Создание и определение чувствительности волоконно-оптического рефрактометра на основе поверхностного плазмонного резонанса

© М.Г. Гущин, Д.О. Гагаринова, С.А. Плясцов, Т.А. Вартанян

Университет ИТМО, 197101 Санкт-Петербург, Россия e-mail: magusch@gmail.com

Поступила в редакцию 07.05.2021 г. В окончательной редакции 07.05.2021 г. Принята к публикации 22.05.2021 г.

> Создан волоконно-оптический датчик показателя преломления, использующий явление поверхностного плазмонного резонанса. На участок стандартного многомодового оптического волокна с частично зачищенной оболочкой был нанесены слой хрома толщиной 1 nm и золотая пленка толщиной 50 nm. Измерены спектры пропускания в зависимости от показателя преломления внешней среды, в которую погружался датчик. При изменении показателя преломления внешней среды минимум в спектре пропускания, обусловленный возбуждением поверхностного плазмон-поляритона на границе между золотой пленкой и аналитом, смещался. Чувствительность сенсора составила 1400 nm/RIU.

> Ключевые слова: плазмоника, оптическое волокно, сенсорика, поверхностный плазмонный резонанс, показатель преломления, золото.

DOI: 10.21883/OS.2021.09.51353.2264-21

Введение

Определение показателей преломления относится к важнейшим оптическим методам характеризации вещества. Первый прибор, специально предназначенный для измерения показателя преломления — рефрактометр Аббе (Abbe) — был основан на явлении полного внутреннего отражения на границе между прозрачной средой, как правило, стеклом с известным показателем преломления n_g , и исследуемым веществом, которое приводится в непосредственный контакт с плоской стеклянной поверхностью. В зависимости от показателя преломления исследуемого вещества (аналита) n_a изменяется критический угол полного внутреннего отражения θ_c , который измеряется с необходимой точностью. Разумеется, с помощью рефрактометра Аббе можно измерять показатели преломления, меньшие, чем показатель преломления стекла, использованного в приборе. Чувствительность таких измерений, т.е. отношение приращения угла полного внутреннего отражения к приращению показателя преломления аналита, полностью определяется единственным параметром — показателем преломления стекла и близостью к нему показателя преломления аналита. Это легко видеть из формулы для критического угла полного внутреннего отражения $n_g \sin(\theta_c) = n_a$. Дифференцирование приведенной выше формулы дает чувствительность $d\theta_c/dn_a = 1/n_g \cos(\theta_c) = 1/\sqrt{n_g^2 - n_a^2}$, которая формально неограниченно растет, когда угол полного внутреннего отражения приближается к 90°. Практически же чувствительность ограничена из-за угловой расходимости используемого излучения. Рефрактометры, действие которых основано на описанном выше принципе, стали коммерчески доступными в конце 19-го века.

В 1959 г. было впервые обращено внимание на то, что при нанесении на поверхность стекла тонкой металлической пленки полное внутреннее отражение не просто нарушается, а может быть сведено к нулю при определенном угле, превышающем, угол полного внутреннего отражения, и определенной толщине слоя металла [1]. Впоследствии это явление было связано с возбуждением поверхностного плазмон-поляритона (SPP) на свободной границе металлической пленки [2]. Поскольку угол, при котором наиболее эффективно возбуждается поверхностный плазмон-поляритон, зависит от показателя преломления среды, примыкающей к металлической пленке, на основе этого явления были разработаны рефрактометры [3], которые стали коммерчески доступными (Biacore) в 1990 г.

Угол падения света на границу стекло-металл, при котором на границе металл-аналит возбуждается поверхностный плазмон-поляритон, может быть рассчитан [2] по формуле

$$n_g \sin(\theta_{\text{SPR}}) = \frac{1}{\sqrt{\frac{1}{n_a^2} + \frac{1}{\text{Re}(\varepsilon)}}},\tag{1}$$

где ε — диэлектрическая проницаемость металла, вещественная часть которой должна быть отрицательной и по модулю превосходить диэлектрическую проницаемость аналита n_a^2 . Подкоренное выражение в указанных условиях положительно и больше n_a , так что $\theta_{\text{SPR}} > \theta_c$. Появление в формуле (1) диэлектрической проницаемости металла, обладающего сильной дисперсией, открыло

возможность измерения показателя преломления аналита не только по изменению угла θ_{SPR} , но и по изменению длины волны излучения λ_{SPR} , на которой возникает наибольшее нарушение полного внутреннего отражения при неизменном угле падения света. Дифференцируя формулу (1), получим

$$\frac{d\lambda_{\rm SPR}}{dn_a} = -\frac{2\varepsilon^2}{n_a^2 \left(\frac{d\varepsilon}{d\lambda}\right)}.$$
 (2)

Если дисперсия диэлектрической проницаемости металла хорошо описывается моделью Друде [2] с плазменной длиной волны λ_p , то на длинах волн, существенно больших λ_p , (2) сводится к [4]

$$\frac{d\lambda_{\rm SPR}}{dn_a} = \frac{\lambda_{\rm SPR}^2}{n_a^3 \lambda_p^2}.$$
 (3)

Оценки, выполненные на основе (3) для золота в видимой области спектра, дают значения спектральной чувствительности в тысячи нанометров на единицу показателя преломления, что достаточно для многих применений.

