01

Спектр высокого разрешения полос $v_2 + v_4$ (F_1 , F_2) и $2v_4$ (F_2) дейтерированного силана ²⁸SiD₄

© А.В. Кузнецов, Н.И. Распопова, Е.С. Бехтерева, О.В. Громова

Национальный исследовательский Томский политехнический университет, 634050 Томск, Россия

e-mail: avk93@tpu.ru

Поступила в редакцию 27.03.2021 г. В окончательной редации 18.05.2021 г. Принята к публикации 21.05.2021 г.

> Впервые проведено исследование тонкой структуры спектра поглощения молекулы силана. Экспериментально зарегистрирован спектр высокого разрешения молекулы ²⁸SiD₄ в диапазоне 1260–1480 сm⁻¹ и проанализированы колебательные полосы $v_2 + v_4$ (F_1 , F_2) и $2v_4$ (F_2). Параметры вращательного и центробежного искажения, тетраэдрического расщепления, а также резонансного взаимодействия для возбужденных колебательных состояний были определены на основе метода взвешенных наименыших квадратов. Полученный набор параметров, описывающий колебательно-вращательную структуру спектра, воспроизводит экспериментальные данные с высокой точностью $d_{\rm rms} = 3.9 \cdot 10^{-4}$ сm⁻¹.

Ключевые слова: SiD₄, дейтерированный силан, анализ колебательного спектра.

DOI: 10.21883/OS.2021.09.51336.2075-21

Введение

Несколько последних десятилетий молекула SiH₄ и ее изотопозамещенные модификации являются объектами интенсивных исследований в области астрофизики и планетологии. Популярность изучения молекулы силана в этих областях науки объясняется ее присутствием в атмосферах огромного количества космических объектов. Одно из важнейших открытий — это наличие газа силана в атмосферах таких планет-гигантов как Юпитер и Сатурн [1,2]. Также было зарегистрировано присутствие SiH₄ в околозвездной оболочке углеродной звезды IRC+10216 [3,4].

С прикладной точки зрения интерес к исследованию молекулы силана связан с возможностью использовать его в изготовлении множества различных материалов, таких как полимеры, полупроводники и т. д. [5–9]. Он может использоваться в качестве связующего агента для прикрепления стекловолокна к полимерной матрице, стабилизируя композитный материал, а также для соединения биоинертного слоя на титановом имплантанте. Кроме того, силан и подобные соединения, содержащие связи Si-H, используются в качестве восстановителей в органической и металлоорганической химии. В связи с этим понятна необходимость в изучении его физикохимических свойств.

Несмотря на многолетние исследования молекулярных спектров силана и его дейтерированных модификаций, многие спектральные диапазоны являются до сих пор неизученными. Таким образом, в настоящей работе мы продолжаем исследования внутримолекулярных свойств данной молекулы [10–17] на примере спектра изотопа ²⁸SiD₄ в районе пентады, где расположены две "разрешенные" по симметрии полосы $v_2 + v_4$ (F_2) и $2v_4$ (F_2) и пять "запрещенных" по симметрии полос $v_2 + v_4$ (F_1), $2v_2$ (A_1), $2v_2$ (E), $2v_4$ (A_1) и $2v_4$ (E). В данной работе акцент был сделан на исследование двух комбинационных полос $v_2 + v_4$ (F_1 , F_2) и одной обертонной $2v_4$ (F_2).

Для этого был зарегистрирован спектр в диапазоне 1260-1480 ст⁻¹ на фурье-спектрометре Bruker, затем проведен анализ положения линий и определены спектроскопические параметры.

Детали эксперимента

Спектр поглощения высокого разрешения дейтерированной молекулы силана SiD₄ в диапазоне $1260-1480 \text{ cm}^{-1}$ (рис. 1) был зарегистрирован на инфракрасном фурье-спектрометре Bruker IFS 125HR в сочетании с многоходовой ячейкой Уайта из нержавеющей стали с длиной основания 1 m и максимальной длиной пути до 4 m. Эксперимент проводился на базе Технического университета Брауншвейга (Брауншвейг, Германия). Газ моносилана был приобретен в компании промышленных газов Linde AG и имел химическую частоту выше 99.9%.

