03 Оптический эффект в магнитных эмульсиях при воздействии магнитного поля

© С.С. Белых, К.В. Ерин¶

Северо-Кавказский федеральный университет, 355017 Ставрополь, Россия ¶ e-mail: exiton@inbox.ru

Поступила в редакцию 18.05.2021 г. В окончательной редакции 28.05.2021 г. Принята к публикации 01.06.2021 г.

> Исследованы особенности магнитооптического эффекта изменения прозрачности в магнитной эмульсии с низким межфазным натяжением. Произведена интерпретация эффекта на основе приближения аномальной дифракции. Установлены характерные времена воздействия поля, при которых на оптический эффект не влияют процессы коалесценции и структурирования образца. Определено время релаксации эффекта и произведено сопоставление результатов с расчетами по механизмам малых деформаций микрокапель и вращательной броуновской диффузии.

> Ключевые слова: магнитные эмульсии, изменение прозрачности, аномальная дифракция, деформация микрокапель, ориентированные структуры.

DOI: 10.21883/OS.2021.09.51344.2300-21

Введение

Магнитные эмульсии (феррожидкостные эмульсии) представляют собой двухфазные системы, состоящие из капель магнитной жидкости, взвешенных в немагнитной несмешивающейся жидкости. Их макроскопическое поведение продиктовано сложными физическими явлениями, происходящими на микроуровне, такими как деформация, объединение и разрушение капель под действием внешних магнитного, электрического или гидродинамического полей. Методы синтеза магниточувствительных эмульсий были предложены на рубеже 70-80-х гг. ХХ века [1,2]. Первоначально они предназначались для визуализации магнитных записей и контроля качества магнитных головок [3]. В последнее время спектр применения подобных систем существенно расширился за счет развития микрофлюидики [4,5] и биомедицинских технологий [6-8]. С использованием микрокапель магнитных жидкостей предложены методы измерения вязкости и поверхностного натяжения жидкостей [9,10] и даже определения содержания метилового спирта [11]. Традиционно магнитные эмульсии разделяют на две группы по величине межфазного натяжения [12]. Так, в эмульсиях с высоким коэффициентом межфазного натяжения (к таким эмульсиям, как правило, относят среды с взвешенными в воде каплями магнитной жидкости на углеводородной основе) микрокапли в магнитном поле практически не меняют форму, и выстраиваются цепочки вдоль направления линий напряженности. Многократные исследования оптических явлений в дисперсных системах, содержащих микрокапли магнитной жидкости, в основном опирались на весьма выраженные эффекты агрегирования в маг-

нитных эмульсиях, приводящие к образованию структур различного размера [13-15]. В работах [16-20] описаны эффекты дифракции и изменения прозрачности в магнитных эмульсиях и подобных им магнитореологических жидкостях, т.е. коллоидах со сравнительно крупными магнитными частицами микронных размеров. Особенностью другого типа магнитных эмульсий с низким межфазным натяжением является образование системы вытянутых вдоль направления поля эллипсоидальных микрокапель [21]. Разумно предположить, что магнитная эмульсия под действием поля по оптическим свойствам может быть подобна дисперсным системам с полностью ориентированными частицами. Теории ориентационных оптических эффектов в дисперсных системах подробно разработаны [22,23]. При этом, в отличие от известных дисперсных систем, в том числе биологического происхождения, в магнитных эмульсиях степенью вытянутости микрокапель можно управлять действием магнитного поля, не изменяя при этом их насыщенной ориентации, а при нулевом поле переходить к описанию системы как совокупности сферических микрокапель. Другой особенностью магнитных эмульсий является чрезвычайная чувствительность к магнитному полю даже самой малой напряжённости. Магнитооптические эффекты в магнитных жидкостях (концентрированных и разбавленных) исследовались ранее, но при этом интенсивность оптического отклика на действие магнитного поля умеренной и низкой напряженности в них, как правило, невелика [24,25]. В магнитных эмульсиях возможно надежное наблюдение магнитооптических эффектов уже при напряженностях магнитного поля 300-500 A/m, что примерно в 5-10 раз меньше, чем в разбавленных магнитных жидкостях [21,25]. Таким образом, оптические свойства магнитных эмульсий представляют существенный интерес как с точки зрения всестороннего изучения механизмов их возникновения, так и развития практических применений. Настоящая работа является продолжением исследований, начатых в [21], и мы представляем в ней результаты исследования особенностей оптического эффекта изменения прозрачности в магнитных эмульсиях с малым межфазным натяжением.