Зависимость спектрального положения плазмонного резонанса от показателя преломления окружающей среды позволила предложить волоконно-оптические сенсоры показателя преломления на основе поверхностного плазмонного резонанса [5]. Для того чтобы нанести металлическую пленку на сердцевину оптического волокна, с небольшого участка волокна удаляют оболочку. Особенностью волоконно-оптического датчика является то, что углы падения лучей на металлическую поверхность нельзя зафиксировать. В многомодовом волокне многообразие направляемых мод приводит к тому, что углы падения излучения на металлическую поверхность оказываются в диапазоне от скользящих до критического угла полного внутреннего отражения на границе сердцевина-оболочка. Согласно (1), при изменении угла падения изменяется и длина волны излучения, на которой резонансно возбуждается поверхностный плазмон-поляритон. Поэтому разброс углов падения излучения приводит соответствующему уширению плазмонного резонанса. Несмотря на это, уменьшение пропускания волокна в диапазоне длин волн, отвечающих резонансному возбуждению плазмон-поляритона, может быть зафиксировано экспериментально. Соответствующие расчеты и демонстрации неоднократно приводились в литературе [5-9], но коммерчески доступных рефрактометров на основе описанных эффектов до сих пор не существует.

В настоящей работе описано создание волоконнооптического сенсора показателя преломления на основе поверхностного плазмонного резонанса и приведены результаты исследования его чувствительности. Использовано стандартное многомодовое оптоволокно и простые операции по подготовки волокна и нанесению металлической пленки. Полученный сенсор обладает чувствительностью, достаточно высокой для разнообразных применений.

Подготовка оптического волокна

Для проведения экспериментальных исследований по измерению показателя преломления внешней среды при помощи поверхностного плазмонного резонанса было взято стандартное многомодовое оптическое волокно MMF 62,5/125. Был выбран метод механического снятия (полировки) части оболочки оптического волокна для обеспечения взаимодействия эванесцентного электромагнитного поля с аналитом. Участок оптического волокна крепился эпоксидной смолой в V-образную канавку подложки, изготовленной из фотополимера ANYCUBIC 3D Printer Resin, Basic на фотополимерном принтере. Полученную конструкцию — подложку с многомодовым оптическим волокном — полировали вручную при помощи девяти различных полировальных пленок (KWH MIRKA LTD, KLINGSPOR, AngstromLap), последовательно переходя от большей зернистости к меньшей, чтобы исключить образование царапин и трещин. Для мониторинга процесса полировки до его начала всю конструкцию при помощи оптических пигтейлов подключали к широкополосному источнику излучения QTh13MA1011 (AlphaBright, Великобритания) и измерителю мощности FOD-1204H (FOD, Литва). Процесс полировки продолжался до момента резкого спада пропускаемой мощности, что свидетельствовало об удалении оболочки. Длина сенсорного участка, на котором волокно приобрело форму латинской буквы D (D-shaped), составила 5 mm. Образец сполированного сверху многомодового оптического волокна изображен на рис. 1.

Напыление металлической пленки

Подготовленное оптическое волокно вместе с подложкой помещалось в вакуумную камеру PVD-75 (Kurt J. Lesker, США), обеспечивавшую безмасляный вакуум на уровне 10^{-7} Torr. Известно, что тонкие золотые

Рис. 1. Образец многомодового оптического волокна со снятой сверху оболочкой. Красное пятно в центре — это рассеянное на поверхностных неоднородностях поле распространяющихся по волокну мод.

пленки при осаждении непосредственно на диэлектрические подложки растут по механизму Вольмера-Вебера с образованием большого количества наноразмерных гранул [10], что в данном случае неприемлемо. С тем чтобы получить сплошную золотую пленку и улучшить ее адгезию к волокну, на волокно предварительно был осаждён тонкий слой хрома. Хром осаждался при помощи электронно-лучевого испарителя до достижения толщины 1 nm по показаниям кварцевых микровесов. Затем в этой же установке методом термического напыления наносилось золото. Оптимальная скорость напыления 0.05 nm/s была определена в предыдущих экспериментах [11]. Эквивалентная толщина осаждённого золота соответствовала 50 nm, что позволяло достичь максимального контраста при возбуждении поверхностного плазмон-поляритона. Схематическая модель полученного образца изображена на рис. 2.

