26 августа

11

Детектирование терагерцевых электромагнитных волн с помощью проводящих антиферромагнетиков

© А.Р. Сафин^{1,2}, Е.Е. Козлова², Д.В. Калябин^{1,3}, С.А. Никитов^{1,3}

¹Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия

² Национальный исследовательский университет "МЭИ", Москва, Россия

³ Московский физико-технический институт (Национальный исследовательский университет), Долгопрудный,

Московская обл., Россия E-mail: arsafin@gmail.com

Поступило в Редакцию 23 апреля 2021 г. В окончательной редакции 23 апреля 2021 г. Принято к публикации 9 мая 2021 г.

> Исследована модель детектора терагерцевых электромагнитных волн, построенного на основе проводящего антиферромагнетика и тяжелого металла. Механизм резонансного выпрямления колебаний основан на обратном спиновом эффекте Холла в тяжелом металле при спиновой накачке из антиферромагнетика. Показано, что зависимость постоянного напряжения детектора от частоты носит резонансный характер с пиком, соответствующим частоте антиферромагнитного резонанса. Чувствительность к переменному терагерцевому сигналу предложенной структуры детектора сравнима с чувствительностью современных детекторов, построенных на основе диодов Шоттки и Ганна.

Ключевые слова: спиновый эффект Холла, антиферромагнетик, резонансное выпрямление, спинтроника.

DOI: 10.21883/PJTF.2021.16.51323.18840

Разработка компактных и перестраиваемых генераторов и детекторов терагерцевого (THz) электромагнитного излучения сталкивается с заметными трудностями [1-3]. Перспективными материалами для использования в THz-технологиях являются антиферромагнетики (АФМ), резонансные частоты которых лежат в широких пределах от единиц гигагерц до десятков терагерц [4,5]. Ранее [6] была предложена схема генератора THz-колебаний, перестраиваемого по частоте спин-поляризованным током. В [7] двухслойная структура, состоящая из АФМ и слоя тяжелого металла (ТМ), использовалась для детектирования терагерцевого спинового тока, а в [8,9] был предложен механизм перестройки частоты детектора ТНz-колебаний на основе АФМ с помощью постоянного электрического тока. Легким способом перестройки частоты такого детектора является изменение анизотропии АФМ с помощью магнитострикции [10] или температуры [11]. Целью настоящей работы является теоретическое исследование детектора THz-колебаний, построенного на основе проводящего АФМ Mn₂Au с нарушенной пространственной инверсией типа "легкая плоскость", активно используемого в экспериментах по спинтронике [12,13].

Физическая структура детектора THz-колебаний на основе структуры AФМ–ТМ представлена на рис. 1. Переменное THz-излучение падает на структуру со стороны прозрачной для THz-излучения подложки, возбуждая однородную прецессию магнитных подрешеток $\mathbf{M}_{1,2}$ в AФМ. Прецессия вектора Нееля $\mathbf{l} = (\mathbf{M}_1 - \mathbf{M}_2)/M_s$ (M_s — намагниченность насыщения AФМ) приводит к спиновой накачке на границе AФМ–ТМ и возбуждению

спинового тока в ТМ. За счет обратного спинового эффекта Холла возникновение спинового тока в ТМ приводит к ненулевой разности потенциалов V_{out} на выходных электродах. Математическая модель, описывающая динамику вектора Нееля l(t) в проводящем АФМ,

Рис. 1. Структурная схема детектора THz-колебаний, выполненного на основе тяжелого металла (Pt) и антиферромагнетика (AFM), выращенного на подложке (*Substrate*), прозрачной для THz-излучения.

имеет вид [1]:

$$\mathbf{l} \times \left[\frac{d^2 \mathbf{l}}{dt^2} + \alpha \omega_{ex} \frac{d \mathbf{l}}{dt} + \hat{\Omega} \cdot \mathbf{l} \right]$$
$$= \gamma \cdot \mathbf{l} \times \left[\frac{d \mathbf{B}_{em}}{dt} \times \mathbf{l} - \omega_{ex} \lambda_{\text{NSOT}} \boldsymbol{\sigma} \cdot \mathbf{E}_{em} \times \mathbf{y} \right], \qquad (1)$$