Эксперимент

Для исследований прозрачности в магнитных эмульсиях с низким межфазным натяжением использовалась классическая установка для магнитооптических измерений, аналогичная описанной в [21]. В качестве источника света использовался гелий-неоновый лазер ГН-2П с длиной волны 633 nm, свет которого проходил через стеклянную кювету с образцом, находящуюся в области однородного поля катушек Гельмгольца. Регистрация оптического сигнала производилась при помощи фотоумножителя ФЭУ-27 и цифрового осциллографа AURIS B-423. Для уменьшения разброса экспериментальных данных производились многократные измерения с последующим усреднением результатов.

Эмульсии для экспериментальных исследований синтезировались с использованием магнитной жидкости типа магнетит в керосине с объемной концентрацией твердой фазы 10% (производитель — НИПИ Газпереработки, г. Краснодар). Эмульсия магнитной жидкости в гидравлическом масле АМГ-10 изготавливалась путем продавливания магнитной жидкости через тонкий капилляр и последующего механического перемешивания. Стабильность системы в значительной степени достигается за счет вязкости масла и близости значений плотности масла и магнитной жидкости. Объемная концентрация магнитной жидкости в образцах эмульсий составляла от 2 до 7%, а размер капель находился в пределах 0.5-7 µm. Данные о распределении капель эмульсии по размерам получены методом динамического рассеяния света на приборе Photocor Complex. Эксперименты показали, что в образцах магнитных эмульсий величина оптического эффекта практически не зависит от состояния поляризации падающего света, поэтому плоскость поляризации падающего света была ориентирована под углом 45° к горизонту.

Магнитное поле создавали при помощи катушек Гельмгольца, помещенных на вращающемся столике так, чтобы вектор напряженности поля мог составлять различные углы с направлением распространения света.

Относительную прозрачность магнитной эмульсии оценивали по значению величины $\delta T = (T_H - T_0)/T_0$, где $T_H = I_H/I_0^i$ — прозрачность системы при воздействии поля и $T_0 = I_0/I_0^i$ — в его отсутствие соответственно $(I_0^i$ — интенсивность света, падающего на кювету).

Связь между оптической плотностью эмульсии и прозрачностью можно интерпретировать на основе закона Бугера-Ламберта:

$$T_{0,H} = \exp(-2.3D_{0,H}),\tag{1}$$

где D_H и D_0 — оптические плотности системы в магнитном поле и без него соответственно. В приближении однократного рассеяния оптическую плотность можно выразить через сечение ослабления света частицей (σ_e), концентрацию частиц (N) и длину пути света (l):

$$D = 0.43\sigma_e Nl. \tag{2}$$

Поскольку точное определение числовой концентрации микрокапель в магнитной эмульсии затруднительно, а параметр зависит от нее сложным образом, то для сопоставления результатов эксперимента с оптическими моделями рассчитывалось относительное изменение оптической плотности:

$$\delta D = \frac{1}{D_0} \lg \left(\frac{1}{\delta T + 1} \right). \tag{3}$$

В работах Н.Г. Хлебцова [23,26] этот параметр является ключевым для описания ориентационного эффекта изменения прозрачности в дисперсных системах (ориентационного турбидиметрического эффекта). Он удобен, в том числе и тем, что при неизменной концентрации частиц определяется только соотношением сечений ослабления света вследствие ориентации частиц полем или, как в нашем случае, вытяжением микрокапель вдоль направления поля:

$$\delta D = \frac{\sigma_H - \sigma_0}{\sigma_0}.\tag{4}$$

Параметры δT и δD имеют противоположные знаки, т.е. при увеличении прозрачности системы в поле $\delta T > 0, \, \delta D < 0, \, a$ при уменьшении — $\delta T < 0, \, \delta D > 0.$

Воздействие магнитного поля приводит к изменению прозрачности магнитной эмульсии. Знак эффекта зависит от ориентации поля относительно светового луча и среднего размера микрокапель. В импульсном магнитном поле кривая изменения эффекта достаточно типична для электро- и магнитооптических эффектов и состоит из трех областей: нарастание эффекта (I), область насыщения (II) и релаксация после выключения поля (III) (рис. 1). При этом релаксация эффекта для некоторого диапазона размеров частиц может иметь немонотонный характер с переходом значения эффекта через нуль.

