02 Излучательные характеристики эксимерных молекул Ar₂Cl* при накачке плотной газовой смеси Ar + CCl₄ быстрыми электронами

© А.И. Миськевич^{1,2}, А.В. Подкопаев²

¹ Национальный исследовательский ядерный университет "МИФИ",

115409 Москва, Россия

² АО "ГНЦ РФ-ФЭИ" Физико-энергетический институт им. академика А.И. Лейпунского,

242020 Обнинск, Калужская область, Россия

e-mail: aimiskevich@mephi.ru; apodkopaev@ippe.ru

Поступила редакцию 19.04.2021 г. В окончательной редакции 19.04.2021 г. Принята к публикации 13.05.2021 г.

> Исследованы спектрально-временные характеристики люминесценции газовых смесей (Ar+CCl₄), возбуждаемых импульсным пучком быстрых электронов ($E_e = 220 \text{ keV}$, T = 5 ns). Обнаружено, что в плотных газовых смесях происходит образование эксимерных молекул Ar₂Cl^{*}, излучающих широкий континуум ($4^2\Gamma - 1^2\Gamma$) при 245 nm. Измерены радиационные времена высвечивания и константы тушения континуума ($\lambda_{\text{max}} = 245 \text{ nm}$) компонентами газовой смеси Ar, CCl₄. Предложена плазмохимическая модель образования эксимерных молекул Ar₂Cl^{*} в плотных газовых смесях (Ar + CCl₄) при накачке заряженными частицами высокой энергии.

Ключевые слова: эксимер, молекула Ar₂Cl*, быстрые электроны, люминесценция.

DOI: 10.21883/OS.2021.09.51341.2173-21

Введение

Ранее нами было обнаружено, что в плотных газовых смесях (Ar + CCl₄) происходит образование эксимерных молекул Ar₂Cl^{*}, излучающих широкий континуум в интервале длин волн 220–300 nm с максимумом при 245 nm. Молекулы Ar₂Cl^{*} образовывались при повышенных давлениях инертного газа ~ 0.5 atm, причем эффективность их образования возрастала при повышении давления Ar в газовой смеси.

Широкополосное излучение молекул Ar_2Cl^* обусловлено связанно-свободными переходами и характеризуется большими по сравнению с молекулами $ArCl^*$ радиационными временами жизни — порядка 100–200 ns и выше [1–3]. Интенсивность континуума значительно превышает эмиссию газовой смеси $Ar-N_2$ оптимального состава. Это излучение впервые наблюдалось в работе [4] при возбуждении плотной газовой смеси $Ar-Cl_2$ пучком протонов и было интерпретировано как излучение молекулы Cl_2^* . Позднее в работах [3,5] оно было отнесено как принадлежащее молекуле Ar_2Cl^* .

В настоящее время имеющаяся в литературе информация по излучательным характеристикам эксимерной молекулы Ar_2Cl^* весьма ограничена. Теоретические работы [2,6,7] были связаны с проведением *ab initio* расчетов энергетических характеристик многих двухатомных и трехатомных эксимерных молекул инертных газов, включая Ar, однако информация для молекулы Ar_2Cl^* недостаточно полна. Имеющиеся экспериментальные данные представлены в работах [1,3–5], в которых рассмотрены излучательные характеристики этой молекулы в смесях $Ar + Cl_2$. В настоящей работе приводятся экспериментальные данные по излучательным характеристикам молекул Ar₂Cl^{*}, образующихся в плотных газовых смесях Ar + CCl₄ различного состава при возбуждении импульсным пучком быстрых электронов с энергией 220 keV. Были измерены радиационные времена высвечивании континуума эксимерной молекулы Ar₂Cl^{*} ($\lambda_{max} = 245$ nm, переход $4^2\Gamma - 1^2\Gamma$), определены константы тушения континуума компонентами газовой смеси (Ar, CCl₄) и предложена модель плазмохимических процессов образования эксимерных молекул Ar₂Cl^{*} при накачке заряженными частицами высокой энергии, согласующаяся с экспериментальными данными.