При работе с образцами были предприняты повышенные меры предосторожности, поскольку моносилан является самовоспламеняющимся газом, возгорание которого происходит при контакте с воздухом даже при комнатной температуре, а также он довольно токсичен. По этой причине было задействовано минимальное количество пробирок и сосудов, производилась строгая сепарация силана от окружающего воздуха, а измери-

Рис. 1. Экспериментальный спектр молекулы ²⁸SiD₄.

Рис. 2. Полиадная схема молекулы ²⁸SiD₄ в области диады — пентады.

тельная система в конце эксперимента промывалась чистым азотом.

Регистрация спектра осуществлялась при использовании прямоугольной аппаратной функции, которая задавалась перед началом регистрации интерферограммы. Температуру контролировали термосопротивлением РТ100 в четырехпроводной разводке (термометр Ahlborn Almemo 2590) и поддерживали при температуре 298 ± 1 К во время записи спектров. Давление измеряли датчиком МКС Баратрон на основе емкостного метода и оно составило 3 mbar. Калибровка спектров проводилась по линиям молекулы H₂O. Спектральное разрешение составляло 0.0021 сm⁻¹. Для оптимизации записи данных и калибровки линий использовались данные и процедуры, описанные в [18–20].

Теоретические основы исследования спектров молекул высокой симметрии

Силан и другие молекулы типа XY₄ (сферический волчок) относятся к точечной группе T_d и обладают девятью колебательными степенями свободы, которые в свою очередь делятся на четыре фундаментальных колебания: два деформационных колебания v_2 и v_4 и два валентных v_1 и v_3 . Стоит отметить, что между частотами этих колебаний выполняется следующие соотношение

$$\nu_1 \approx \nu_3 \approx 2\nu_2 \approx 2\nu_4,\tag{1}$$

и они могут быть сгруппированы в полиады взаимодействующих уровней с близкими по значению энергиями. Эти полиады характеризуются целым числом *P*, имеющим вид

$$P = 2v_1 + v_2 + 2v_3 + v_4. \tag{2}$$

Исследуемые в данной работе колебательно-вращательные спектры полос $v_2 + v_4$ (F_1 , F_2) и $2v_4$ (F_2) лежат в области пентады, которая включает в себя 5 колебательных полос v_1/v_3 , $2v_2/v_2 + v_4/2v_4$. На рис. 2 представлена полиадная схема в районе диады — пентады.

Наиболее широко используемой моделью, применимой к исследованию многоатомных молекул, является эффективный гамильтониан, который в общем виде определяется как [21–24]

$$\widehat{H} = \sum_{v,\tilde{v}} |v\rangle \langle \tilde{v} | H^{v,\tilde{v}}, \qquad (3)$$

где $|v\rangle$ и $\langle \tilde{v}|$ — колебательные функции взаимодействующих колебательных состояний, $H^{v,\tilde{v}}$ — недиагональные блоки, описывающие взаимодействие между состояниями $|v\rangle$. Такая модель является идеальной для анализа спектров молекул низких симметрий. Однако

Рис. 3. Фрагмент спектра высокого разрешения молекулы 28 SiD₄ в районе полос $\nu_2 + \nu_4$ (F_1 , F_2) и $2\nu_4$ (F_2).

Таблица	1.	Центры	полос	В	районе	пентады	молекулы
²⁸ SiD ₄ *)		_			-		

Полоса	Симметрия	Центр, cm^{-1}		
$ \begin{array}{c} 2\nu_4 \\ 2\nu_4 \\ 2\nu_4 \\ \nu_2 + \nu_4 \\ \nu_2 + \nu_4 \\ 2\nu_2 \end{array} $	$\begin{array}{c}A_1\\F_2\\E\\F_2\\F_1\\A_1\end{array}$	$\begin{array}{c} 1340.4769(88)\\ 1347.16904(17)\\ 1349.3385(66)\\ 1363.41626(16)\\ 1365.86056(27)\\ 1377.7363(50)\end{array}$		
$2v_2$ $2v_2$	E	1380.2604(76)		

Примечание. ^{*)} Под центрами полос здесь понимаются энергии колебательных состояний с учетом колебательных резонансов между состояниями.