Спад эффекта после выключения импульса поля имеет характерные времена релаксации в диапазоне 5–10 s. На рис. 2 показаны кривые релаксации эффекта, измеренные после выключения импульса продольного магнитного поля одной и той же напряжённости, но различной длительности. Из кривых видно, что существенного различия во временах релаксации не наблюдается, что

Рис. 1. Кривые магнитооптического эффекта в продольном импульсном магнитном поле длительностью 12 s и напряженностью 4.5 kA/m в образцах магнитных эмульсий со средним размером микрокапель 3 (1), $1 \mu m$ (2).

Рис. 2. Кривые релаксации магнитооптического эффекта после выключения импульса магнитного поля длительностью 2 (1), 8 (2), 16 s (3). Линия — расчет в приближении аномальной дифракции при $\tau = 7$ s.

может говорить о том, что средний размер микрокапель эмульсии не изменяется при воздействии магнитного поля длительностью до 16–18 s.

Магнитооптический эффект имеет характерную зависимость от ориентации магнитного поля относительно луча света. Для эмульсии с относительно крупными частицами ($r_0 > 1.5-2\mu$ m) знаки эффектов в поле, направленном вдоль луча (в дальнейшем мы будем называть такое поле продольным) и перпендикулярно ему (поперечное поле), имеют разные знаки (рис. 3). В продольном поле прозрачность эмульсии возрастает, а в поперечном снижается. Эффект отсутствует при угле ориентации поля относительно луча света около 40°.

На рис. 4 показана полевая зависимость магнитооптического эффекта, измеренная при подаче линейно возрастающего магнитного поля. Зависимость характеризуется быстрым ростом эффекта при увеличении поля до 1-1.5 kA/m, затем скорость роста существенно замедляется, и эффект переходит в состояние, близкое к насыщению. Было обнаружено, что длительное действие поля с напряженностью выше 4 kA/m приводит к снижению величины эффекта примерно на 20-25%. В сравнительно быстро нарастающем поле (за время менее 15 s) снижения величины эффекта не наблюдается. Таким образом, можно сделать вывод о том, что влияние процессов коалесценции в магнитных эмульсиях можно существенно снизить, если использовать сравнительно короткие импульсы поля даже достаточно высокой напряженности. Это коррелирует с результатами измерения времени релаксации эффекта, которые демонстрируют одинаковые времена релаксации при длительности воздействия поля до 20 s.

Рис. 3. Зависимость магнитооптического эффекта от угла между направлением поля и луча света. Точки — эксперимент, линии — расчет при $r_0 = 1.5$ (1), 3 (2), 6 μ m (3).

Рис. 4. Полевая зависимость магнитооптического эффекта. Точки — эксперимент; кривые — расчет в приближении аномальной дифракции: $r_0 = 1.5$ (1), 3 (2), 9 μ m (3).

Рис. 5. К расчету сечения ослабления света в приближении аномальной дифракции.

Обсуждение результатов

Интерпретация оптических эффектов в магнитных эмульсиях возможна с использованием, так называемого приближения аномальной дифракции. Приближение было сформулировано Ван де Хюлстом на основании принципов Гюйгенса и Бабине [26–28] и является обобщением дифракционной формулы Фраунгофера. Оно справедливо для оптически мягких частиц с параметром размера $x = 2\pi r_0/\lambda \gg 1$ и с относительным показателем преломления $|m-1| \ll 1$. Оба условия применимы к каплям магнитной эмульсии, так как у исследованных нами образцов $x \approx 10-50$, а |m-1| = 0.06. Ранее в [21] мы успешно применяли это приближение для качественного описания оптических эффектов для микрокапель магнитной эмульсии.

