью, но также и высокой прочностью, в том числе и при повышенных температурах. Алюминиевые сплавы, легированные 0.1-0.4 wt.% Zr, показали хорошие результаты в обеспечении термостабильности прочностных характеристик и электропроводности [1,2]. Повышение термостабильности сплавов Al-Zr достигалось, в первую очередь, путем их длительных отжигов при температурах 300-450°С, приводящих к образованию наноразмерных частиц метастабильной фазы Al₃Zr (L1₂) [3-5]. Происходящее при этом очищение решетки алюминия от атомов легирующих элементов приводила к значительному повышению электропроводности. Однако эти сплавы сильно уступают в прочности как медным проводникам, так и широко используемым в электротехнике сплавам системы Al-Mg-Si [6]. Одним из наиболее эффективных способов повышения прочностных характеристик многих металлов и сплавов является структурирование их интенсивной пластической деформацией (ИПД). В первую очередь, упрочнение после ИПД связано с измельчением зерна, увеличением плотности дефектов кристаллической решетки, изменением распределения границ зерен (ГЗ) по разориентировкам, формированием дисперсных частиц вторичных фаз [7-10]. Однако степень увеличения прочности после обработки ИПД может заметно отличаться как у различных сплавов, так и для одного и того же сплава в зависимости от его исходного состояния (до обработки ИПД). Исследование влияния интенсивной пластической деформации кручением (ИПДК) на сплав Al-0.4Zr (wt.%) в различных исходных состояниях [11-13] показало незначительный рост его прочностных характеристик, в то время как выполненная в аналогичном режиме деформация сплава Al-0.53Mg-0.27Zr (wt.%) [14] привела к колоссальному увеличению прочности: к изменению предела текучести и предела прочности соответственно в 3.4 и 3.0 раза. Показано, что малая добавка Mg (0.53 wt.% или соответственно 0.6 at.%) способствует сильному измельчению зерна и, следовательно, значительно увеличивает зернограничное упрочнение. Кроме того, для ультрамелкозернистого (УМЗ) сплава Al-0.53Mg-0.27Zr было выявлено действие дополнительных, нетипичных для крупнозернистого состояния механизмов упрочнения [14].

Известно, что легирование медью даже в небольших количествах также способствует измельчению зеренной структуры [15-18] и значительному повышению прочности [15] алюминиевых сплавов А1-Си в результате воздействия ИПД. Влияние ИПДК на микроструктуру сплавов Al-Cu изучалось в ряде работ [15-20]. В работе [18] было показано, что обработка ИПДК даже при комнатной температуре сплава с 0.83 at.% Cu, находящейся исходно в твердом растворе, приводит к формированию преимущественно стабильных частиц θ-фазы (Al₂Cu) на границах зерен. На ГЗ также были выявлены сегрегации с концентрацией атомов Cu, в несколько раз превышающей таковую в объеме зерен. Однако изучению влияния таких сегрегаций на упрочнение сплавов Al-Cu не уделялось достаточного внимания. Выделение частиц θ -фазы на границах зерен и в тройных стыках наблюдалось также в сплавах Al-2Cu (wt.%) [17] и Al-5Cu (wt.%) [19] после обработки ИПД. Растворение предварительно выделенной θ' -фазы с последующим формированием частиц *θ*-фазы преимущественно на ГЗ наблюдалось для сплавов Al-Cu в результате ИПД [20,21].

В настоящей работе впервые исследовалось влияние ИПДК при комнатной температуре на микроструктуру, механические свойства и электропроводность предварительно отожженного (состаренного) при температуре 375°С в течение 140 h сплава Al-1.47Cu-0.34Zr (wt.%, 1.47 wt.% Си соответствует 0.63 at.% Си). Полученные характеристики сравниваются с аналогичными характеристиками, полученными для сплава A1-0.4Zr (wt.%) без добавки Си и сплава A1-0.53Mg-0.27Zr (wt.%) с близкой по величине атомной концентрацией Mg (0.6 at.%), также прошедших подобную обработку: старение и ИПДК-структурирование. Было показано, что структурирование сплава методом ИПДК приводит к колоссальному росту прочностных характеристик (микротвердости, предела текучести и предела прочности) при сохранении приемлемого уровня пластичности и электропроводности. В сплаве с УМЗ-структурой, полученной в результате обработки ИПДК, выявлено действие дополнительных, нетипичных для крупнозернистого состояния механизмов упрочнения, связанных с легированием медью.

Образцы и экспериментальные методики

В работе исследовался сплав Al-1.47Cu-0.34Zr (wt.%), полный химический состав которого представлен в табл. 1. Первоначально сплав были получен в виде прутков диаметром 22 mm методом литья и последующей холодной прокатки, после которой диаметр прутков составил 14.5 mm. Данное состояние сплава, здесь и далее обозначено как Al-Cu-Zr_Initial.

Далее для формирования равновесной структуры был проведен длительный отжиг сплава при температуре 375°С в течение 140 h (далее старение). Данное состояние сплава здесь и далее обозначено как Al-Cu-Zr AG. Для получения ультрамелкозернистой структуры часть материала Al-Cu-Zr_AG была обработана методом ИПДК. Обработка ИПДК проводилась на прессе Walter Klement GmbH HPT-07 при давлении в 6 GPa и количестве оборотов *n* = 10. Для деформационной обработки были вырезаны образцы цилиндрической формы диаметром 14.5 mm и высотой 3 mm. После ИПДК образцы имели форму дисков диаметром ~ 20 mm и толщиной $\sim 1 \,\mathrm{mm}$. Степень истинной деформации e на расстоянии 5 mm от центра диска составила ~ 6.6 [9]. Данное состояние сплава здесь и далее обозначено как Al-Cu-Zr_AG_HPT.

Микроструктура полученных образцов исследовалась методами рентгеноструктурного анализа (PCA), просвечивающей электронной микроскопии (ПЭМ) и просвечивающей растровой (сканирующей) электронной микроскопии (ПРЭМ).