Экспериментальная установка

Экспериментальные исследования проводились с использованием установки, ранее подробно описанной в работе [8]. Возбуждение газовых смесей $Ar + CCl_4$ производилось импульсным пучком быстрых электронов ускорителя РАДАН-220. Энергия электронов пучка ~ 220 keV, длительность импульса ~ 5 пs. Газовые смеси различного состава приготавливались непосредственно в кювете, где производилось возбуждение электронным пучком. Использовались смеси различного состава с содержанием компонент 100–800 Torr чистого Ar и (0.005–5 Torr) CCl₄. Тщательная очистка Ar от молекулярных примесей проводилась непосредственно в кювете перед напуском галогеносодержащей примеси (CCl₄) путем непрерывной прокачки газа через фильтр, содержащий разогретую до 700°C титановую губку. Эта

процедура является крайне важной, так как наличие в смеси даже малых количеств молекулярных газов может вызвать сильное тушение эксимерной люминесценции. Полный цикл очистки газа обычно продолжался 8-10 min, после чего содержание остаточных молекулярных газов в очищаемом газе обычно не превышало 10^{-4} %.

Для приготовления смесей с малым содержанием CCl₄ использовался двухступенчатый метод, когда в кювету добавляется не чистый газ CCl₄, а смесь Ar + CCl₄ с высоким содержанием CCl₄ из отдельного мерного объема. Отношение этого объема к суммарному объему кюветы и подводящих коммуникаций было равно 1:100, что позволяло получать концентрации CCl₄ в газовой смеси $\sim 0.1\%$ и ниже с высокой точностью. Смешивание газов из мерного и основного объемов осуществлялось циркуляционным насосом при отключенном титановом фильтре после завершения процедуры очистки основного газа Ar.

Спектральные измерения люминесценции газовой смеси Ar + CCl₄ производились в диапазоне длин волн 200-1200 nm с использованием спектрометра MAYA2000Pro с ПЗС-матрицей. Спектрометр МАҮА2000Pro регистрирует с разрешением 0.5 nm интегральный во времени спектр светового излучения (минимальное время интеграции составляет 6 ms) за все время действия импульса накачки и последующего распада плазмы. Временные измерения континуума эксимерной молекулы Ar₂Cl* на длине волны 245 nm выполнялись с помощью ФЭУ-100 и монохроматора МДР-23, используемого в качестве перестраиваемого фильтра для выделения исследуемого участка спектра шириной 4 nm. Фотоумножитель ФЭУ-100 работал в токовом режиме на нагрузку 50 Ω, запись сигнала производилась цифровым осциллографом TektronixTDS 1012.

Результаты измерений и обсуждение

Трехатомная молекула Ar_2Cl^* излучает широкий континуум в диапазоне длин волн 220–300 nm с максимумом при 245 nm. Согласно [1], это излучение обусловлено переходами между сильно связанным ионным верхним состоянием молекулы Ar_2Cl^* , образованным из ионов Ar_2^+ и Cl^- , и нижним разлетным состоянием, образованным молекулой Ar_2^* и атомом Cl в основном состоянии.

На рис. 1 показан интегральный во времени спектр люминесценции газовой смеси Ar-CCl₄ при возбуждении импульсным пучком быстрых электронов с энергией 220 keV длительностью 5 ns. В области длин волн 200–1200 nm спектр состоит из полосы эксимерной молекулы Ar₂Cl^{*} ($\lambda_{max} = 245$ nm) в ультрафиолетовом диапазоне, линейчатого излучения при 308 nm и группы 4*p*-4*s*-линий ArI в длинноволновой области ($\lambda > 650$ nm). Происхождение излучения с длиной волны 308 nm связано с реакцией рекомбинации молекуляр-

Рис. 1. Аппаратурный спектр люминесценции газовой смеси Ar-CCl₄ при возбуждении импульсным пучком быстрых электронов ($E_e = 220$ keV, T = 5 ns). Состав смеси: Ar — 768 Torr, CCl₄ — 0.015 Torr.