Рассмотрим ориентацию сфероидальной микрокапли относительно направления падающего света как показано на рис. 5. Сечение ослабления света в приближении аномальной дифракции можно записать как

$$\sigma_e = S(p, \alpha)Q(\rho), \tag{5}$$

где $S(p, \alpha)$ — площадь тени, зависящая от степени вытянутости микрокапли (p = a/b) и ее ориентации по отношению к свету, а $Q(\rho)$ — фактор эффективности ослабления света. Выражение для $Q(\rho)$ поглощающей частицы (показатель преломления капель использованной нами магнитной жидкости для длины волны 633 nm составляет $n_{mf} = 1.57 - 0.02i$) приведено в [27]:

$$Q(\rho) = 2 - 4 \exp(-\rho \operatorname{tg}\beta) \frac{\cos\beta}{\rho} \left(\sin(\rho - \beta) + \frac{\cos\beta}{\rho}\right) \times \cos(\rho - 2\beta) + 4\left(\frac{\cos\beta}{\rho}\right)^2 \cos 2\beta.$$

Здесь

$$\operatorname{tg}\beta = \frac{\operatorname{Im}(m)}{\operatorname{Re}(m) - 1}$$

Параметр ρ носит название фазового сдвига, и для сфероида, ориентированного под углом α к падающему свету, рассчитывается по формуле:

$$\rho = \frac{4\pi r_0}{\lambda} \frac{m-1}{\sqrt[3]{p}\sqrt{1+(p^{-2}-1)\cos^2\alpha}}.$$
 (6)

Тогда с учетом (4), (5) и простых геометрических соображений можно получить выражение для сечения ослабления света:

$$\sigma_e = \pi r_0^2 Q(\rho) \sqrt[3]{p} \sqrt{1 + (p^{-2} - 1) \cos^2 \alpha}.$$
 (7)

Как видно из (6) и (7), основными параметрами микрокапли, определяющими величину сечения ослабления, являются соотношение полуосей p и радиус сферы равного объема r_0 . Предполагая, что в процессе деформации объем микрокапли не изменяется, мы можем установить связь между p и r_0 на основе соотношения, описывающего деформацию капли магнитной жидкости во внешнем магнитном поле напряженностью H [29,30]:

$$\frac{u_0 H^2 r_0}{2\gamma} = (\chi^{-1} + N_a)^2 \sqrt[3]{p} (2p - p^{-2} - 1), \qquad (8)$$

где γ — межфазное натяжение, μ_0 — магнитная постоянная, χ — магнитная восприимчивость материала микрокапли (в нашем случае $\chi = 1.4$, $\gamma = 10^{-6}$ N/m). В использованном нами диапазоне напряженностей поля мы полагаем $\chi = \text{const.}$ Размагничивающий фактор вдоль длинной оси N_a выражается через соотношение осей сфероида известным соотношением

$$N_a = \frac{1}{2p^2 \left(\sqrt{1-p^{-2}}\right)^3} \left(\ln \left(\frac{1+\sqrt{1-p^{-2}}}{1-\sqrt{1-p^{-2}}} \right) - 2\sqrt{1-p^{-2}} \right).$$

Путем численного решения уравнения (8) можно определить связь между соотношением осей капли и радиусом сферы эквивалентного объема при известных величинах поля и межфазного натяжения. На рис. 4 представлены расчеты зависимостей магнитооптического эффекта на основе формул (3) и (5)-(8). Согласие с экспериментом наблюдается при $r_0 = 3 \,\mu\text{m}$, что соответствует среднему размеру капель в исследованной в данном случае эмульсии. Обратим внимание на особенность полевой зависимости для микрокапель сравнительно малого размера (около 1.5 µm). Для таких капель полевая зависимость имеет характерный вид с практически горизонтальным участком с малой величиной эффекта вплоть до напряженностей поля 1.5 kA/m, после которого эффект начинает возрастать. Регистрация магнитооптического эффекта с такой особенностью может создать ложное впечатление наличия порогового значения поля, при котором возникает оптический эффект. Подобная интерпретация магнитоптических эффектов магнитных коллоидах встречается в литературе [31]. Приближение аномальной дифракции также дает правильное качественное и количественное объяснение зависимости эффекта от угла между направлением магнитного поля и светового луча. В данном случае нами была учтена, в отличие от более ранней работы [21], взаимосвязь между p и r_0 на основе соотношения (8). Расчеты показывают, что вид зависимости определяется размером исходной микрокапли (рис. 3).