Исследование структуры методом РСА осуществлялось с использованием дифрактомера Bruker D8 DIS-COVER с фокусировкой по Брэггу–Брентано. Основные микроструктурные параметры: параметр решетки a, уровень микроискажений кристаллической решетки $\langle \varepsilon^2 \rangle^{1/2}$, средний размер областей когерентного рассеяния D_{XRD} определялись уточнением рентгенограмм методом Ритвельда с использованием программного обеспечения MAUD [22]. Плотность дислокаций определялась по формуле [23]:

$$L_{dis} = \frac{2\sqrt{3}\langle \varepsilon^2 \rangle^{1/2}}{D_{XRD}b},\tag{1}$$

где *b* — модуль вектора Бюргерса (0.286 nm).

Исследования методом ПЭМ проводились на микроскопе JEOL JEM 2100 при ускоряющем напряжении

Таблица 1. Химический состав сплава Al-1.47Cu-0.34Zr. Содержание элементов приведено в wt.%

Al	Cu	Zr	Si	Zn	V	Остальное
98.1	1.47	0.34	0.04	0.014	0.01	~ 0.03

Рис. 1. Схема вырезки образцов для испытания на одноосное растяжение.

200 kV. Фольги для наблюдений в ПЭМ получали механической полировкой с последующей двухструйной электрополировкой с использованием раствора азотной кислоты (25%) в метаноле при –25°С и рабочем напряжении 25 V. Анализ микроструктуры (размер зерна, размер выделений вторичных фаз и т.д.) проводился с использованием ПО Fiji.

Исследования методом ПРЭМ осуществляли на микроскопе Zeiss Libra 200FE с ускоряющим напряжением 200 kV, оснащенном приставкой для проведения in-situ энергодисперсионной рентгеновской спектроскопии (ЭДС). Темнопольные изображения в сканирующем просвечивающем микроскопе были получены с использованием широкоуглового кругового детектора темного поля (high-angle annular dark-field, HAADF). Исследования методом ЭДС были проведены с пробой размером 20 nm.

Механические свойства изучались путем проведения испытаний на одноосное растяжение и измерения микротвердости. Для проведения механических испытаний образцов, прошедших обработку ИПДК, из полученных дисков были вырезаны образцы в форме лопатки с шириной рабочей части ~ 2 mm и длиной ~ 6 mm. Схема вырезки образцов приведена на рис. 1.

Испытания на одноосное растяжение проводились на испытательной машине Shimadzu AG-50kNX с постоянной скоростью деформации $5 \cdot 10^{-4} \, {
m s}^{-1}$. Деформация образцов измерялась с помощью видеоэкстензометра TRViewX 55S. Для каждого состояния (Al-Cu-Zr_Initial, Al-Cu-Zr_AG, Al-Cu-Zr_AG_HPT) испытывалось не менее трех образцов. На основании полученных деформационных кривых были определены условный предел текучести $\sigma_{0.2}$, предел прочности σ_{UTS} и относительное удлинение до разрушения δ .

Микротвердость H_V образцов измерялась по методу Виккерса на микротвердомере Shimadzu HMV-G21DT с величиной нагрузки 100 g, время нагрузки составляло 10 s. Для каждого образца среднее значение микротвердости определялось на базе не менее двенадцати измерений.

Электропроводность ω измерялась при комнатной температуре с использованием вихретокового измери-

теля электропроводности цветных металлов и сплавов ВЭ-27НЦ с точностью ±2%. Для перевода полученных значений электропроводности из единиц измерения MS/m в %IACS использовалась следующая формула:

$$\text{\%IACS} = \frac{\omega_{Alloy}}{\omega_{Cu}} \cdot 100\%, \tag{2}$$

 ω_{Cu} — электропроводность отожженной меди (58.0 MS/m), ω_{Alloy} — электропроводность исследуемого алюминиевого сплава (MS/m).

3. Экспериментальные результаты

3.1. Исследование микроструктуры

Типичные ПЭМ-изображения микроструктуры сплава Al-Cu-Zr во всех трех состояниях представлены на рис. 2–5. В исходном состоянии (Al-Cu-Zr_Initial), полученном литьем и последующей холодной прокат-кой, формировалась структура со средним размером зерна 617 nm (рис. 2, табл. 2). Подобная структура наблюдалась ранее в исходном состоянии сплава Al-0.4Zr (wt.%), полученном комбинированным методом литья и прокатки [11,12], а также в исходном состоянии сплава Al-0.53Mg-0.27Zr (wt.%), полученном литьем с последующей горячей прокаткой [14].

После длительного отжига (старения) размер зерна практически не изменился: в состоянии Al-Cu-Zr_AG он составил $D_{av}^G \approx 631$ nm. Микроструктура сплава в состоянии Al-Cu-Zr_AG характеризуется большим количеством наноразмерных преципитатов вторичной фазы (рис. 3, a-c). Эти частицы расположены как внутри зерен, так и вдоль границ зерен и принадлежат метастабильной фазе Al₃Zr (L1₂), что подтверждается исследованиями микродифракции (рис. 3, c). Известно [4,11,24–26], что длительный отжиг сплавов Al-Zr при температурах в диапазоне 350–450°C является наиболее эффективным способом формирования наночастиц метастабильной фазы Al₃Zr (L1₂), которые способствуют повышению термостабильности прочностных

Рис. 2. ПЭМ-изображение микроструктуры сплава Al–Cu–Zr в состоянии Initial.

Рис. 3. ПЭМ-изображения микроструктуры сплава Al–Cu–Zr в состоянии AG в светлопольном (*a*) и темнопольном (*b*, *c*) режимах с картиной микродифракции (ось зоны [110] Al) (*c*), а также распределение малых частиц фазы Al₃Zr по размеру (*d*).

Рис. 4. ПРЭМ-изображение (a) и ЭДС-анализ (b) вдоль линии AB, обозначенной на (a), для сплава Al-Cu-Zr в состоянии AG.