ного иона Ar_2^+ :

$$Ar_{2}^{+} + e \to Ar_{2}^{*} + hv$$
 (308 nm). (1)

В приведенном спектре отсутствует B-X-полоса двухатомной эксимерной молекулы ArCl* ($\lambda_{max} = 175$ nm), поскольку это излучение лежит вне диапазона измеряемых длин волн спектрометром MAVA2000Pro и поэтому в приведенном на рис. 1 спектре не наблюдается. Полуширина $4^2\Gamma - 1^2\Gamma$ полосы эксимерной молекулы Ar₂Cl* ($\lambda_{max} = 245$ nm) равна $\Delta \lambda = 30$ nm (рис. 1).

С увеличением концентрации CCl₄ в спектре излучения газовой смеси Ar-CCl₄ уменьшается интенсивность всех атомарных 4p-4s-линий ArI. Это объясняется снижением концентрации электронов в газовой среде из-за увеличения скорости прилипания электронов к молекулам CCl₄ при увеличении парциального давления CCl₄ и в связи с этим снижением скорости диссоциативной рекомбинации молекулярных ионов Ar₂⁺.

При давлении Ar 800 Torr оптимальное парциальное давление CCl₄ в смеси, соответствующее максимальному световыходу полосы $4^2\Gamma - 1^2\Gamma$ молекулы Ar₂Cl^{*}, равно 0.15 Torr. В табл. 1 приведены энергетические характеристики основных компонент плазмы Ar + CCl₄, связанные с образованием эксимерных молекул ArCl^{*} и Ar₂Cl^{*}.

Измерения временных характеристик люминесценции молекул Ar₂Cl^{*} проводились для смесей, содержащих 0.005–10.0 Torr CCl₄ и 200–835 Torr Ar, и были выполнены на длине волны 245 nm, соответствующей максимальным значениям интенсивности $4^{2}\Gamma-1^{2}\Gamma$ -полосы молекулы Ar₂Cl. На рис. 2 приведены измеренные кривые высвечивания на длине волны 245 nm для газовых смесей с содержанием 0.005 Torr CCl₄ (рис. 2, *a*) и 0.5 Torr CCl₄ (рис. 2, *b*) при давлении аргона 800 Torr. Первый узкий пик на осциллограмме (длительностью 5 ns) соответствует импульсу электронов накачки электронного

Компонента плазмы	Параметр	Энергия, eV	Источник
Ar^+	Потенциал ионизации	$\begin{array}{c} 15.759 \ (^2P^0_{3/2}) \\ 15.93 \ \ (^2P^0_{1/2}) \end{array}$	[9] [9]
Ar_2^+	Потенциал образования Глубина потенциальной ямы	14.71 1.23	[10] [10]
$\operatorname{Ar}^*(3p^54s)$	Энергетический уровень	$\begin{array}{c} 11.83 \ (^{1}P_{1}) \\ 11.72 \ (^{3}P_{0}) \\ 11.62 \ (^{3}P_{1}) \\ 11.55 \ (^{3}P_{2}) \end{array}$	[9]
Ar_2^*	Глубина потенциальной ямы	$\begin{array}{c} 0.74 \ (^{1}\Sigma_{u}^{+}) \\ 0.68 \ (^{3}\Sigma_{u}^{+}) \\ 2.4 \cdot 10^{-2} \ (^{1}\Sigma_{u}^{+}) \end{array}$	
Cl-CCl ₃ C-Cl	Энергия разрыва связи	2.9–2.916 2.8	[10,11] [10]
CCl_4^-	Сечение прилипания электрона ($E_e = 0.05 \text{eV}$)	$(1.2-1.4) \cdot 10^{14} \mathrm{cm}^2$	[12]
$\begin{array}{c} \mathrm{CCl}_3^-\\ \mathrm{Cl}^- \end{array}$	Энергия сродства к электрону	$> 2.10 \pm 0.35$ 3.82	[10]

Таблица 1. Энергетические характеристики компонента плазмы (Ar–CCl₄), связанные с образованием эксимерных молекул ArCl* и Ar₂Cl*

Рис. 2. Временные осциллограммы: Ar — 782 Torr, CCl₄ — 0.005 Torr (*a*); Ar — 800 Torr, CCl₄ — 0.5 Torr (*b*).