где $\omega_{ex} = \gamma H_{ex}$ — обменная частота, $H_{ex} = 1300 \,\mathrm{T}$ обменное поле, $\gamma = 2\pi \cdot 28 \text{ GHz/T}$ — гиромагнитное отношение, $\alpha = 2.5 \cdot 10^{-3}$ — постоянная затухания Гильберта, $\Omega = \omega_{ex} \gamma (H_e \mathbf{n}_e \otimes \mathbf{n}_e - H_h \mathbf{n}_h \otimes \mathbf{n}_h)$ — матрица анизотропии, $H_e = 0.7$ T, $H_h = 10$ T, символ \otimes обозначает тензорное произведение. $\mathbf{n}_e = \mathbf{x}, \ \mathbf{n}_h = \mathbf{z}$ — орты осей легкого и трудного намагничивания. Внешнее терагерцевое электромагнитное излучение с частотой ω поляризовано в плоскости образца x-z и действует на вектор Нееля в проводящем АФМ через два вращающих момента: вызванный меняющейся во времени индукцией $\mathbf{B}_{em} = B_{em} e^{i\omega t} \mathbf{z}$ [14] и вызванный спин-орбитальным взаимодействием в АФМ за счет переменного электрического поля $\mathbf{E}_{em} = E_{em} e^{i\omega t} \mathbf{x}$ [15]. В (1) $\sigma = 3.4 \cdot 10^4 \,\Omega^{-1} \cdot \mathrm{cm}^{-1}$ — оптическая проводи-мость, $\lambda_{\mathrm{NSOT}} = 50 \,\mathrm{s}^{-1} \cdot \mathrm{A}^{-1} \cdot \mathrm{cm}^2$ — константа, характеризующая величину спин-орбитального взаимодействия в АФМ [16].

Перепишем уравнение (1), параметризуя вектор Нееля в сферической системе координат $\mathbf{l} = (\cos \phi \sin \theta, \sin \phi, \sin \theta, \cos \theta)$, следующим образом:

$$\frac{\sin 2\theta}{2} \left(\frac{d^2 \phi}{dt^2} + \alpha \omega_{ex} \dot{\phi} + \frac{\omega_e \omega_{ex}}{2} \sin 2\phi + \gamma \frac{dB_{em}(t)}{dt} \right) + \cos^2 \theta \left(2 \frac{d\phi}{dt} \frac{d\theta}{dt} \right) = 0, \qquad (2)$$

$$\frac{d^{2}\theta}{dt^{2}} + \alpha \omega_{ex} \frac{d\theta}{dt} - \omega_{ex} \frac{\sin 2\theta}{2} \left(\left(\frac{d\phi}{dt} \right)^{2} + \omega_{h} - \omega_{e} \cos^{2} \phi \right) - \omega_{ex} \lambda_{\text{NSOT}} \sigma E_{em}(t) \sin \theta = 0.$$
(3)

Стационарное направление вектора Нееля \mathbf{l}_0 совпадает с направлением оси легкого намагничивания, т.е. $\phi_0 = 0, \ \theta_0 = \frac{\pi}{2}$ и $\mathbf{l}_0 = \mathbf{x}$. Уравнения для малых углов отклонений $\delta\phi$, $\delta\theta$ вблизи положения равновесия ϕ_0 , θ_0 из (2), (3) имеют вид (с учетом $H_h \gg H_e$)

$$\frac{d^2}{dt^2} \begin{pmatrix} \delta\phi\\\delta\theta \end{pmatrix} + \gamma_0 \frac{d}{dt} \begin{pmatrix} \delta\phi\\\delta\theta \end{pmatrix} + \begin{pmatrix} \omega_1^2 & 0\\ 0 & \omega_2^2 \end{pmatrix} \begin{pmatrix} \delta\phi\\\delta\theta \end{pmatrix}$$
$$= \begin{pmatrix} -\gamma B_{em}\omega\\\omega_{ex}\lambda_{\text{NSOT}}\sigma E_{em} \end{pmatrix} e^{i\omega t}, \qquad (4)$$

где $\omega_{1,2} = \sqrt{\omega_{ex}\omega_{e,h}}$ — нижняя и верхняя частоты антиферромагнитного резонанса [17] соответственно, а $\gamma_0 = \alpha \omega_{ex}$ — ширина спектральной линии. Для Mn₂Au имеем $\omega_1/2\pi = 0.85$ THz и $\omega_2/2\pi = 3.2$ THz, а $\gamma_0/2\pi = 0.3$ THz.

Решение (4) представим в виде

$$\begin{pmatrix} \delta\phi\\ \delta\theta \end{pmatrix} = \begin{pmatrix} A_{\phi}(\omega)e^{i\Phi_{\phi}(\omega)}\\ A_{\theta}(\omega)e^{i\Phi_{\theta}(\omega)} \end{pmatrix} e^{i\omega t},$$
(5)

где $A_{\phi,\theta}(\omega)$ и $\Phi_{\phi,\theta}(\omega)$ соответствуют амплитудной и фазочастотной характеристикам системы (4) соответственно, а именно

$$A_{\phi,\theta}(\omega) = \frac{\Lambda_{\phi,\theta}(\omega)}{\sqrt{(\omega^2 - \omega_{1,2}^2)^2 + (\omega\gamma_0)^2}},$$
$$\tan \Phi_{\phi,\theta} = \frac{\gamma_0 \omega}{\omega^2 - \omega_{1,2}^2},$$
(6)

где $\Lambda_{\phi} = -\gamma B_{em} \omega$ и $\Lambda_{\theta} = \omega_{ex} \lambda_{\text{NSOT}} \sigma E_{em}$.