Материал (состояние)	D_{av}^G , nm	<i>a</i> , Å	D_{XRD} , nm	$\langle \varepsilon 2 \rangle^{1/2}$, %	L_{dis} × 10 ¹³ , m ²	Ссылка
Al-Cu-Zr (Initial)	617 ± 78	4.0503 ± 0.0001	362 ± 7	0.068 ± 0.0009	2.3	
Al-Cu-Zr (AG)	630 ± 90	4.0497 ± 0.0001	588 ± 13	0.020 ± 0.0003	0.4	[настоящая статья]
Al-Cu-Zr (AG_HPT)	285 ± 23	4.0504 ± 0.0001	205 ± 1	0.044 ± 0.002	2.6	
Al-Mg-Zr_ (AG_HPT)	400 ± 12	4.0527 ± 0.0001	304 ± 15	0.026 ± 0.001	1.0	[14]
Al–Zr (AG_HPT)	945 ± 17	4.0504 ± 0.0001	310 ± 10	0.006 ± 0.002	0.23	[12]

Таблица 2. Параметры микроструктуры, полученные методами РСА и ПЭМ

свойств при повышенной температуре. Достаточно равномерно расположенные в зернах сферические частицы со средним размером $d_{pt} \approx 9.3$ nm (рис. 3, c), узким распределением по размеру (рис. 3, d) и концентрацией $n_{pt} \approx 4 \cdot 10^{21}$ подобны таковым, наблюдаемым в Al–Zr сплавах [4,11,26]. Например, после длительного отжига при 375°C в сплаве Al–0.4Zr (wt.%) наблюдались подобные распределения дисперсных преципитатов Al₃Zr (фаза L1₂) со средним размером 13 nm и концентрацией $n_{pt} \approx 3.63 \cdot 10^{21}$ [11], а в сплаве Al–0.53Mg–0.27Zr (wt.%) наблюдались подобные частицы с $d_{pt} \approx 15$ nm [14].

По границам зерен располагаются более крупные частицы со средним размером ~ 34 nm. Принадлежность их фазе Al₃Zr была дополнительно подтверждена анализом ЭДС (рис. 4). Формирование на ГЗ более крупных частиц связано с тем, что на границах диффузионные процессы проходят более активно, так как коэффициент зернограничной диффузии значительно превышает коэффициент объемной диффузии [27].

После обработки ИПДК микроструктура сплава становится ультрамелкозернистой (рис. 5). Средний размер зерна составил 285 nm, что значительно меньше размера зерна $D_{av}^G = 945$ nm в подобном сплаве Al-0.4Zr_AG_HPT без добавления меди, и меньше по сравнению со сплавом Al-0.53Mg-0.27Zr_AG_HPT ($D_{av}^G = 400$ nm), легированным магнием в сравнимых атомных концентрациях (табл. 2). Полученные данные показывают, что легирование медью более эффективно для измельчения зерна, чем легирование Mg в сравнимых концентрациях в системах Al-(Mg/Cu)-Zr.

Количество частиц фазы Al₃Zr после обработки ИПДК значительно уменьшилось, что свидетельствует о том, что большая их часть растворилась в матрице твердого раствора под действием ИПДК, т. е. произошло деформационно-индуцированное растворение вторичных фаз. Типичные ЭДС-карты образцов в состояниях AG и AG_HPT представлены соответственно на рис. 6 и 7,

Рис. 5. ПЭМ-изображения микроструктуры сплава Al-Cu-Zr в состоянии AG_HPT в светлопольном (*a*) и в темнопольном (*b*) режимах.

которые подтверждают значительное увеличение концентрации Zr в алюминиевой матрице после обработки ИПДК. Аналогичное явление наблюдалось для сплавов Al-0.4Zr [11], Al-Mg-Zr [14] в результате обработки

Рис. 6. ПРЭМ-изображение сплава Al–Cu–Zr в состоянии AG (*a*) и соответствующие ЭДС-карты распределений Al (*b*), Cu (*c*) и Zr (*d*).

ИПДК. Воздействие ИПДК на предварительно состаренные сплавы A1-0.4Zr [11] и A1-Mg-Zr [14] приводило к частичному растворению фазы Al₃Zr (Ll₂). В случае Al-Mg-Zr [14] увеличение концентрации Zr в матрице АІ в результате ИПДК было подтверждено атомной пространственной томографией. В сплаве Al-0.4Zr частичное растворение сопровождалось увеличением размеров оставшихся частиц Al₃Zr [11]. Как видно из рис. 5, в образцах Al-Cu-Zr_AG_HPT частиц вторичной фазы Al₃Zr значительно меньше по сравнению с образцами Al-Cu-Zr_AG, располагаются они преимущественно в объеме зерен и их средний размер составил $d_{pt} \approx 17$ nm. Принадлежность таких частиц фазе Al₃Zr была подтверждена ЭДС-анализом. Кроме того, после обработки ИПДК на ГЗ наблюдались отдельные Си-содержащие частицы с размерами 20-40 nm (рис. 8). Принадлежность этих частиц медным фазам была подтверждена ЭДС-

анализом (рис. 8, c). Такие частицы, по-видимому, принадлежат преимущественно θ -фазе, поскольку, согласно [17], переход $\theta' - \theta$ происходит при достижении сферическими частицами критического размера ~ 23 nm. ЭДС-сканирование показало, что оставшиеся атомы Си и Zr распределялись по зернам достаточно равномерно (рис. 7, c, d).

Данные микроструктурного анализа для состояний Al-Cu-Zr_AG и Al-Cu-Zr_AG-HPT, полученные методами ПЭМ и РСА, приведены в табл. 2. Там же для сравнения показаны микроструктурные параметры для сплавов Al-0.4Zr (wt.%) и Al-0.53Mg-0.27Zr (wt.%) в подобном состоянии.

Согласно данным рентгеноструктурного анализа, для сплава Al-Cu-Zr параметр решетки *а* незначительно отличается во всех трех состояниях, что свидетельствует о том, что в этих состояниях концентрация Cu в твердом

Рис. 7. ПРЭМ-изображение сплава Al-Cu-Zr в состоянии AG_HPT (*a*) и соответствующие ЭДС-карты распределений Al (*b*), Cu (*c*) и Zr (*d*).

растворе значительно не различается. Известно, что наличие атомов Zr в малых концентрациях в матрице алюминия не влияет на параметр решетки [14]. Плотность дислокаций в образцах Al–Cu–Zr_AG_HPT на порядок выше плотности дислокаций в подобных образцах без добавки Cu (Al–0.4 Zr_AG_HPT) и в 2.6 раза выше, чем в образцах, легированных Mg (Al–Mg–Zr_AG_HPT).