Интерпретация релаксационного процесса после выключения магнитного поля может быть построена на основе теории ориентационных эффектов в дисперсных системах, развитой Н.Г. Хлебцовым [23,26]. Согласно этой теории, релаксация относительного изменения оптической плотности дисперсной системы с произвольным размером частиц описывается в терминах оптических парциальных вкладов, т.е. разложений сечения ослабления света по полиномам Лежандра [23,32]:

$$\delta D(t) = \sum_{n=1}^{\infty} (4n+1) f_{2n} \delta \sigma_{2n} \exp\left(-2n(2n+1)\Theta t\right).$$
(9)

Здесь f_{2n} — четные коэффициенты разложения ориентационной функции по полиномам Лежандра, Θ — коэффициент вращательной броуновской диффузии, а

$$\delta\sigma_{2n} = \pi r_0^2 P_{2n}(\cos\alpha) \int_0^1 P_{2n}(z)Q(z)dz \Big/ \sigma_0$$

— разложение изменения сечения ослабления света частицы при её ориентации под углом α к падающему свету по полиномам Лежандра (в разложение входят только четные члены, т. е. n = 1 соответствует полиному второй степени P_2 , а n = 2 — четвертой P_4 и т.д.).

Ключевой особенностью выражения (9) является то, что оно предсказывает неэкспоненциальную релаксацию даже для монодисперсной системы частиц из-за учета парциальных вкладов более высокого порядка. Экспоненциальный спад эффекта возможен только в случае рэлеевских частиц ($\delta\sigma$ мало), а также для более крупных частиц, но только с низкой степенью ориентационной упорядоченности ($f_{2n} \ll 1$). В обоих случаях релаксация ориентационного оптического эффекта характеризуется временем $\tau_B = 1/6\Theta$. Расчеты по формуле (9), приведенные в [32], показывают, что ориентационные эффекты могут релаксировать как быстрее, так и медленнее простой экспоненциальной зависимости. Общим правилом является сильное искажение экспоненциальной релаксации для таких комбинаций параметров частиц, когда связанный с ориентацией частиц оптический эффект близок к нулю, т.е. величина оптического параметра для ориентированных частиц практически не отличается от таковой для неориентированных. Вторым общим правилом является сильное искажение начальных участков релаксации, а на более поздних стадиях кажущееся время

Рис. 6. Расчетные кривые релаксации магнитооптического эффекта для микрокапель с радиусом $r_0 = 1 \,\mu$ m после выключения продольного магнитного поля с напряженностью 4.5 (*I*), 3 (*2*), 1.5 kA/m (*3*).

релаксации эффекта близко к истинному. Качественно такой эффект можно видеть на рис. 1.

При использовании теории ориентационных эффектов для магнитных эмульсий необходимо иметь в виду следующее: а) капли эмульсии вытягиваются вдоль направления поля, поэтому в поле всегда присутствует насыщенная степень ориентационной упорядоченности; б) релаксация эффектов происходит одновременно по двум механизмам — вращательная броуновская диффузия и релаксация формы жидкой капли. На рис. 2 представлен расчет кривой спада магнитооптического эффекта в приближении аномальной дифракции с учетом релаксации формы микрокапли с характерным временем около 7 s. Наблюдается удовлетворительное согласие с экспериментальными данными. Отметим, что в зависимости от напряженности поля и его ориентации расчеты предсказывают и немонотонные кривые релаксации эффекта (рис. 6). Это следует из того, что для микрокапель определенных размеров максимальная или минимальная величина оптического эффекта может достигаться не в случае сферической или максимально вытянутой формы микрокапли, а в некотором промежуточном состоянии. Такая немонотонная релаксация действительно наблюдается в эксперименте для образца со сравнительно малым средним размером капель (рис. 1, кривая 2).