Выпрямленное напряжение V_{out} на выходных контактах тяжелого металла находится из расчета спинового тока [4–6], текущего из АФМ в ТМ и пропорционального $[\mathbf{l} \times \frac{d\mathbf{l}}{dt}]$, вида

$$V_{out}(\omega) = \kappa L \omega A_{\phi}(\omega) A_{\theta}(\omega) \sin(\Phi_{\theta}(\omega) - \Phi_{\phi}(\omega)).$$
(7)

Здесь $L = 1 \,\mu m$ — расстояние между выходными контактами, коэффициент κ находится следующим образом:

$$\kappa = \Theta_{\rm SH} \frac{g_r e \lambda \rho}{2\pi d_{\rm Pt}} \tanh\left(\frac{d_{\rm Pt}}{2\lambda}\right),\tag{8}$$

где $g_r = 6.9 \cdot 10^{18} \text{ m}^{-2}$ — проводимость на границе слоя АФМ-ТМ, $\Theta_{\text{SH}} = 0.1$ — спиновый угол Холла в ТМ, $\rho = 4.8 \cdot 10^{-7} \,\Omega \cdot \text{m}$ — электрическое сопротивление ТМ, $\lambda = 7.3 \,\text{nm}$ — длина спиновой диффузии в ТМ, $d_{\text{Pt}} = 20 \,\text{nm}$ — толщина слоя Pt.

На рис. 2 представлена резонансная зависимость выходного нормированного на максимальное значение выпрямленного напряжения (его абсолютного значения) от частоты входного воздействия. Как видно, зависимость имеет резонансный характер с двумя пиками, соответствующими резонансным частотам 0.85 и 3.2 THz выбранного АФМ. Отметим, что представленная зависимость изоморфна амплитудно-частотной характеристике двух индуктивно связанных колебательных контуров, причем для верхней моды величина выпрямленного

Рис. 2. Зависимость нормированного выпрямленного напряжения от частоты внешней электромагнитной волны.

22

Рис. 3. Зависимость выпрямленного выходного напряжения нижней моды от входной мощности электромагнитной волны.

напряжения на резонансе выше, чем для нижней моды (см. (6)). На рис. З приведена зависимость выходного выпрямленного напряжения V_{out} от мощности входного THz-излучения при резонансе $P_{in} = E_{em}H_{em}/(\mu\mu_0S)$, где S = LL — площадь поперечного сечения детектора. Наклон этой характеристики определяет чувствительность детектора. Для приведенных выше параметров структуры Mn₂Au/Pt выходное выпрямленное напряжение при резонансе $\omega = \omega_{1,2}$ равно 100 μ V, что при входной мощности 100 nW соответствует чувствительности 1400 V/W.

Дальнейший рост входной мощности (не отражен на рис. 3) электромагнитного сигнала будет приводить к нелинейному резонансу [17] и неоднозначной зависимости выпрямленного напряжения от частоты. При достаточно больших значениях амплитуды входного сигнала динамика системы из пассивного режима может перейти в автоколебательный, и использовать структуру АФМ-ТМ в качестве пассивного детектора нельзя. Реализация детектора в этом случае может быть осуществлена при наличии тока смещения и явлении синхронизации внешним сигналом. Работа детектора в автоколебательном режиме была изучена в [8] и здесь не рассматривается.

Таким образом, в работе исследована теория резонансного детектирования THz-сигналов с помощью гетероструктуры антиферромагнетик—тяжелый металл. Показано, что зависимость постоянного напряжения детектора от частоты носит резонансный характер с пиком, соответствующим частоте антиферромагнитного резонанса. Чувствительность к переменному THz-сигналу предложенной структуры детектора сравнима с чувствительностью современных детекторов, в частности, на основе графена [18]. Эксперименты [19,20] по спиновой накачке антиферромагнетиков, выполненные за последние годы, подтверждают резонансный характер детектирования THz-сигналов за счет обратного спинового эффекта Холла в структурах, содержащих АФМ.