3.2. Механические свойства и электропроводность

На рис. 9 представлены диаграммы напряжениедеформация для образцов сплава Al-Cu-Zr в состояниях Al-Cu-Zr_Initial, Al-Cu-Zr_AG и Al-Cu-Zr_AG_HPT. Значения основных механических характеристик, таких как условный предел текучести $\sigma_{0.2}$, предел прочности σ_{UTS} и пластичность δ , определенные из анализа полученных деформационных кривых, а также значения микротвердости H_V и электропроводности ω представлены в табл. 3. В табл. 3 для сравнения аналогичных характеристик также представлены данные для сплавов Al-Mg-Zr и Al-Zr.

ИПДК-структурирование привело к значительному повышению прочности: H_V увеличилась в 2.6 раза, σ_{UTS} в 2.7 раза, $\sigma_{0.2}$ в 2.5 раза. Однако δ уменьшилась значительно: с 17% до 5%. Следует отметить, что легирование 1.47 wt.% Си (соответствует 0.63 at.%) обеспечило большее увеличение прочности по сравнению с легированием 0.6 at.% Мд в системе A1–Cu(Mg)–Zr с приблизительно одинаковой концентрацией Zr (табл. 3), особенно это касается предела прочности: ~ 575 MPa в

Рис. 8. ПРЭМ-изображения (*a*, *b*) и ЭДС-анализ (*c*) вдоль линии AB, обозначенной на (*b*), для сплава Al–Cu–Zr в состоянии AG_HPT.

Рис. 9. Диаграммы напряжение-деформация образцов сплава Al-Cu-Zr в различных состояниях: *I* — Initial, *2* — AG, *3* — AG_HPT.

Al-Cu-Zr_AG_HPT (настоящая работа) по сравнению с $\sim 465\,MPa$ в Al-Mg-Zr_AG_HPT [14].

Исходя из данных, представленных выше, и их сравнения с механическими свойствами сплавов Al-0.4Zr

(wt.%) [11] и Al-Mg-Zr [14] (табл. 3), также прошедших предварительное старение (длительный отжиг для формирования дисперсных вторичных фаз) и последующую обработку ИПДК, можно сделать вывод, что основная роль в упрочнении исследуемого сплава Al-Cu-Zr_AG_HPT принадлежит Cu.

4. Обсуждение результатов

Известно, что электропроводность металлов наиболее чувствительна к легирующим элементам, находящимся в твердом растворе. В исходном состоянии образцы $Al-Cu-Zr_Initial$ демонстрируют низкий уровень электропроводности, что свидетельствует о том, что легирующие элементы находятся в матрице Al в твердом растворе. После длительного отжига электропроводность значительно возросла и составила 54.8 %IACS для состояния Al-Cu-Zr_AG. Это связано, в первую очередь, с очищением матрицы от твердого раствора в результате выпадения вторичных фаз, что хорошо согласуется с данными микроструктурных исследований (рис. 3, *a, b, c*).

Обработка ИПДК привела к значительному уменьшению электропроводности — на ~ 8.7 %IACS (или увеличению удельного электросопротивления на $\Delta \rho \approx 5.9 \,\mathrm{n\Omega m}$) (табл. 3). Это связано, главным образом,

Материал	Состояние	H_V , MPa	$\sigma_{0.2}$, MPa	σ_{UTS} , MPa	δ, %	ω , MS/m	ω , % IACS	ρ, nΩm	Ссылка
Al-Cu-Zr	Initial	650 ± 45	180 ± 10	200 ± 1	10.5 ± 0.8	19.6 ± 0.36	33.7 ± 0.6	51.0	[Настоящая работа]
	AG	640 ± 15	170 ± 15	215 ± 5	17.0 ± 1.3	31.85 ± 0.06	54.8 ± 0.1	31.4	
	AG_HPT	1640 ± 35	430 ± 15	575 ± 10	4.9 ± 1.8	26.8 ± 0.1	46.1 ± 0.2	37.3	
Al-Mg-Zr	AG	555 ± 40	117 ± 6	155 ± 3	20.3 ± 2.0	32.25 ± 0.10	55.6 ± 0.2	31.0	[14]
	AG_HPT	1240 ± 20	400 ± 10	465 ± 10	3-5	30.00 ± 0.15	51.5 ± 0.3	33.3	[* ']
Al-0.4Zr	AG	399 ± 22	72 ± 6	95 ± 4	27 ± 2	34.1	58.8	29.3	[11]
	AG_HPT	464 ± 3	96 ± 2	118 ± 2	28.0 ± 0.6	32.4	55.8	30.8	[**]

Таблица 3. Механические и электрические свойства сплавов

с частичным растворением частиц вторичной фазы Al₃Zr и переходом Zr в твердый раствор в процессе ИПДК, а также с уменьшением размера зерна (увеличением плотности границ зерен) и значительным увеличением плотности дислокаций L_{dis} (табл. 2). Результаты по изменению электросопротивления находятся в хорошем согласии с данными микроструктурных исследований (раздел 3.1). С другой стороны, формирование Си-содержащих частиц приводит к уменьшению концентрации Си в твердом растворе и, следовательно, способствует уменьшению электросопротивления. Одноко, судя по тому, что ЭДС-карты атомов Си сравнимы по концентрации (рис. 6,7), общая объемная доля Си-содержащих частиц невелика. Следовательно, формирование таких частиц не может значительно повлиять на величину электросопротивления.

Изменение электросопротивления из-за изменения плотности границ зерен после обработки ИПДК можно оценить как [28]:

$$\Delta \rho_{GB} = \Delta S_{GB} \delta \rho^{GB}, \qquad (3)$$

где ΔS_{GB} — изменение объемной плотности границ зерен после ИДПК, $\delta \rho^{GB} = 2.6 \cdot 10^{-16} \,\Omega m^2$ — вклад в электросопротивление от единичной плотности границ зерен. Величина $\Delta \rho_{GB}$ составляет $\sim 0.7 \,\mathrm{n}\Omega m$.