при рассмотрении молекул типа сферического волчка задача оказывается существенно более трудоемкой ввиду сложностей, связанных с высокой симметрией молекул, наличием различного вида резонансов и расщеплений. В связи с этим была разработана модель, основанная на использовании аппарата неприводимых тензорных операторов. Так как в нашем случае молекула обладает симметрией T_d , уравнение (3) можно переписать в обо-

$$\hat{H} = \sum_{\upsilon\gamma,\upsilon'\gamma'} \sum_{n\Gamma} \sum_{\Omega K} \left[(|\upsilon\gamma\rangle \otimes \langle\upsilon'\gamma'|)^{n\Gamma} \otimes R^{\Omega(K,n\Gamma)} \right]^{A_1} Y^{\Omega(K,n\Gamma)}_{\upsilon\gamma,\upsilon'\gamma'},$$
(4)

значениях тензорного формализма следующим образом:

где $|v\gamma\rangle$ — симметризованные колебательные функции, которые эквивалентны колебательным функциям $|v\rangle$ в уравнении (3) (значение γ в функции $|v\gamma\rangle$ является ее симметрией); $R^{\Omega(K,n\Gamma)}$ — вращательные операторы, а Ω и К — степень и ранг неприводимых операторов $R_m^{\Omega(K)}$, преобразующихся по неприводимому представлению $D^{(K)}$ группы вращений SO(3) [25]; Г — симметрия прямого произведения колебательных волновых функций ($|v\gamma\rangle \otimes \langle v'\gamma'|$), которая, очевидно, совпадает с симметрией вращательных операторов $R^{\Omega(K,n\Gamma)}$; *n* различает возможные операторы $R^{\Omega(K,n\Gamma)}$; $Y^{\Omega(K,n\Gamma)}_{vv,v'v'}$ — спектроскопические параметры. Различные вращательные операторы, которые симметризованы в соответствии с точечной группой симметрии T_d, могут быть построены с помощью общего соотношения [26,27]

$$R^{\Omega(K,n\Gamma)} = \sum_{m} {}^{(K)} G^m_{n\Gamma} R^{\Omega(K)}_m.$$
(5)