Моделирование пропускания волоконно-оптического сенсора

Детальный расчет пропускания оптического волокна с изготовленным сенсорным участком представляется достаточно трудной задачей, так как необходимо учитывать распространение множества лучей под разными углами и их многократные отражения от металлизированного и неметаллизированных участков волокна. Несмотря на это, качественное описание чувствительности изготовленного сенсора может быть получено, если учесть только однократное отражение света на том участке, где удалена оболочка и нанесена золотая пленка.

Расчетная модель изображена на рис. 3, на котором сердцевина волокна представлена полубесконечной средой с показателем преломления 1.5. Излучение,

Рис. 2. Поперечное сечение многомодового оптического волокна с нанесенными слоями хрома (1 nm) и серебра (50 nm).

Рис. 3. Модель для расчета коэффициента отражения света от многослойной сенсорной структуры. Луч света падает из полубесконечной среды с показателем преломления 1.5, представляющей сердцевину оптического волокна. Слой хрома толщиной 1 nm обеспечивает адгезию золотой пленки и ее однородность. Оптимальная толщина золотой пленки — 50 nm. Аналит в расчете был представлен как полубесконечная среда с определенным показателем преломления, меньшим показателя преломления сердцевины оптоволокна.

распространяющееся в сердцевине многомодового волокна, падает на его границы под различными углами, большими критического угла полного внутреннего отражения на границе сердцевина—оболочка. Поскольку числовая апертура использованного нами волокна MMF 62,5/125 составляет NA = 0.276, минимальный угол падения луча на металлическую пленку составляет $90 - \sin^{-1}(0.276) = 74^{\circ}$.

Для расчета отражения света от многослойной структуры использовался матричный метод [12-14]. Оптические постоянные золота были взяты из [15], поскольку они были получены для золотой пленки близкой толщины, а хрома из [16]. На рис. 4 приведены спектры отражения сенсорного участка при контакте с аналитом с показателем преломления 1.37 и толщине золотой пленки 50 nm для нескольких углов падения излучения. Глубокий минимум коэффициента отражения обусловлен резонансным возбуждением поверхностного плазмон-поляритона на границе между золотой пленкой и аналитом. При толщинах золотой пленки, отличных от 50 nm, провал в спектре коэффициента отражения оказывается не таким глубоким, поэтому указанная толщина оптимальна. Положение минимума отражения зависит от угла падения света, поэтому провал в спектре пропускания оптоволоконного сенсора, в котором распространяются лучи во всем указанном выше диапазоне углов, будет значительно шире, чем каждый из спектров, представленных на рис. 4, в отдельности.

Для оценки чувствительности спектрального положения минимума коэффициента отражения к изменению показателя преломления аналита был выбран угол падения, равный 76°.

Результаты расчета спектров отражения для угла падения света 76° при различных показателях преломления аналита в диапазоне 1.33–1.39 представлены на рис. 5, а на рис. 6 по этим данным построена зависимость спектрального положения минимума коэффициента отражения сенсорной структуры от показателя преломления аналита. В соответствии с (3) чувствительность спектрального положения плазмонного резонанса к изменению показателя преломления растет с увеличением длины волны. Диапазон чувствительности 1700–4000 nm/RIU в зависимости от показателя преломления среды.

Рис. 4. Рассчитанные спектры отражения сенсорного участка волокна при различных углах падения излучения. Показатель преломления аналита 1.37. Углы падения излучения 74–76°.

Рис. 5. Рассчитанные спектры отражения сенсорного участка волокна при изменении показателя преломления аналита. Угол падения света 76°. Показатель преломления среды: 1.33 (*1*), 1.34 (*2*), 1.35 (*3*), 1.36 (*4*), 1.37 (*5*), 1.38 (*6*), 1.39 (*7*).

Рис. 6. Рассчитанная зависимость спектрального положения минимума коэффициента отражения сенсорной структуры от показателя преломления аналита. Угол падения света 76°.

Рис. 7. Измеренные спектры пропускания волоконно-оптического сенсора в зависимости от показателя преломления раствора глюкозы. Показатель преломления раствора: 1.334 (*1*), 1.341 (*2*), 1.348 (*3*), 1.355 (*4*), 1.362 (*5*), 1.37 (*6*), 1.376 (*7*), 1.382 (*8*).