Вклад от увеличения плотности дислокаций, определенный в соответствии с формулой [29],

$$\Delta \rho_{dis} = L_{dis} \delta \rho^{dis}, \qquad (4)$$

где $\delta \rho^{dis} = 2.7 \cdot 10^{-25} \,\mathrm{m}\Omega\mathrm{m}^3$ — вклад в электросопротивление от единичной плотности дислокаций. Полученное значение $\Delta \rho_{dis} \approx 7 \cdot 10^{-3} \,\mathrm{n}\Omega\mathrm{m}$ пренебрежимо мало. Следует также отметить, что вклад вакансий в электрическое сопротивление в УМЗ алюминиевых сплавах, структурированных разными методами ИПД, также пренебрежимо мал [28,30].

Согласно [11,14], после аналогичной термомеханической обработки (AG_HPT) $\sim 50\%$ атомов Zr переходит в твердый раствор для сплавов Al–0.4Zr [11] и Al–Mg–Zr [14]. Исходя из подобной доли атомов Zr

в твердом растворе и для сплава Al-Cu-Zr_AG_HPT, можно оценить вклад в электросопротивление от атомов Zr, перешедших в твердый раствор как [14]:

$$\Delta \rho_{SS}^{Zr} = \delta \rho_{SS}^{Zr} \Delta C_{Zr}^{SS}, \tag{5}$$

где $\delta \rho_{SS}^{Zr} = 15.8 \, \text{n}\Omega \text{m/wt.}\% \, [31]$ — вклад в электропроводность единичной концентрации Zr в твердом растворе, ΔC_{Zr}^{SS} — изменение концентрации Zr в твердом растворе в процессе ИПДК. Величина $\Delta \rho_{SS}^{Zr} \approx 2.7 \, \mathrm{n}\Omega \mathrm{m}$. Следовательно, оставшаяся разница $\Delta \rho_{ad} \sim 2.5 \,\mathrm{n}\Omega\mathrm{m}$ в электросопротивлении сплава в состояниях AG и AG_HPT вызвана действием некоторых дополнительных механизмов рассеяния электронов проводимости после обработки ИПДК. Повышению электросопротивления в образцах после обработки ИПДК может способствовать формирование сегрегаций примесных элементов на ГЗ. Образование частиц Си-содержащей вторичной фазы на ГЗ в состоянии AG_HPT может сопровождаться формированием сегрегаций Си на ГЗ, как это наблюдалось в сплаве Al-Cu со сравнимой концентрацией Cu (0.83 at.%) [18]. Не исключено также образование ультрамелких кластеров меди как на ГЗ, так и в теле зерна, которые слишком малы для обнаружения методами электронной микроскопии и которые могут тоже приводить к дополнительному рассеянию заряда. На возможность формирования ультрамелких нанокластеров атомами легирующих элементов, в том числе Си, в алюминиевых сплавах указывалось ранее в работах [32,33].

На базе полученных микроструктурных параметров мы можем оценить вклады в общее упрочнение от известных для крупнозернистого состояния механизмов упрочнения. Обычно общее упрочнение металлов и сплавов является суммой вкладов различных механизмов в общее упрочнение [34]:

$$\sigma_{0.2}^{th} = \sigma_0 + \sigma_{ss} + \sigma_{dis} + \sigma_{GB} + \sigma_{pt}, \qquad (6)$$

где $\sigma_0 = 10$ MPa — напряжение Пайерлса–Набарро кристаллической решетки A1 [35], σ_{GB} — зернограничное упрочнение, σ_{dis} — дислокационное упрочнение, σ_{pt} — упрочнение частицами вторичной фазы и σ_{ss} — твердорастворное упрочнение.

Зернограничное упрочнение определяется соотношением Холла–Петча [36]:

$$\sigma_{GB} = K D_{av}^{-1/2},\tag{7}$$

где $K = 0.07 \text{ MPa} \cdot \text{m}^{1/2}$ — коэффициент Холла– Петча [37], D_{av} — средний размер зерна. Аналогично работам [12,14,38], для оценки зернограничного упрочнения значение коэффициента было взято равным $K = 0.07 \text{ MPa} \cdot \text{m}^{1/2}$. Следует отметить, что для такого значения коэффициента *K* теоретические оценки вкладов (не показанных здесь) в упрочнение и полученное, соответственно, теоретическое значение предела текучести для исходного состояния находятся в хорошем количественном согласии с экспериментальным значением $\sigma_{0,2}$.

Вклад от дислокационного упрочнения можно оценить по формуле Тэйлора [39]:

$$\sigma_{dis} = M\alpha Gb L_{dis}^{1/2}, \tag{8}$$

где M = 3.06 — фактор Тейлора [39], $\alpha = 0.33$ — параметр междислокационного взаимодействия [40], G = 26 GPa — модуль сдвига, b = 0.286 nm — величина вектора Бюргерса, L_{dis} — плотность дислокаций.

Вклад от примесных элементов, находящихся в твердом растворе, можно определить как [41]:

$$\sigma_{SS} = \sum k_i (C_i^{SS})^{2/3}, \qquad (9)$$

где для циркония $k_{\rm Zr} = 9$ MPa (wt.%)^{-2/3} [11], для меди $k_{\rm Cu} = 46.4$ MPa (wt.%)^{-2/3} [41].

Максимально возможное твердорастворное упрочнение достигается при условии нахождения всех примесей легирующих элементов в твердом растворе, в этом случае $\sigma_{ss} \approx 64.4$ MPa. Для состояния Al–Cu–Zr_AG_HPT такое значение является завышенным, так как, согласно микроструктурным данным и данным по изменению электросопротивления, часть легирующих элементов находится в преципитатах вторичной фазы.

Вклад в упрочнение от наноразмерных частиц фазы Al_3Zr можно оценить из упрочнения по механизму Орована, так как размер частиц превышает критическое значение $d_{pt} \approx 5.6$ nm, ниже которого реализуется механизм упрочнения за счет перерезания частиц [42,43]. Согласно [42,43], упрочнение по механизму Орована можно оценить как

$$\sigma_{\rm Or} = \frac{0.4MG_{\rm Al}b}{\pi L} \cdot \frac{\ln(\pi \langle r \rangle/2b)}{\sqrt{1-\nu}},\tag{10}$$

где $G_{Al} = 26 \text{ GPa}$ — модуль сдвига, v = 0.345 — коэффициент Пуассона [44], $\langle r \rangle$ — средний радиус частиц, L — расстояние между преципитатами, которое можно оценить по формуле [43]:

$$L = \langle r \rangle \left(\sqrt{\frac{2\pi}{3f_V}} - \frac{\pi}{2} \right), \tag{11}$$

где f_V — общая объемная доля частиц фазы Al₃Zr.