$J \gamma_r^{a)} n$	$J'\gamma'^{a)}_{r}n'$	$\nu^{\exp}, \mathrm{cm}^{-1}$	$E^{gr,b)}, \mathrm{cm}^{-1}$	$E^{c)}$, cm ⁻¹	Пропускание, %	$\delta \cdot 10^{-4}, \mathrm{cm}^{-1}$	Полоса
1	2	3	4	5	6	7	8
9 A ₁ 9	10 A ₂ 1	1346.3591	157.7248	1504.0840	86.3	1.3	$\nu_2 + \nu_4 \ (F_1)$
9 A ₁ 9	9 A ₂ 1	1374.9953	129.0887		79.2	1.4	$\nu_2 + \nu_4(F_1)$
9 F ₂ 15	9 F ₁ 3	1353.3732	129.0862	1482.4594	88.2	-5.2	$\nu_2 + \nu_4(F_1)$
9 F ₂ 15	$8 F_1 1$	1379.1917	103.2676		90.1	-5.3	$\nu_2 + \nu_4 (F_1)$
9 F ₁ 35	8 F ₂ 1	1424.9604	103.2750	1528.2354	90.8	2.0	$\nu_2 + \nu_4 (F_1)$
9 F ₁ 35	9 F ₂ 2	1399.1478	129.0876		84.7	1.7	$\nu_2 + \nu_4(F_1)$
15 F ₁ 55	15 F ₂ 4	1414.6197	343.9540	1758.5737	97.6	-2.1	$\nu_2 + \nu_4(F_1)$
15 F ₁ 55	14 F ₂ 1	1457.6956	300.8786		91.6	2.6	$\nu_2 + \nu_4(F_1)$
9 E 8	10 E 2	1322.1837	157.7554	1479.9392	93.8	1.4	$ u_2 + u_4(F_2) $
9 E 8	8 E 2	1376.6593	103.2800		94.7	1.6	$v_2 + v_4(F_2)$
9 F ₁ 14	9 F ₂ 2	1351.8844	129.0876	1480.9719	83.5	1.6	$v_2 + v_4(F_2)$
9 F ₁ 14	8 F ₂ 1	1377.6969	103.2750		76.1	1.6	$ u_2 + u_4(F_2) $
9 F ₂ 14	9 F ₁ 3	1352.4492	129.0862	1481.5353	87.1	8.7	$v_2 + v_4(F_2)$
9 F ₂ 14	10 F ₁ 1	1323.7923	157.7430		77.9	8.5	$v_2 + v_4(F_2)$
$12 F_1 12$	13 F ₂ 3	1304.2476	260.9094	1565.1569	89.6	0.0	$ u_2 + u_4(F_2) $
$12 F_1 12$	$12 F_2 1$	1341.5228	223.6341		98.6	0.0	$ u_2 + u_4(F_2) $
15 F ₁ 14	16 F ₂ 3	1286.0693	389.6949	1675.7641	98.3	-3.9	$2\nu_4(F_2)$
15 F ₁ 14	16 F ₂ 2	1286.1026	389.6615		87.1	-4.1	$2\nu_4(F_2)$
15 F ₁ 19	14 F ₂ 2	1387.9010	300.9319	1688.8322	74.1	9.0	$2\nu_4(F_2)$
15 F ₁ 19	16 F ₂ 3	1299.1374	389.6949		64.6	4.0	$2\nu_4(F_2)$
$15 F_1 28$	16 F ₂ 2	1310.0061	389.6615	1699.6675	90.4	1.4	$2\nu_4(F_2)$
15 F ₁ 28	16 F ₂ 1	1310.0635	389.6039		97.4	0.2	$2\nu_4(F_2)$
15 F ₂ 18	14 F ₁ 1	1387.7144	300.9329	1688.6474	71.8	8.7	$2\nu_4(F_2)$
15 F ₂ 18	16 F ₁ 4	1298.9042	389.7432		74.8	9.7	$2\nu_4(F_2)$
15 F ₂ 28	14 F ₁ 3	1399.6823	301.0039	1700.6862	73.2	8.3	$2\nu_4(F_2)$
15 F ₂ 28	16 F ₁ 1	1311.1639	389.5224		80.9	9.1	$2\nu_4(F_2)$
15 F ₂ 28	16 F ₁ 2	1311.0809	389.6052		79.9	7.5	$2\nu_4(F_2)$

Таблица 2. Фрагмент найденных переходов в спектре молекулы ²⁸SiD₄ в районе пентады

Примечание. ^{а)} Симметрия соответствующих колебательно-вращательных функций. ^{b)} Значения энергий вращательных термов основного колебательного состояния, полученных в работе [11]. ^{c)} Значения энергий возбужденных колебательно-вращательных состояний.

Рис. 4. Значения невязок для переходов в зависимости от квантового числа *J* для полос $\nu_2 + \nu_4$ (*F*₁, *F*₂) и $2\nu_4$ (*F*₂).

Элементы матрицы редукции ${}^{(K)}G^m_{n\Gamma}$, которые представлены в формуле (5), определяются конкретной точечной

группой симметрии. Индекс *m* определяет строку неприводимого представления $D^{(K)}$. Что касается молекул с группой симметрии T_d , величины ${}^{(K)}G^m_{n\Gamma}$ в аналитической форме можно найти в работе [28].