ускорителя РАДАН-220, а второй, широкий пик с амплитудой U_0 — излучению эксимерной молекулы Ar₂Cl^{*}. Заселение верхнего уровня $4^2\Gamma - 1^2\Gamma$ полосы молекулы Ar₂Cl^{*} происходит постепенно в течение временного интервала ~ 70 ns при высоких концентрациях CCl₄ и

увеличивается до 200–250 ns при низких. Такие времена задержки коррелируют с временем образования молекулярного иона Ar_2^+ и процессом ион-ионной рекомбинации ионов Ar_2^+ и Cl^- .

На рис. 3 приведены временные осциллограммы импульсов люминесценции для газовых смесей с содержанием CCl₄ в смеси от 0.15 до 10 Torr. На рис. 4 пока-

Рис. 3. Временные осциллограммы импульсов люминесценции газовой смеси Ar-CCl₄ на длине волны 245 nm. Состав смеси: Ar — 800 Torr, CCl₄ — 0.155 (1), 0.31 (2), 0.75 (3), 1.25 (4), 2.5 (5), 5.0 (6), 10 Torr (7).

Рис. 4. Относительный световыход *S* излучения полосы $4^2\Gamma - 1^2\Gamma$ молекулы Ar_2Cl^* ($\lambda_{max} = 245$ nm) и амплитуда световой вспышки U_0 в зависимости от парциального давления CCl₄ в смеси. Давление Ar — 800 Torr.

заны амплитуда световой вспышки U0 и относительный световыход S полосы молекулы Ar_2Cl^* ($\lambda_{max} = 245 \text{ nm}$) в зависимости от парциального давления CCl₄ в смеси. Световыход S определялся как площадь временной осциллограммы за вычетом площади пика импульса накачки ускорителя. Видно, что световыход полосы молекулы Ar_2Cl^* ($\lambda_{max} = 245 \text{ nm}$) снижается при увеличении концентрации CCl₄, в то время как амплитуда U₀ световой вспышки меняется не так сильно — при изменении парциального давления CCl₄ в смеси от 0.005 до 10.0 Torr U_0 изменяется от 3.5 V (0.005 Torr) до 0.4 V (10 Torr). Это указывает на то, что тушение эксимерной люминесценции происходит на стадии послесвечения, а не на стадии образования эксимерной молекулы. Фактически амплитуда U₀ характеризует количество образовавшихся возбужденных молекул Ar₂Cl*, которое в данном случае слабо зависит от концентрации CCl₄ в смеси. При определенных условиях накачки эти возбужденные молекулы Ar₂Cl* могут быть эффективно использованы в режиме генерации до момента их тушения молекулами CCl₄ в средах с большим содержанием донора галогена типа CCl₄.

Измерения кривых высвечивания молекулярной полосы Ar_2Cl^* для смесей $Ar + CCl_4$ различного состава позволяют определить константы тушения этой полосы компонентами смеси. На рис. 5,6 приведены зависимости обратного времени высвечивания 1/t полосы $4^2\Gamma - 1^2\Gamma$ молекулы Ar_2Cl ($\lambda_{max} = 245$ nm) от содержания CCl_4 (рис. 5) и Ar (рис. 6) в смеси. Из этих зависимостей были определены радиационные времена высвечивания и константы тушения полосы Ar_2Cl^* молекулами CCl_4 и атомами Ar. Они оказались соответственно равны:

$$t_0 = 400 \text{ ns}, \quad k = 5 \cdot 10^{-10} \text{ cm}^3/\text{s} (\text{CCl}_4),$$

 $k = 4.4 \cdot 10^{-14} \text{ cm}^3/\text{s} (\text{Ar}).$ (2)