Согласно работам [11] и [14], в аналогичных предварительно состаренных сплавах Al–0.4Zr [11] и Al–0.53Mg–0.27Zr [14] при обработке ИПДК большая доля Zr переходит в твердый раствор, а на преципитаты Al₃Zr остается 0.22–0.24 vol.%. Исходя из этой объемной доли, оценка вклада в упрочнение от преципитатов Al₃Zr размером $d_{pt} = 17$ nm в состоянии Al–Cu–Zr_AG_HPT дает значение $\sigma_{pt} = 55-57.5$ MPa. Полученные оценки вкладов в упрочнение и общего суммарного упрочнения $\sigma_{0.2}^{th}$ приведены в табл. 4. Видно, что экспериментально полученное значение $\sigma_{0.2}^{exp} = 430$ MPa значительно превышает $\sigma_{0.2}^{th} \approx 300$ MPa. Таким образом, на упрочнение от легирования медью дополнительно к вкладу в твердорастворное упрочнение (< 60 MPa) приходится еще не менее 130 MPa.

Это означает, что помимо вклада меди в твердорастворное упрочнение за счет нахождения доли ее в твердом растворе и в зернограничное упрочнение за счет уменьшения размера зерна (плотности границ зерен) в состоянии Al-Cu-Zr_AG_HPT, присутствие меди вызывает колоссальное дополнительное упрочнение, нетипичное для крупнозернистого состояния.

Наиболее вероятной причиной такого дополнительного упрочнения сплава Al-Cu-Zr_AG_HPT может быть сегрегация Си в границах зерен. Известно, что медь активно сегрегирует в ГЗ в процессе ИПДК-обработки сплавов системы Al-Cu, в которых исходно Cu находилась в состоянии твердого раствора [18,45]. Сегрегация Си в ГЗ наблюдалась в сплаве системы Al-Zn-Mg-Cu (с содержанием меди 2.5 wt.%), подвергнутого равноканальному угловому прессованию при 200°C [45]. В работе [18] исследовался сплав Al-0.83 at.% Си (с близкой нашему случаю концентрацией Си), подвергнутый обработке ИПДК при комнатной температуре, и было показано, что начиная уже с ранних стадий деформации (0.5 оборота) происходит распад твердого раствора и сегрегация Си в границы зерен с увеличением ее концентрации на ГЗ в 3-4 раза по сравнению с концентрацией в зерне и шириной концентрационного профиля ~1-2 nm. С увеличением степени ИПДК происходит формирование наноразмерных частиц преимущественно *θ*-фазы на ГЗ. В нашем случае обработка ИПДК применяется к предварительно состаренному сплаву, в котором уже имеются выделения фазы Al₃Zr. Наши микроструктурные исследования и данные по изменению электросопротивления показали, что происходит частичное растворение этой фазы в результате ИПДК. Поскольку в процессе ИПДК образуется много дефектов (вакансий, дислокаций, новых ГЗ), которые ускоряют диффузионные процессы, то растворение также может сопровождаться сегрегационными процессами примесных элементов. Формирование Сu-содержащих частиц на ГЗ (рис. 8) в результате ИПДК косвенно указывает на такие сегрегационные процессы.

Согласно [46,47] начало пластического течения в УМЗ А1 с размером зерна < 1000 nm контролируется эмиссией дислокаций из границ зерен, при этом границы

Материал и его состояние	σ ₀ , MPa	σ_{GB} , MPa	σ_{dis} , MPa	σ_{SS} , MPa	$\sigma_{ m Or}$, MPa	$\sigma_{0.2}^{th}$, MPa	$\sigma_{0.2}^{exp}$, MPa	Ссылка
Al-1.47Cu-0.34Zr (AG_HPT)	10.0	131.0	38.3	< 64.4	55.0-57.5	299-301	430	Настоящая работа
Al-0.53Mg-0.27Zr (AG_HPT)	10.0	110.7	24.2	< 22.8	80-84	249-253	400	[14]
Al-0.4Zr (AG_HPT)	10.0	77.0	11.3	4.4	_	97.8	96	[12]

Таблица 4. Оценки вкладов различных механизмов упрочнения в прочность различных алюминиевых сплавов в состояниях AG_HPT в сравнении с экспериментальным значением предела текучести

зерен могут служить как источниками, так и стоками для дислокаций [48]. В УМЗ-структуре дислокации после эмиссии из границ будут перемещаться через зерно и захватываться противоположными границами зерен с последующим переползанием по границе и частичной аннигиляцией, обеспечивая динамический возврат дислокационной структуры. Сегрегация примесных элементов на ГЗ может влиять на критическое напряжение испускания дислокаций.

Например, в [49] методом АПТ была обнаружена значительная сегрегация Mg по границам зерен в УМЗ сплаве A1 с 5.7 wt.% Mg, структурированном методом ИПДК, и было высказано предложение, что именно такая сегрегация приводит к значительному увеличению прочности этого УМЗ сплава за счет препятствования эмиссии дислокаций из ГЗ. Кроме того, в течение деформации ГЗ могут действовать как барьеры для скольжения дислокаций, вызывая скопление дислокаций перед ГЗ. Только при достижении некоторого критического напряжения скольжение будет инициироваться в соседнем зерне. Сегрегации могут увеличивать это критическое напряжение и, следовательно, увеличивать коэффициент К в уравнении Холла-Петча (7) [50,51]. Теоретические расчеты из первых принципов [51] и методами молекулярной динамики [52] также показали, что сегрегация Си и Мд в ГЗ приводит к увеличению предела текучести в УМЗ АІ.