Анализ колебательных полос $v_2 + v_4$ (F_1, F_2) и 2 v_4 (F_2) молекулы ²⁸SiD₄

В разделе "детали эксперимента" представлен экспериментальный спектр молекулы силана, зарегистрированный в диапазоне $1260-1480 \text{ cm}^{-1}$, где расположены две комбинационные полосы $v_2 + v_4(F_1)$ и $v_2 + v_4(F_2)$, и пять дважды возбужденных полос — $2v_2(A_1)$, $2v_2(E)$, $2v_4(A_1)$, $2v_4(E)$ и $2v_4(F_2)$. В табл. 1 приведены центры этих полос, которые были получены в данной работе (в скобках указан их статистический доверительный интервал 1σ). Как отмечалось выше, молекула SiD₄ является молекулой типа сферического волчка с группой симметрии изоморфной точечной группе T_d . Из этого следует, что переходы в ИК разрешены только между теми состояниями $(v\gamma)$ и $(v'\gamma')$, для которых выполня-

(v, γ)	(v', γ')	$\Omega(K, n\Gamma)$	$Y^{\Omega(K,n\Gamma)}_{v\gamma,v'\gamma'}$	(v, γ)	(v', γ')	$\Omega(K, n\Gamma)$	$Y^{\Omega(K,n\Gamma)}_{v\gamma,v'\gamma'}$
1	2	3	4	1	2	3	4
$(0200, A_1)$	$(0200, A_1)$	$0(0, A_1)$	-2.114727(55)	$(0101, F_2)$	$(0101, F_2)$	$1(1, F_1)$	-0.07563(23)
$(0200, A_1)$	(0200, E)	$2(2, E)10^4$	0.8482(66)	$(0101, F_2)$	$(0101, F_2)$	$2(2, E)10^3$	0.3799(13)
(0200, E)	(0200, E)	$0(0, A_1)$	0.511504(26)	$(0101, F_1)$	$(0002, A_1)$	$1(1, F_1)$	0.428120(10)
(0200, E)	(0200, E)	$2(0, A_1)10^3$	0.2176(16)	$(0101, F_1)$	(0002, E)	$1(1, F_1)$	0.11945(18)
$(0200, A_1)$	$(0101, F_1)$	$1(1, F_1)$	-0.2893960(49)	$(0101, F_1)$	$(0002, F_2)$	$1(1, F_1)$	-0.024906(88)
$(0200, A_1)$	$(0101, F_2)$	$2(2, F_2)10^3$	-0.74830(50)	$(0101, F_1)$	$(0002, F_2)$	$2(2, E)10^3$	-0.15187(42)
(0200, E)	$(0101, F_1)$	$1(1, F_1)$	0.12829(18)	$(0101, F_2)$	$(0002, A_1$	$2(2, F_2)10^3$	0.90191(68)
(0200, E)	$(0101, F_1)$	$2(2, F_2)10^3$	-0.4543(56)	$(0101, F_2)$	(0002, E)	$1(1, F_1)$	0.10721(20)
(0200, E)	$(0101, F_2)$	$1(1, F_1)10^2$	0.9979(12)	$(0101, F_2)$	(0002, E)	$2(2, F_2)10^3$	-0.62174(64)
(0200, E)	$(0101, F_2)$	$2(2, F_2)10^3$	0.6579(11)	$(0101, F_2)$	$(0002, F_2)$	$0(0, A_1)10^3$	-2.27886(54)
$(0200, A_1)$	(0002, E)	$2(2, E)10^4$	0.5705(58)	$(0101, F_2)$	$(0002, F_2)$	$1(1, F_1)10^2$	0.6961(39)
$(0200, A_1)$	$(0002, F_2)$	$2(2, F_2)10^3$	0.83932(98)	$(0101, F_2)$	$(0002, F_2)$	$2(0, A_1)10^4$	-0.1310(28)
(0200, E)	$(0002, A_1)$	$2(2, E)10^3$	-0.8179(11)	$(0002, A_1)$	$(0002, A_1)$	$0(0, A_1)$	-8.484698(88)
(0200, E)	(0002, E)	$0(0, A_1)$	-0.0492(20)	$(0002, A_1)$	(0002, E)	$2(2, E)10^3$	0.12511(52)
(0200, E)	$(0002, F_2)$	$1(1, F_1)$	0.19330(26)	$(0002, A_1)$	$(0002, F_2)$	$2(2, F_2)10^3$	0.23806(47)
(0200, E)	$(0002, F_2)$	$2(2, F_2)10^5$	0.414(84)	(0002, E)	(0002, E)	$0(0, A_1)$	0.272661(66)
$(0101, F_1)$	$(0101, F_1)$	$0(0, A_1)$	1.1455754(27)	(0002, E)	(0002, E)	$2(0, A_1)10^2$	-0.10151(16)
$(0101, F_1)$	$(0101, F_1)$	$1(1, F_1)$	-0.0139508(52)	(0002, E)	$(0002, F_2)$	$1(1, F_1)10^2$	0.9560(16)
$(0101, F_1)$	$(0101, F_1)$	$2(0, A_1)10^4$	-0.1997(48)	(0002, E)	$(0002, F_2)$	$2(F_2)10^3$	0.5647(13)
$(0101, F_1)$	$(0101, F_1)$	$2(2, E)10^3$	-0.29909(83)	$(0002, F_2)$	$(0002, F_2)$	$0(0, A_1)$	-1.56829(17)
$(0101, F_1)$	$(0101, F_2)$	$1(1, F_1)$	-0.039211(65)	$(0002, F_2)$	$(0002, F_2)$	$1(1, F_1)$	0.02993(23)
$(0101, F_1)$	$(0101, F_2)$	$2(2, E)10^3$	0.10648(45)	$(0002, F_2)$	$(0002, F_2)$	$2(2, E)10^3$	-0.4638(13)
$(0101, F_2)$	$(0101, F_2)$	$0(0, A_1)$	-1.31482(16)	, ,	,		. ,