Учитывая, что полуширина $4^{2}\Gamma - 1^{2}\Gamma$ -полосы Ar₂Cl $\Delta \lambda = 30$ nm, это позволяет определить сечение вынужденного испускания σ_{c} и плотность энергии насыщения Q_s для этого перехода:

$$\sigma_c = \lambda^4 / 8\pi c t_0 \Delta \lambda = 3.9 \cdot 10^{-19} \,\mathrm{cm}^2,$$
 (3)

$$Q_s = h\nu/\sigma_c = 2.06 \,\mathrm{J/cm^2}.$$
 (4)

Плазмохимическая модель образования эксимерных молекул Ar₂Cl заряженными частицами высокой энергии

Основные кинетические процессы, приводящие к образованию эксимерных молекул Ar₂Cl* при накачке

Рис. 5. Обратное время высвечивания $1/t_0$ полосы $4^2\Gamma - 1^2\Gamma$ молекулы Ar₂Cl* ($\lambda_{max} = 245$ nm) в зависимости от парциального давления CCl₄ при высоких (*a*) и низких (*b*) концентрациях CCl₄ в смеси. Давление Ar — 800 Torr.

Рис. 6. Обратное время высвечивания $1/t_0$ полосы $4^2\Gamma - 1^2\Gamma$ молекулы Ar₂Cl^{*} ($\lambda_{max} = 245$ nm) в зависимости от парциального давления Ar в смеси. Парциальное давление CCl₄ — 0.045 Torr.

N⁰	Реакции	Константы скорости	Источник
1	$\begin{array}{c} \operatorname{Ar} + (e_f, e_{\delta}) \to \operatorname{Ar}^+ + e + (e_f, e_{\delta}) \\ \operatorname{Ar} + (e_f, e_{\delta}) \to \operatorname{Ar}^* + (e_f, e_{\delta}) \end{array}$	$w = E/N(\mathrm{Ar^+}) = 1.7I = 26.79 \mathrm{eV}$ $N(\mathrm{Ar^*}) = 0.4N(\mathrm{Ar^+}) \mathrm{cm^{-3}}$ $E_e = 0.31I = 4.88 \mathrm{eV}$	[13]
2	$Ar^+ + 2Ar \rightarrow Ar_2^+ + Ar$	$(1.8-3.5) \cdot 10^{-31} \text{cm}^6/\text{s}$	[13]
3	$Ar^* + 2Ar \rightarrow Ar_2^* + Ar$	$(2.5-8.5) \cdot 10^{-32} \text{cm}^6/\text{s}$	[13]
4	$\operatorname{Ar}_2^+ + e o \operatorname{Ar}^*(4p) + \operatorname{Ar}$	$8.1 \cdot 10^{-5} T_e^{-0.6}$	[13]
5	$\operatorname{CCl}_4 + e \to (\operatorname{CCl}_4)^- \to \operatorname{CCl}_3 + \operatorname{Cl}^-$	$\sigma = (1.2 - 1.4) \cdot 10^{-14} \mathrm{cm}^2 ($ для $E_e = 0.05 \mathrm{eV})$ $7 \cdot 10^{-8} \mathrm{cm}^3$ /s, (для $T_e = 0.25 \mathrm{eV})$	[12] [14]
6	$\mathrm{Ar^+} + \mathrm{Cl^-} + \mathrm{Ar} \to \mathrm{Ar}\mathrm{Cl^*} + \mathrm{Ar}$		
7	$Ar{+}2^+ + Cl^- + Ar \rightarrow Ar_2Cl^* + Ar$		
8	$\operatorname{ArCl}^* \to \operatorname{Ar} + \operatorname{Cl} + h\nu \ (175\mathrm{nm})$		
9	$Ar_2Cl^* \rightarrow 2Ar + Cl + h\nu ~(245 \text{ nm})$	$t_0 = 400 \text{ ns}$ $t_0 = 240 \pm 40 \text{ ns}$ $t_0 = 654 \text{ ns}$	Настоящая работа [3] [2]
10	${ m Ar_2Cl^*+CCl_4} ightarrow$ продукты	$k = 5 \cdot 10^{-10} \mathrm{cm^3/s}$	Настоящая работа
11	$\mathrm{Ar_2Cl}^* + \mathrm{Ar} ightarrow$ продукты	$k = 4.4 \cdot 10^{-14} \mathrm{cm}^3/\mathrm{s}$	Настоящая работа