Примечательно, что подобное дополнительное упрочнение (~150 MPa) было выявлено и в сплаве Al-Mg-Zr_AG_HPT со сравнимой концентрацией Mg — 0.6 at.% (таблица 4 и [14]). Известно, что Mg тоже активно сегрегирует в ГЗ при обработке ИПДК [53,54]. Сегрегация Си в ГЗ способствует некоторому очищению зерен от Си. Оценки показывают, что сегрегация, подобная наблюдаемой в работе [18], в нашем сплаве Al-Cu-Zr с номинальным содержанием меди 1.47 wt.% (0.63 at.%) и размером зерна ~ 300 nm привела бы лишь к незначительному уменьшению концентрации Cu в зерне (только на ~ 0.02 wt.%).

В случае формирования ультрамалых кластеров Cu в УМЗ сплаве Al-Cu-Zr_AG_HPT, они также будут вносить вклад в упрочнение, однако их вклад, согласно оценке, проведенной в [33] для УМЗ-сплава Al-Zn-Mg-Cu с близким содержанием 1.38 wt.% Cu, будет менее 44 MPa.

Таким образом, сопоставление экспериментальных значений прочности (предела текучести) и значений, рассчитанных на базе микроструктурных параметров и изменения электропроводности, указывает на действие дополнительных механизмов упрочнения в УМЗ структуре сплава системы A1–Cu–Zr, структурированного методом ИПДК. Наиболее вероятными причинами такого значительного (~ 130 MPa) упрочнения могут являться сегрегация Cu в границах зерен и формирование ультрамалых нанокластеров Cu. Для прямого подтверждения указанных причин требуется продолжение исследований тонкой структуры ГЗ и атомного распределения Cu в пределах зерен методами атомной пространственной томографии.

5. Заключение

Впервые исследовано влияние ИПДК на микроструктуру, механические и электрические свойства предварительно состаренного сплава Al–1.47Cu–0.34Zr (wt.%). Показано, что легирование медью с концентрацией 1.47 wt.% или соответственно 0.63 at.% обеспечивает колоссальное упрочнение ($\sigma_{0.2} \sim 430$ MPa, $\sigma_{UTS} \sim 574$ MPa) при приемлемом уровне электропроводности 46.1 %IACS и пластичности до 5%. Предел прочности σ_{UTS} данного сплава в состоянии AG_HPT почти в пять раз превышает σ_{UTS} сплава Al–0.4Zr в том же состоянии. Показано, что микролегирование медью более эффективно для увеличения прочности по сравнению с Mg с тем же атомным содержанием в УM3 сплаве, при этом приводит к меньшему снижению пластичности.

Микроструктурные исследования показали, что после предварительного старения в сплаве Al-Cu-Zr формируются равномерно распределенные в объеме зерен наноразмерные частицы метастабильной фазы Al₃Zr (Ll₂) со средним размером 9.3 nm, а также более крупные частицы со средним размером 34 nm на границах зерен. Обработка ИПДК наряду с формированием однородной

УМЗ структуры приводит к частичному растворению частиц фазы Al₃Zr и формированию преимущественно на границах зерен отдельных Cu-содержащих наноразмерных частиц с размерами 20–40 nm. Изменения микроструктуры после старения и последующей ИПДК находятся в хорошей корреляции с изменением электросопротивления.

На базе микроструктурных параметров, определенных методами РСА, ПЭМ и ПРЭМ, а также изменения электросопротивления проведен анализ действующих механизмов упрочнения в состоянии AG_HPT и рассчитаны их вклады в общее упрочнение. Проведенный анализ показал, что добавка меди ~ 1.5 wt.% способствует значительному измельчению зерна и, как следствие, увеличивает зернограничное упрочнение. Часть меди остается в твердом растворе и вносит вклад в зернограничное упрочнение. Кроме того, легирование медью приводит к колоссальному дополнительному упрочнению (~ 130 MPa) в УМЗ сплаве, нетипичному для крупнозернистого состояния и обусловленному, наиболее вероятно, сегрегацией Сu на границах зерен и формированием нанокластеров Cu.

Благодарности

Авторы выражают благодарность ресурсному центру "Нанотехнологии" научного парка СПбГУ и лично Д.В. Данилову за проведение исследований методом сканирующей электронной микроскопии.

Финансирование работы

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проект № 19-08-00474).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Astm B941-16, Standard Specification for Heat Resistant Aluminum-Zirconium Alloy Wire for Electrical Purposes, ASTM International, West Conshohocken, PA, 2016.
- [2] N.A. Belov, A.N. Alabin, D.G. Eskin, V.V. Istomin-Kastrovskii.
 J. Mater. Sci. 41, 18, 5890 (2006).
- [3] P.H.L. Souza, C.A.S. de Oliveira, J.M. do Vale Quaresma. J. Mater. Res. Technol. 7, *1*, 66 (2018).
- [4] K.E. Knipling, D.C. Dunand, D.N. Seidman. Z. Metallkd. 97, 3, 246 (2006).
- [5] K.E. Knipling, D.N. Seidman, D.C. Dunand. Acta Mater. 59, 3, 943 (2011).
- [6] European Committee for Standartization (CEN). En 50183, Overhead Power Line Conductors — Bare Conductors of Aluminium Alloy with Magnesium and Silicon Content. CEN, Bruxelles (2002).