Испытание волоконно-оптического сенсора

Действие созданного волоконно-оптического сенсора было проверено на растворах глюкозы, показатель преломления которых изменялся в зависимости от концентрации от 1.334 до 1.382 [17,18].

Свет в оптоволокно подавался широкополосным источником излучения QTh13MA1011 (AlphaBright, Beликобритания) под углом от 74°, спектр излучения, прошедшего через сенсор, регистрировался спектрофлуориметром Флюорат-02-Панорама (Люмэкс, Россия) в диапазоне от 360 до 850 nm. Результаты измерений представлены на рис. 7, а на рис. 8 построена зависимость

Рис. 8. Экспериментально полученная зависимость спектрального положения минимума пропускания волоконно-оптического сенсора от показателя преломления раствора глюкозы.

спектрального положения минимума пропускания сенсора от показателя преломления аналита. Линейная зависимость, отвечающая чувствительности 1400 nm/RIU, наблюдается во всем исследованном диапазоне показателей преломления аналита.

Заключение

В результате простых манипуляций стандартное многомодовое волокно превращено в датчик показателя преломления, который может стать основой для построения волоконно-оптического рефрактометра. Сдвиг минимума пропускания, обусловленный зависимостью условий возбуждения поверхностно плазмон-поляритона от показателя преломления аналита, сопровождается значительным изменением пропускания в широкой спектральной области, что может быть использовано для упрощения схемы регистрации. Низкие потери в оптическом волокне позволяют использовать такой датчик дистанционно, в том числе, в труднодоступных местах. Измерения могут производиться с высокой частотой повторения и пренебрежимо малой задержкой передачи данных. Небольшая глубина проникновения эванесцентного поля в аналит обеспечивает чувствительность волоконно-оптического сенсора к изменению показателя преломления в тонких слоях, непосредственно прилегающих к его поверхности. Последнее обстоятельство открывает возможности для биомедицинских применений при условии функционализации поверхности золотой пленки.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Turbadar T. // Proc. Phys. Soc. 1959. V. 73. P. 40-44.
- [2] *Raether H.* Surface Plasmons on Smooth and Rough Surfaces and on Gratings, Berlin, Heidelberg: Springer, 1988.
- [3] Liedberg B., Nylander C., Lundstrom I. // Sens. Actuators. 1983. V. 4. P. 299–304.
- [4] Homola J. // Sens. Actuators. B. 1997. V. 41. P. 207-211.
- [5] Iga M., Seki A., Watanabe K. // Sens. Actuators. B. 2005.
 V. 106. P. 363–368.
- [6] Apriyanto H., Ravet G., Bernal O.D., Cattoen M., Seat H.C., Chavagnac V., Surre F., Sharp J.H. // Scientific Reports. 2018.
 V. 8. N 1. P. 1–3.
- [7] Cennamo N., Varriale A., Pennacchio A., Staiano M., Massarotti D., Zeni L., D'Auria S. // Sens. Actuators. B: Chemical. 2013. V. 176. P. 1008–1014.
- [8] Esteban O., Naranjo F.B., Díaz-Herrera N. // Sens. Actuators. B. 2011. V. 158. P. 372–376.
- [9] Mitsuhiro I., Atsushi S., Kazuhiro W. // Sens. Actuators. B. 2005. V. 106. N 1. P. 363–368.
- [10] Leonov N.B., Gladskikh I.A., Polishchuk V.A., Vartanyan T.A. // Opt. and Spectrosc. 2015. V. 119. N 3. P. 450–455.
- [11] Гладских И.А., Вартанян Т.А. // Опт. и спектр. 2016. Т. 121. № 6. Р. 916–921.
- [12] *Steed R.J.* Transfer Matrix Theory for a Type of Uniaxial Layers: Starting from Basic Electromagnetism, 2013.
- [13] Борн М., Вольф Э. Основы оптики. М.: Наука, 1973.
- [14] Byrnes S.J. Multilayer optical calculations, 2016. https://arxiv.org/abs/1603.02720
- [15] Yakubovsky D.I., Arsenin A.V., Stebunov Y.V., Fedyanin D.Y., Volkov V.S. // Opt. Express. 2017. V. 25. P. 25574–25587.
- [16] Johnson P.B., Christy R.W. // Phys. Rev. B. 1974. V. 9. P. 5056-5070.
- [17] Иоффе Б. Рефрактометрические методы химии. Л.: ГНТИ Химической литературы, 1960.
- [18] Sucrose, Refractometry concentration table (+20°C), METTLER TOLEDO, электронный ресурс: https://www.mt.com/ru/ru/home/supportive_content/ concentration-tables-ana/Sucrose_re_e.html. [Дата обращения: 2021].