Таблица 3. Спектроскопические параметры молекулы ²⁸SiD₄ (в ст⁻¹)

ется условие [29,30]

$$\gamma \otimes \gamma' \subset F_2. \tag{6}$$

Таким образом, полосы $v_2 + v_4$ (F_2) и $2v_4$ (F_2) являются разрешенными, а все остальные вышеперечисленные могут появляться в спектре только из-за сильных резонансных взаимодействий с состояниями с симметрией типа F_2 . В настоящем исследовании полосы $2v_2$ (A_1), $2v_2$ (E), $2v_4$ (A_1) и $2v_4$ (E) рассматриваются как "темные", это значит, что не удалось идентифицировать переходы, относящиеся к этим полосам. Однако несмотря на отсутствие учёта переходов, эти полосы оказывают влияние на колебательно-вращательную структуру рассматриваемых полос из-за наличия резонансных взаимодействий.

Для анализа положения линий использовался метод комбинационных разностей. В качестве начального приближения были использованы параметры основного состояния и "диады", взятые из работы [11]. В результате анализа были найдены 466 переходов для полосы $v_2 + v_4$ (F_1), 523 для $v_2 + v_4$ (F_2) и 426 для $2v_4(F_2)$ с максимальным квантовым числом $J^{\text{max}} = 15$. Небольшая часть найденных переходов представлена в табл. 2. В седьмом столбце представлены разности δ между экспериментальными $v^{\text{ехр}}$ и расчетными $v^{\text{саlc}}$ значениями положений линий. Достоверность полученных результатов на этапе идентификации линий подтверждается на

личием комбинационных разностей даже для переходов с большими квантовыми числами *J*.