- [7] R.Z. Valiev, R.K. Islamgaliev, I.V. Alexandrov. Prog. Mater. Sci. 45, 2, 103 (2000).
- [8] H. Miyamoto, K. Ota, T. Mimaki. Scripta Mater. 54, 10, 1721 (2006).
- [9] A.P. Zhilyaev, T.G. Langdon. Prog. Mater. Sci. 53, 6, 893 (2008).
- [10] R. Reihanian, R. Ebrahimi, N. Tsuji, M.M. Moshksar. Mater. Sci. Eng. A **473**, *1–2*, 189 (2008).
- [11] T.S. Orlova, A.M. Mavlyutov, T.A. Latynina, E.V. Ubyivovk, M.Y. Murashkin, R. Schneider, D. Gerthsen, R.Z. Valiev. Rev. Adv. Mater. Sci. 55, 1, 92 (2018).
- [12] T.S. Orlova, T.A. Latynina, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev. J. Alloys Compd. 784, 41 (2019).
- [13] T.A. Latynina, A.M. Mavlyutov, M.Y. Murashkin, R.Z. Valiev, T.S. Orlova. Phil. Mag. 99, 19, 2424 (2019).
- [14] T.S. Orlova, T.A. Latynina, M.Y. Murashkin, F. Chabanais, L. Rigutti, W. Lefebvre. J. Alloys Compd. 859, 157775 (2021).
- [15] А.М. Мавлютов, Т.С. Орлова, Э.Х. Яппарова. ПЖТФ 46, 18, 30 (2020).
- [16] Y. Huang, J.D. Robson, P.B. Prangnell. Acta Mater. 58, 5, 1643 (2010).
- [17] V.D. Sitdikov, M. Yu Murashkin, R.Z. Valiev. J. Alloys Compd. 735, 1792 (2018).
- [18] Y. Nasedkina, X. Sauvage, E.V. Bobruk, M.Yu. Murashkin, R.Z. Valiev, N.A. Enikeev. J. Alloys Compd. 710, 736 (2017).
- [19] M. Murayama, Z. Horita, K. Hono. Acta Mater. **49**, *1*, 21 (2001).
- [20] W. Huang, Z. Liu, M. Lin, X. Zhou, L. Zhao, A. Ning, S. Zeng. Mater. Sci. Eng. A 546, 26 (2012).
- [21] H. Jia, R. Bjørge, K. Marthinsen, Y. Li. J. Alloys Compd. 697, 239 (2017).
- [22] L. Lutterotti, R. Matthies, H.R. Wenk, A. Schultz, J. Richardson. J. Appl. Phys. 81, 2, 594 (1997).
- [23] G.K. Williamson, R.E. Smallman. Philos. Mag. 1, 1, 34 (1956).
- [24] N.A. Belov, A.N. Alabin, A.R. Teleuova. Met. Sci. Heat Treat. 53, 9, 455 (2012).
- [25] K.E. Knipling, R.A. Karnesky, C.P. Lee, D.C. Dunand, D.N. Seidman. Acta Mater. 58, 15, 5184 (2010).
- [26] K.E. Knipling, D.C. Dunand, D.N. Seidman. Acta Mater. 56, 1, 114 (2008).
- [27] A. Paul, T. Laurila, V. Vuorinen, S.V. Divinski. Thermodynamics, Diffusion and the Kirkendall Effect in Solids. Springer Int. Publ., Cham (2014). 529 p.
- [28] Y. Miyajima, S.Y. Komatsu, M. Mitsuhara, S. Hata, H. Nakashima, N. Tsuji. Phil. Mag. 90, 34, 4475 (2010).
- [29] A.S. Karolik, A.A. Luhvich. J. Phys. Condens. Matter 6, 4, 873 (1994).
- [30] H. Jia, R. Bjørge, L. Cao, H. Song, K. Marthinsen, Y. Li. Acta Mater. 155, 199 (2018).
- [31] F. Kutner, G. Lang. Aluminum **52**, 322 (1976).
- [32] G. Sha, A. Cerezo. Acta Mater. 52, 15, 4503 (2004).
- [33] Y. Zhang, S. Jin, P. Trimby, X. Liao, M.Y. Murashkin, R.Z. Valiev, G. Sha. Mater. Sci. Eng. A **752**, 223 (2019).
- [34] N. Kamikawa, X. Huang, N. Tsuji, N. Hansen. Acta Mater. 57, 4198 (2009).
- [35] G.E. Totten, D.S. MacKenzie. Handbook of Aluminium. Marcel Dekker, N.Y. (2003). 1310 p.
- [36] E.O. Hall. Proc. Phys. Soc. B 64, 9, 747 (1951).
- [37] D.B. Witkin, E.J. Lavernia. Prog. Mater. Sci. 51, 1, 1 (2006).
- [38] T. Shanmugasundaram, M. Heilmaier, B.S. Murty, V.S. Sarma. Mater. Sci. Eng. A 527, 7821 (2010).
- [39] N. Hansen, X. Huang. Acta Mater. 46, 5, 1827 (1998).

- [40] F.R.N. Nabarro, Z.S. Basinski, D.B. Holt. Adv. Phys. 13, 50, 193 (1964).
- [41] O.R. Myhr, Ø. Grong, SJ. Andersen. Acta Mater. 49, 1, 65 (2001).
- [42] C.B. Fuller, D.N. Seidman, D.C. Dunand. Acta Mater. 51, 16, 4803 (2003).
- [43] W. Lefebvre, N. Masquelier, J. Houard, R. Patte, H. Zapolsky. Scripta Mater. 70, 43 (2014).
- [44] M.A. Meyers, K.K. Chawla. Mechanical Metallurgy: Principles and Applications. Prentice Hall, N.J. (1984). 762 p.
- [45] G. Sha, L. Yao, X. Liao, S.P. Ringer, Zh.Ch. Duan, T.G. Langdon. Ultramicroscopy 111, 500 (2011).
- [46] S. Cheng, J.A. Spencer, W.W. Milligan. Acta Mater. 51, 15, 4505 (2003).
- [47] V. Yamakov, D. Wolf, S.R. Phillpot, A.K. Mukherjee, H. Gleiter. Nature Mater. 1, 1, 45 (2002).
- [48] J.P. Hirth. Met. Trans. 11, 6, 861 (1972).
- [49] R.Z. Valiev, N.A. Enikeev, M.Y. Murashkin, V.U. Kazykhanov, X. Sauvage. Scripta Mater. 63, 9, 949 (2010).
- [50] J.P. Hirth, J. Lothe. Theory of Dislocations. McGraw-Hill, N.Y. (1968). 780 p.
- [51] D. Zhao, O.M. Løvvik, K. Marthinsen, Y. Li. Acta Mater. 145, 235 (2018).
- [52] E. Nes, B. Holmedal, E. Evangelista, K. Marthinsen. Mater. Sci. Eng. A 410, 178 (2005).
- [53] X. Sauvage, N. Enikeev, R. Valiev, Y. Nasedkina, M. Murashkin. Acta Mater. 72, 125 (2014).
- [54] Y. Liu, M. Liu, X. Chen, Y. Cao, H.J. Roven, M. Murashkin, R.Z. Valiev, H. Zhou. Scripta Mater. 159, 137 (2019).

Редактор Е.Ю. Флегонтова