Измерение времени вращательной броуновской релаксации для сильно вытянутых частиц широко используется в электрооптических исследованиях для определения размеров и формы макромолекул [33] и других частиц органической и неорганической природы по кривым нарастания или спада электрооптического эффекта (двойного лучепреломления, дихроизма, изменения прозрачности или интенсивности рассеянного света) [34], а также данным динамического рассеяния поляризованного света [35]. Для вытянутых микрокапель с радиусом эквиобъемной сферы r_0 , взвешенных в среде с эффективной вязкостью η_{eff} , выражение для времени вращательной броуновской релаксации оптического эффекта можно записать в виде

$$\tau_B = \frac{1}{6\Theta} = \left(\frac{18kT}{\pi\eta_{\rm eff}r_0^3 p^2} \left(\ln(p) + \delta\right)\right)^{-1}.$$
 (10)

Здесь $\delta = -0.662 + 0.917 p^{-1} - 0.05 p^{-2}$ — коэффициент коррекции концевых эффектов.

Описание релаксации формы микрокапель принято строить на основе динамики малых деформаций, сформулированной Тейлором [36] и развитой Маффеттоне и Минале [37]. Согласно этой модели релаксация жидкой капли в вязкой среде к сферической форме происходит с характерным временем [38]

$$\tau_d = \frac{\eta_m r_0}{\gamma f_1},\tag{11}$$

где η_m — вязкость среды, окружающей каплю, а безразмерный параметр f_1 определяется соотношением вязкостей капли и окружающей среды $\tilde{\eta} = \eta_d/\eta_m$:

$$f_1 = \frac{40(\tilde{\eta} + 1)}{(2\tilde{\eta} + 3)(19\tilde{\eta} + 16)}.$$

Для наших образцов $f_1 \approx 0.4$, и тогда ожидаемое время релаксации формы капли должно составлять $au_d \approx 0.1\,\mathrm{s}$. Это более чем на порядок меньше наблюдаемых в эксперименте времен релаксации (рис. 2). При этом использование механизма вращательной диффузии, описываемого формулой (10), также не дает удовлетворительных результатов. Для микрокапель размером $3-5\,\mu\mathrm{m}$ с соотношением осей p=5 расчеты по формуле (10) дают значения порядка 300 s. Расхождение может быть связано с тем, что формула (11) справедлива для малых деформаций капель, тогда как в эксперименте соотношения осей капель находились в диапазоне *p* = 3 – 10 в зависимости от напряженности поля и, очевидно, не могут считаться малыми. Численное моделирование деформации микрокапель магнитной жидкости в сильных магнитных полях [39] показывает сложный характер зависимости удлинения от времени при воздействии магнитного и гидродинамического полей. Кроме того, на рис. 1 можно видеть, что для эмульсий с заведомо разным средним размером микрокапель, релаксация эффекта происходит с очень близкими временами (за исключением участка сразу после выключения поля). Это также может свидетельствовать в пользу наличия другого механизма релаксации анизотропии, малочувствительного к размеру частицы, что не характерно для теории малых деформаций капель ($\tau_d \sim r_0$) и тем более вращательной броуновской диффузии ($\tau_B \sim r_0^3$).

Заключение

Воздействие магнитного поля на эмульсию магнитной жидкости в минеральном масле АМГ-10 приводит к существенному изменению прозрачности, которое может достигать 25-30% в поле напряженностью до 5 kA/m. Величина и знак магнитооптического эффекта зависят от напряженности поля и его ориентации относительно луча света. Значительного влияния коалесценции капель под действием поля можно избежать, используя импульсные магнитные поля длительностью не более 15-20 s. Удовлетворительная качественная и количественная интерпретация магнитооптического эффекта может быть построена на основе приближения аномальной дифракции света на деформированных микрокапелях эмульсии. Наблюдаемое в эксперименте время релаксации магнитооптического эффекта более чем на порядок превосходит расчеты по известному соотношению, описывающему время релаксации формы жидких капель. Это расхождение может быть связано с существованием более сложного механизма релаксации сильно вытянутых микрокапель, характерное время которого слабо зависит от размера капли.