Найденные переходы участвовали в подгоночной процедуре для определения значений энергий Е возбужденных колебательно-вращательных состояний, затем полученные данные использовались в качестве исходной информации для подгонки параметров эффективного гамильтониана (4) методом взвешенных наименьших квадратов. В результате был получен набор параметров (табл. 3, столбец 4), в скобках указан их статистический доверительный интервал 1 . Корректность полученных 45 параметров подтверждается тем, что найденные 1415 линий воспроизводят экспериментальные данные с точностью $d_{\rm rms} = 3.9 \cdot 10^{-4}$ cm⁻¹. Также на рис. 3 представлен небольшой фрагмент спектра в увеличенном масштабе, иллюстрирующий структуру кластера Рветви. Треугольниками обозначены переходы, соответствующие полосе $2\nu_4(F_2)$, квадратами и кружками — полосам $v_2 + v_4(F_1)$ и $v_2 + v_4(F_2)$ соответственно. Верхняя часть рис. 3 представляет экспериментальный спектр, нижняя — смоделированный спектр, который был рассчитан с параметрами из табл. 3. Можно видеть более чем удовлетворительное согласие между экспериментом и расчетом. Относительные интенсивности линий были оценены с использованием двух параметров эффективного дипольного момента для полос $2v_4(F_2)$ и $v_2 + v_4(F_2)$ в пропорции 1:2. Дополнительное подтверждение правильности полученных результатов представлено на рис. 4, где приводятся значения невязок для переходов в зависимости от квантового числа *J*.

Заключение

Инфракрасный спектр поглощения молекулы силана в диапазоне 1260-1480 сm⁻¹ зарегистрирован на фурьеспектрометре Bruker IFS 125HR. В результате анализа спектра молекулы ²⁸SiD₄ найдено 1415 переходов с максимальным квантовым числом $J^{\max} = 15$ для полос $v_2 + v_4(F_1, F_2)$ и $2v_4(F_2)$. Вращательные параметры, параметры центробежного искажения, тетраэдрического расщепления и резонансных взаимодействий для исследуемых возбужденных колебательных состояний определены на основе метода взвешенных наименьших квадратов. Полученный набор параметров воспроизводит исходные экспериментальные данные с точностью, близкой к экспериментальной $(d_{\rm rms} = 3.9 \cdot 10^{-4} \, {\rm cm}^{-1}).$ В дальнейшем полученная информация о колебательновращательных энергиях полос $v_2 + v_4(F_1, F_2)$ и $2v_4(F_2)$, расположенных в районе пентады, даст возможность исследовать другие полосы в этом диапазоне — а именно $2\nu_2(A_1, E)$ и $2\nu_4(A_1, E)$, а также идентифицировать переходы, относящиеся к "горячим" полосам: $2v_4 - v_4$, $v_2 + v_4 - v_2$, $v_2 + v_4 - v_4$ и $2v_2 - v_4$.

Финансирование работы

Работа выполнена при поддержке Российского фонда фундаментальных исследований, грант № 20-32-90028-20.

Благодарности

Авторы благодарны профессору Сигурду Бауэккеру (Германия) за предоставленные экспериментальные данные.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Larson H.P., Fink U., Smith H.A., Davis D.S. // Astrophys. J. 1980. V. 240. P. 327–337. doi 10.1006/jmsp.1995.1052
- [2] Fegley J.B., Lodders K. // Icarus. 1994. V. 110. P. 117–154. doi 10.1006/icar.1994.1111
- [3] Barratt A. // Astrophys. J. 1978. V. 220. P. L81–L85. doi 10.1086/182641
- [4] Goldhaber D.M., Betz A.L. // Astrophys. J. 1984. V. 279.
 P. L55–L58. doi 10.1086/184255
- [5] Gutfreund K., Weber H.S. // Polym. Eng. Sci. 1961. V. 1.
 P. 191–198. doi 10.1002/pen.760010410
- [6] Onclin S., Ravoo B.J., Reinhoudt D.N. // Angew. Chem. Int. Ed. 2005. V. 44. P. 6282–6304. doi 10.1002/anie.200500633