Таблица 2. Основные плазмохимические реакции при возбуждении плотной газовой смеси Ar + CCl₄ электронами высокой энергии

Примечание. e_f, e_δ — электроны накачки и электроны ионизационного каскада; E — энергия электронов накачки; w — энергия образования пары (Ar⁺ + e); $N(\text{Ar}^+)$, $N(\text{Ar}^+)$, E_e — число ионов Ar⁺, возбужденных атомов Ar^{*} и средняя энергия вторичных электронов, образованных электроном накачки с энергией E; T_e — температура электронов.

плотных газовых смесей Ar–CCl₄ заряженными частицами высокой энергии, приведены и пронумерованы в табл. 2. Там же указаны коэффициенты скоростей реакций по данным разных авторов.

Эксимерные молекулы Ar_2Cl^* образуются в многоступенчатом процессе, включающим реакции образования отрицательных ионов Cl^- , положительных ионов Ar_2^+ и ион-ионную рекомбинацию ионов Ar_2^+ и Cl^- . Анализ имеющихся экспериментальных данных по ядерной накачке газовых сред показывает, что при возбуждении плотных газовых смесей типа Rg + X заряженными частицами высокой энергии (здесь Rg — инертный газ, X — галоген) основным каналом образования двухатомных и трехатомных эксимерных молекул являются реакции ион-ионной рекомбинации положительных ионов Rg^+ и Rg_2^+ с отрицательными ионами галогена (реакции 6, 7), а вклад других каналов образования эксимерных молекул существенно меньше.

Быстрая заряженная частица высокой энергии (в нашем случае электрон с энергией 220 keV) при прохождении через газовую среду Ar–CCl₄ с низким содержанием галогеносодержащей примеси передает всю свою энергию атомам аргона, образуя ионы Ar⁺, возбужденные атомы Ar^{*} и электроны ионизационного каскада (реакция 1). При высоком давлении буферного газа (~ 1 atm) вследствие тройных соударений атомарные ионы Ar⁺, а возбужденные атомы Ar^{*} — в возбужденные атомы Ar^{*} – в возбужденные атома атома атома атома атома атома атома атома Ar^{*} – в возбужденные атома А

ные молекулы Ar₂^{*} (реакции 2, 3). Электроны ионизационного каскада термализуются, теряя свою энергию при неупругих и упругих соударениях с атомами Ar. Согласно [13], время замедления первичных электронов совместно со вторичными электронами ионизационного каскада и установление стационарного энергетического распредления электронов в Ar при атмосферном давлении составляет 5-10 ns. Термализованные электроны активно участвуют в диссоциативной рекомбинации молекулярного иона Ar⁺ (реакция 4) и в образовании отрицательных ионов CCl₄ за счет прилипания к электроотрицательной примеси (реакция 5). Прилипание к молекулам CCl₄ сопровождается диссоциацией этих молекул с образованием отрицательно заряженных радикалов молекул CCl₃⁻, CCl₂⁻, Cl₂⁻ и Cl⁻ [14]. Собственно ионы CCl₄ не образуются вследствие того, что энергия диссоциации этого молекулярного иона,

$$\operatorname{CCl}_4^- \to \operatorname{CCl}_3 + \operatorname{Cl}^-,\tag{5}$$

лежит на 0.5 eV ниже основного состояния молекулы CCl₄. Это позволяет электронам с нулевой энергией создавать ионы Cl⁻. Электроны больших энергий (~ нескольких eV) при прилипании могут сильнее разрушать молекулу CCl₄ и образовывать ионы CCl₃⁻, CCl⁻, CCl⁻, однако вероятность процесса сильно уменьшается с ростом энергии электронов. Суммарный вклад всех этих ионов не превышает 0.1% от числа ионов Cl⁻ [14]. Эксимерные молекулы $ArCl^*$ и Ar_2Cl^* распадаются радиационно (реакции 8,9) и испытывают столкновительное тушение при соударениях с атомами Ar и молекулами CCl₄ (реакции 10, 11).