Финансирование работы

Работа выполнена при поддержке государственного задания Минобрнауки России на выполнение научноисследовательских работ (проект № 0795-2020-007).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Romankiw L.T., Briachift N.Y. U.S. Patent 3981844, 1976.
- [2] Чеканов В.В., Дроздова В.И. А.С. СССР № 966735, 1982.
- [3] Диканский Ю.И. Эффекты взаимодействия частиц и структурно-кинетические процессы в магнитных коллоидах. Дисс. д-ра физ.-мат. наук. Ставрополь, 1999.
- [4] Torres-Diaz I., Rinaldi C. // Soft Matter. 2014. V. 10. P. 8584. doi 10.1039/C4SM01308E
- [5] Yang R.-J., Hou H.-H., Wang Y.-N., Fu L.-M. // Sens. Actuators. 2016. V. B 224. P. 1. doi 10.1016/j.snb.2015.10.05
- [6] Pankhurst Q.A., Thanh N.T.K., Jones S.K., Dobson J. // J. Phys. D: Appl. Phys. 2009. V. 42. 224001. doi 10.1088/0022-3727/42/22/224001
- [7] Liu Q., Li H., Lam K.Y. // Mol. Pharm. 2018. V. 15. P. 4632. doi 10.1021/acs.molpharmaceut.8b00626
- [8] Dailey J.P., Phillips J.P., Li C., Riffle J.S. // J. Magn. Magn. Mater. 1999. V. 194. P. 140. doi 10.1016/S0304-8853(98)00562-9
- Backholm M., Vuckovac M., Schreier J., Latikka M., Hummel M., Linder M.B., Ras R.H.A. // Langmuir. 2017.
 V. 33. P. 6300. doi 10.1021/acs.langmuir.7b01327
- [10] Khokhryakova (Bushueva) C., Kostarev K., Shmyrova A. // Exp. Therm. Fluid Sci. 2019. V. 101. P. 186. doi 10.1016/j.expthermflusci.2018.10.014
- [11] Mahendran V., Philip J. // Sens. Actuators B. 2013. V. 185.
 P. 488. doi 10.1016/j.snb.2013.05.038
- [12] Ерин К.В., Белых С.С. // Колл. журн. 2020. Т. 82. № 6.
 С. 689; Erin K.V., Belykh S.S. // Coll. J. 2020. V. 82. N 6.
 Р. 672. doi 10.1134/S1061933X20060046