- [7] Aswalal D.K., Lenfanta S., Guerin D., Yakhmi J.V., Vuillaume D. // Anal. Chim. Acta. 2006. V. 568. P. 84–108. doi 10.1016/j.aca.2005.10.027
- [8] Bañuls M.-J., Puchades R., Maquieira Á. // Anal. Chim. Acta. 2013. V. 777. P. 1–16. doi 10.1016/j.aca.2013.01.025
- [9] Rother D., Sen T., East D., Bruce I.J. // Nanomedicine. 2011.
 V. 6. P. 281–300. doi 10.2217/nnm.10.159
- Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Kashirina N.V., Fomchenko A.L., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 203. P. 496–510. doi 10.1016/j.jqsrt.2017.03.02
- [11] Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Mellau G.Ch., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 218. P. 115–124. doi 10.1016/j.jqsrt.2018.07.005
- Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 219. P. 224–237. doi 10.1016/j.jqsrt.2018.08.012
- Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Fomchenko A.L., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2017. V. 201. P. 35–44. doi 10.1016/j.jqsrt.2017.06.027
- Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 219. P. 350–359. doi 10.1016/j.jqsrt.2018.08.027
- [15] Sydow C, Gromova O.V, Bekhtereva E.S., Raspopova N.I., Belova A.S., Bauerecker S., Ulenikov O.N. // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 225. P. 125–155. doi 10.1016/j.jqsrt.2018.12.026
- Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Kuznetsov A.V., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2019. V. 236. 106606. doi 10.1016/j.jqsrt.2019.106606
- Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Raspopova N.I., Berezkin K.B., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2021. V. 259. 107406. doi 10.1016/j.jqsrt.2020.107406
- [18] Rothman L.S., Gordon I.E., Babikov Y., Barbe A., Benner D., Bernath P.F., et al. // J. Quant. Spectrosc. Radiat. Transfer. 2013. V. 130. P. 4–50. doi 10.1016/j.jqsrt.2013.07.002
- [19] Albert S., Keppler A.K., Quack M. // Handbook of Highresolution Spectroscopy. Wiley Chichester, 2011. V. 2. P. 965–1019. doi 10.1002/9780470749593
- [20] Maki A.G., Wells J.S. // J. Res. Natl. Inst. Stand. Technol. 1992. V. 97. N 4. P. 409–470. doi 10.6028/jres.097.019
- [21] Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Fomchenko A.L., Fangce Zhang, Sydow C., Maul C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2016. V. 182. P. 55–70. doi 10.1016/j.jqsrt.2016.04.026
- [22] Ulenikov O.N., Bekhtereva E.S., Krivchikova Yu.S., Morzhikova Yu.B., Buttersack T., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2015. V. 166. P. 13–22. doi 10.1016/j.jqsrt.2015.07.004
- [23] Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Krivchikova Yu.S., Sklyarova E.A., Buttersack T., Sydow C., Bauerecker S. // J. Mol. Spectr. 2015. V. 318. P. 26–33. doi 10.1016/j.jms.2015.09.009

- [24] Ulenikov O.N., Gromova O.V., Bekhtereva E.S., Quack M., Mellau G.Ch., Sydow C., Bauerecker S. // J. Quant. Spectrosc. Radiat. Transfer. 2018. V. 210. P. 141–155. doi 10.1016/j.jqsrt.2018.02.010
- [25] Ulenikov O.N., Bekhtereva E.S., Albert S., Bauerecker S., Niederer H.M., Quack M. // J. Chem. Phys. 2014. V. 141. 234302. doi 10.1063/1.4899263
- [26] Moret-Bailly J. // Cah. Phys. 1961. V. 15. P. 238-314.
- [27] Champion J.P., Pierre G., Michelot F., Moret-Bailly J. // Cah. Phys. 1970. V. 55. P. 512–520.
- [28] Cheglokov A.E., Ulenikov O.N. // J. Mol. Spectrosc. 1985.
 V. 110. P. 53–64. doi 10.1016/0022-2852(85)90211-5
- [29] Loéte M. // Can. J. Phys. 1983. V. 61. P. 1242–1259. doi 10.1139/p83-158
- [30] *Niederer H.-M.* // München: Verglad Dr. Hut. 2012. doi 10.3929/ethz-a-007316862