Заключение

В работе были экспериментально измерены характеристики люминесценции эксимерной молекулы Ar₂Cl, образующейся в плотной газовой смеси Ar–CCl₄ при возбуждении быстрыми электронами ($E_e = 220 \text{ keV}$). Для $4^2\Gamma - 1^2\Gamma$ -перехода молекулы Ar₂Cl* были определены длина волны ($\lambda_{\text{max}} = 245 \text{ nm}$), соответствующая максимуму интенсивности, определены радиационное время высвечивания ($t_0 = 400 \text{ ns}$) и полуширина полосы ($\Delta \lambda = 30 \text{ nm}$), а также сечение вынужденного испускания ($3.9 \cdot 10^{-19} \text{ cm}^2$) и плотность энергии насыщения для этого перехода (2.06 J/cm²).

Были измерены также константы тушения $4^{2}\Gamma - 1^{2}\Gamma$ полосы $Ar_{2}Cl^{*}$ молекулами CCl_{4} и атомами Ar. Они оказались соответственно равны $5 \cdot 10^{-10}$ cm³/s (CCl_{4}) и $4.4 \cdot 10^{-14}$ cm³/s (Ar). Было обнаружено, что тушение эксимерной люминесценции компонентами плазмы происходит на стадии послесвечения, а не на стадии образования эксимерной молекулы. В связи с этим при определенных условиях накачки молекулы $Ar_{2}Cl^{*}$ эффективно использованы в режиме генерации до момента их тушения молекулами CCl_{4} в средах с большим содержанием донора галогена типа CCl_{4} .

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Huestis D.L., Marowsky G., Tittel F.K. // Excimer Lasers / Ed. by Rhodes Ch.K. Springer-Verlag, 1984. P. 181–216.
- [2] Alekseev V.A. // J. Phys. B. 2014. V. 47. P. 105101. doi 10.1088/0953-4075/47/10/105101
- [3] Liegel J., Spiegel H., Sauerbrey R., Langhoff H. // J. Chem. Phys. 1983. V. 79. N 1. P. 247. doi 10.1063/1.445564
- [4] Chen C.H., Payne M.G. // Appl. Phys. Lett. 1976. V. 28. N 4. P. 219.
- [5] Lorents D.C., Huestis D.L., McCusker M.V., Nakano H.H., Hill R.M. // J. Chem. Phys. 1978. V. 68. N 10. P. 4657.
- [6] Wadt W.R., Hay P.J. // Appl. Phys. Lett. 1977. V. 30. N 11.
 P. 573.
- [7] Dunning T.H., Hay P.J. // Appl. Phys. Lett. 1976. V. 28. N 11.
 P. 649.
- [8] Миськевич А.И., Подкопаев А.В. // Приборы и техника эксперимента. 2017. № 3. С. 154–159.
- [9] Стриганов А.Р., Свентицкий Н.С. Таблицы спектральных линий нейтральных и ионизованных атомов. М.: Атомиздат, 1966. 899 с.
- [10] Таблицы физических величин. Справочник. М.: Атомиздат, 1976. 1006 с.

- [11] Kolts J.H., Velazco J.E., Setser D.W. // J. Chem. Phys. 1979.
 V. 71. P. 1247.
- [12] Райзер Ю.П. Физика газового разряда. М.: Наука, 1987. 591 с.
- [13] Мельников С.П., Сизов А.Н., Синянский А.А. Лазеры с ядерной накачкой. Саров, 2008. 439 с.
- [14] Scheunemann H.-U., Illenberger E., Baumgartel H. // Berichte der Bunsen gesellschaft für physikalische Chemie. 1980. P. 580.