- [13] Liu J., Lawrence E.M., Wu A., Ivey M.L., Flores G.A., Javier K., Richard J. // Phys. Rev. Lett. 1995. V. 74 (14).
 P. 2828. doi 10.1103/PhysRevLett.74.2828
- [14] Ivey M., Liu J., Zhu Y., Cutillas S. // Phys. Rev. E. 2000. V. 63. 011403. doi 10.1103/PhysRevE.63.011403
- [15] Brojabasi S., Mahendran V., Lahiri B.B., Philip J. // Opt. Comm. 2014. V. 323. P. 54. doi 10.1016/j.optcom.2014.02.041
- [16] Horng H.E., Yang S.Y., Tse W.S., Yang H.C., Luo Weili, Hong Chin-Yih // J. Magn. Magn. Mater. 2002. V. 252. P. 104. doi 10.1016/S0304-8853(02)00629-7
- [17] Mehta R.V., Patel R., Chudasama B., Upadhyay R.V. // Opt. Lett. 2008. V. 33. N 17. P. 1987. doi 10.1364/OL.33.001987
- Philip J., Laskar J.M., Raj B. // Appl. Phys. Lett. 2008. V. 92.
 P. 221911. doi 10.1063/1.2939100
- [19] Martin J.E., Hill K.M., Tigges C.P. // Phys. Rev. E. 1999.
 V. 59 (5 B). P. 5676. doi 10.1103/physreve.59.5676
- [20] Trivedi P, Patel R, Parekh K, Upadhyay R.V., Mehta R.V. // Appl. Opt. 2004. V. 43. P. 3619. doi 10.1364/AO.43.003619
- [21] Ерин К.В., Куникин С.А. // Опт. и спектр. 2008. Т. 104.
 № 2. С. 319; Erin K.V., Kunikin S.A. // Opt. Spectrosc. 2008.
 V. 104. N 2. Р. 2770. doi 10.1134/S0030400X08020227
- [22] Электрооптика коллоидов / Под ред. Духина С.С. Киев: Наук. думка, 1977. 200 с.
- [23] Khlebtsov N.G., Melnikov A.G., Bogatyrev V.A. // Colloid and Surface A. 1999. V. 148. N 1–2. P. 17. doi 10.1016/S0927-7757(98)00592-5
- [24] Sun J., Yin C., Zhu C., Wang X., Yuan W., Xiao P., Cao Z. // J. Opt. Soc. Am. B. 2012. V. 29. N 4. P. 769. doi 10.1364/josab.29.000769
- [25] Ерин К.В. // Опт. и спектр. 2016. Т. 120. № 2. С. 333; Erin K.V. // Opt. Spectrosc. 2016. V. 120. N 2. P. 320. doi 10.1134/S0030400X16020090
- [26] Оптическая биомедицинская диагностика. Т. 1 / Перевод под ред. Тучина В.В. М.: Физматлит, 2006. С. 36–82.
- [27] Ван де Хюлст Г. Рассеяние света малыми частицами. М.: ИИЛ, 1961. 536 с; Van de Hulst H.C. Light Scattering by Small Particles. N.Y.: John Wiley & Sons, 1957. 470 p.
- [28] Streekstra G.J., Hoekstra A.G., Heethaar R.M. // Appl. Opt. 1994. V. 33. P. 7288. doi 10.1364/AO.33.007288
- [29] Afkhami S., Tyler A., Renardy Y., Renardy M., St Pierre T., Woodward R., Riffle J.S. // J. Fluid Mech. 2010. V. 663. P. 358. doi 10.1017/S0022112010003551.
- [30] Блум Э.Я., Майоров М.М., Цеберс А.О. Магнитные жидкости. Рига: Зинатне, 1989. 386 с.; Blums E.Ya., Maiorov М.М., Cebers A.O. Magnetic Fluids. Berlin: Walter de Gruyter, 1997. 428 p.
- [31] Скрипаль А.В., Усанов Д.А. // Письма в ЖТФ. 1997. Т. 23. № 17. С. 7; Skripal' A.V., Usanov D.A. // Technical Phys. Lett. 1997. V. 23. N 9. P. 659. doi 10.1134/1.1261847
- [32] Хлебцов Н.Г. Ослабление и рассеяниие света в дисперсных системах с неупо- рядоченными, ориентированными и фрактальными частицами. Автореф. докт. дис. Саратов, 1996; Khlebtsov N.G. Extinction and Scattering of Light in Disperse Systems with Random, Oriented, and Fractal Particles (Theory and Experiment), D.Sci. thesis. Saratov State University, 1996 (in Russian).
- [33] Rosenblatt C., Frankel R.B., Blakemore R.P. // Biophys. J. 1985. V. 47. N 3. P. 323. doi 10.1016/S0006-3495(85)83922
- [34] Osmolovskaya O.M., Osmolowsky M.G., Petrov M.P., Voitylov A.V., Vojtylov V.V. Colloids and Surfaces A. 2019.
 V. 586. N 9. 124095. doi 10.1016/j.colsurfa.2019.124095

- [35] Pecora R. // J. Nanopart. Res. 2000. V. 2. P. 123. doi 10.1023/A:1010067107182
- [36] Taylor G.I. // Proc. Roy. Soc. London, Ser. A. 1934. V. 146.
 P. 501. doi 10.1098/rspa.1934.0169
- [37] Maffettone P.L., Minale M. // J. Non-Newtonian Fluid Mech. 1998. V. 78. V. 227. doi 10.1016/S0377-0257(98)00065-2
- [38] Boonen E., van Puyvelde P., Moldenaers P. // J. Rheol. 2010.
 V. 54. P. 1285. doi 10.1122/1.3490661
- [39] Jesus W.C., Roma A.M., Ceniceros H.D. // Commun. Comput. Phys. 2020. V. 24. N 2. P. 332. doi 10.4208/cicp.OA-2017-0161