Финансирование работы

Работа выполнена при финансовой поддержке грантов Российского фонда фундаментальных исследований № 18-29-27018, 18-57-76001, 19-29-03015, а также гранта Президента РФ для молодых кандидатов наук № МК-61.2021.1.2.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, Y. Tserkovnyak, Rev. Mod. Phys., 90, 015005 (2018). DOI: 10.1103/RevModPhys.90.015005
- F. Sizov, A. Rogalski, Prog. Quant. Electron., 34, 278 (2010).
 DOI: 10.1016/j.pquantelec.2010.06.002
- [3] B. Ferguson, X.-C. Zhang, Nature Mater., **1**, 26 (2002). DOI: 10.1038/nmat708
- [4] С.А. Никитов, А.Р. Сафин, Д.В. Калябин, А.В. Садовников, Е.Н. Бегинин, М.В. Логунов, М.А. Морозова, С.А. Одинцов, С.А. Осокин, А.Ю. Шараевская, Ю.П. Шараевский, А.И. Кирилюк, УФН, **190** (10), 1009 (2020). DOI: 10.3367/UFNe.2019.07.038609
- [5] А.Р. Сафин, С.А. Никитов, А.И. Кирилюк, Д.В. Калябин, А.В. Садовников, П.А. Стремоухов, М.В. Логунов, П.А. Попов, ЖЭТФ, **158** (1), 85 (2020). DOI: 10.31857/S0044451020070081
- [6] R. Khymyn, I. Lisenkov, V. Tiberkevich, B. Ivanov, A. Slavin, Sci. Rep., 7, 43705 (2017). DOI: 10.1038/srep43705
- [7] R. Khymyn, V. Tiberkevich, A. Slavin, AIP Adv., 7, 055931 (2017). DOI: 10.1063/1.4977974
- [8] O. Gomonay, T. Jungwirth, J. Sinova, Phys. Rev. B, 98, 104430 (2018). DOI: 10.1103/PhysRevB.98.104430
- [9] A. Safin, V. Puliafito, M. Carpentieri, G. Finocchio, S. Nikitov, P. Stremoukhov, A. Kirilyuk, V. Tyberkevych, A. Slavin, Appl. Phys. Lett., **117**, 222411 (2020). DOI: 10.1063/5.0031053
- [10] P. Popov, A.R. Safin, A. Kirilyuk, S.A. Nikitov, I. Lisenkov, V. Tyberkevich, A. Slavin, Phys. Rev. Appl., 13, 044080 (2020). DOI: 10.1103/PhysRevApplied.13.044080
- [11] A. Meshcheryakov, A.R. Safin, D.V. Kalyabin, S.A. Nikitov, A.M. Mednikov, D.A. Frolov, A.I. Kirilyuk, J. Phys. D: Appl. Phys., 54, 195001 (2021). DOI: 10.1088/1361-6463/abe441
- [12] N. Bhattacharjee, A.A. Sapozhnik, S.Yu. Bodnar, V.Yu. Grigorev, S.Y. Agustsson, J. Cao, D. Dominko, M. Obergfell, O. Gomonay, J. Sinova, M. Kläui, H.-J. Elmers, M. Jourdan, J. Demsar, Phys. Rev. Lett., **120**, 237201 (2018). DOI: 10.1103/PhysRevLett.120.237201
- [13] V. Barthem, C.V. Colin, H. Mayaffre, M.-H. Julien, D. Givord, Nature Commun., 4, 2892 (2013).
 DOI: 10.1038/ncomms3892
- [14] T. Satoh, S.-J. Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda, Y. Ueda, B.A. Ivanov, F. Nori, M. Fiebig, Phys. Rev. Lett., **105**, 077402 (2010). DOI: 10.1103/PhysRevLett.105.077402

- [15] O. Gomonay, T. Jungwirth, J. Sinova, Phys. Rev. Lett., 117, 017202 (2016). DOI: 10.1103/PhysRevLett.117.017202
- [16] J. Zelezny, H. Gao, A. Manchon, F. Freimuth, Y. Mokrousov, J. Zemen, J. Mašek, J. Sinova, T. Jungwirth, Phys. Rev. B, 95, 014403 (2017). DOI: 10.1103/PhysRevB.95.014403
- [17] Е.А. Туров, А.В. Колчанов, В.В. Меньшенин, И.Ф. Мирсаев, В.В. Николаев, Симметрия и физические свойства антиферромагнетиков (Физматлит, М., 2001).
- [18] D. Bandurin, D. Svintsov, I. Gayduchenko, S.G. Xu,
 A. Principi, M. Moskotin, I. Tretyakov, D. Yagodkin,
 S. Zhukov, T. Taniguchi, K. Watanabe, I.V. Grigorieva,
 M. Polini, G.N. Goltsman, A.K. Geim, G. Fedorov, Nature Commun., 9, 5392 (2018).
 DOI: 10.1038/s41467-018-07848-w
- [19] P. Vaidya, S.A. Morley, J. van Tol, Y. Liu, R. Cheng, A. Brataas, D. Lederman, E. del Barco, Science, 368, 160 (2020). DOI: 10.1126/science.aaz4247
- [20] J. Li, C. Wilson, R. Cheng, M. Lohmann, M. Kavand, W. Yuan, M. Aldosary, N. Agladze, P. Wei, M. Sherwin, J. Shi, Nature, **578**, 70 (2020). DOI: 10.1038/s41586-020-1950-4