05,11,13

Магнитокалорический эффект в окрестности температуры магнитной компенсации аморфных ферримагнитных пленок Gd—Co

© А.В. Свалов¹, А.В. Архипов¹, В.Н. Лепаловский¹, Е.А. Степанова¹, В.О. Васьковский^{1,2}, Г.В. Курляндская¹

¹ Институт естественных наук и математики, Уральский федеральный университет им. Б.Н. Ельцина, Екатеринбург, Россия ² Институт физики металлов им. М.Н. Михеева РАН, Екатеринбург, Россия

E-mail: andrey.svalov@urfu.ru

Поступила в Редакцию 9 апреля 2021 г. В окончательной редакции 9 апреля 2021 г. Принята к публикации 19 апреля 2021 г.

> Представлены результаты исследования магнитных и магнитокалорических свойств аморфных ферримагнитных пленок Gd—Co, обладающих перпендикулярной магнитной анизотропией, в широком диапазоне полей и температур. Смена знака магнитокалорического эффекта вблизи температуры компенсации происходит почти скачкообразно при ориентации магнитного поля перпендикулярно плоскости пленки и в некотором интервале температур при ориентации поля вдоль плоскости образца. Наиболее вероятной причиной размытия этого перехода является возникновение неколлинеарной магнитной структуры.

> Ключевые слова: ферримагнетизм, аморфные пленки, магнитокалорический эффект, магнитная компенсация.

DOI: 10.21883/FTT.2021.09.51308.28H

1. Введение

Магнитокалорический эффект (МКЭ) продолжает оставаться объектом интенсивных исследований как с точки зрения разработки устройств экологически чистого магнитного охлаждения, так и фундаментальных исследований магнитной энтропии и особенностей магнитных фазовых переходов. Ферримагнитные материалы находятся в русле этого внимания [1,2]. При этом, количество публикаций, посвященных исследованию МКЭ в ферримагнетиках вблизи состояния магнитной компенсации, весьма невелико, хотя именно в таких материалах наблюдается очень интересное явление — смена знака МКЭ [3,4]. В последние годы также отмечается рост интереса к изучению МКЭ в наноструктурах, таких как тонкие пленки и многослойные пленочные системы [5,6-8]. Это связано с возможностью использовать пленки как модельный объект [9] и перспективами их применения в устройствах охлаждения элементов микроэлектроники [10]. Пленки Gd-Co при определенных условиях могут обладать перпендикулярной магнитной анизотропией [11,12], что увеличивает их привлекательность как модельного объекта. В настоящей работе представлены результаты исследования магнитных свойств и особенностей МКЭ аморфных ферримагнитных пленок Gd-Co в окрестности температуры магнитной компенсации.

2. Методика исследований

Пленки Gd-Co толщиной 40 nm были получены на стеклянных подложках методом магнетронного сораспыления мишеней Со и Gd в атмосфере аргона. Пленки содержали ~ 19.8 at.% Gd, состав образцов определялся с помощью ренгенофлуоресцентного спектрометра Nanohunter. Для предотвращения окисления пленки Gd-Со были защищены буферным и покрывающим слоями Та толщиной 5 nm. Выборочная рентгеновская дифрактометрия образцов идентифицировала их структурное состояние как рентгеноаморфное. Магнитные свойства пленок были исследованы с помощью измерительного комплекса MPMS-7XL. Температурные зависимости изменения магнитной части энтропии пленок $\Delta S_M(T, H)$ были получены с помощью соотношения Максвелла на основе изотермических зависимостей намагниченности, измеренных в полях до 70 kOe

$$\Delta S_M = \int_0^H \left(\frac{\partial M}{\partial T}\right)_H dH,\tag{1}$$

где *М* — намагниченность, *H* — магнитное поле, *T* — температура.

3. Полученные результаты

Температурная зависимость спонтанной намагниченности M(T) пленки $Gd_{19.8}Co_{80.2}$ имеет характерный

Рис. 1. Температурная зависимость намагниченности пленки Gd_{19.8}Co_{80.2}.

для ферримагнетиков минимум вблизи температуры компенсации $T_{\rm comp} \approx 215 \, {\rm K}$ (рис. 1). Его существование обусловлено антиферромагнитным характером обменного взаимодействия магнитных моментов подрешеток редкоземельного элемента (P3) и переходного металла (ПМ), а также различной температурной зависимостью этих моментов [11,12]. При $T < T_{\rm comp}$ в суммарном магнитном моменте пленки доминирует момент P3 компоненты, именно он выстраивается вдоль внешнего магнитный момент Со, а момент Gd оказывается ориентирован против направления внешнего магнитного поля. Отметим также, что острота минимума на зависимости M(T) свидетельствует о высокой степени однородности образца по химическому составу [13].

На рис. 2 показаны в качестве примера петли гистерезиса, измеренные на пленке Gd–Co при разных температурах при ориентации внешнего магнитного поля как в плоскости, так и перпендикулярно плоскости образца. Они свидетельствуют о том, что во всем исследованном температурном интервале пленка обладала перпендикулярной магнитной анизотропией, то есть ось легкого намагничивания (ОЛН) совпадала с нормалью к плоскости пленки.

На рис. З представлены температурные зависимости изменения магнитной части энтропии ΔS_M пленки Gd-Co, полученные на основе изотермических зависимостей намагниченности, измеренных при ориентации поля как в плоскости, так и перпендикулярно плоскости образца. Видно, что в обоих случаях знак ΔS_M изменяется вблизи T_{comp} . Это связано с особенностями температурной зависимости M(T). Как следует из выражения (1), отрицательная производная намагниченности по температуре определяет отрицательный знак ΔS_M , т.е. образец нагревается при приложении внешнего магнитного поля. Такая ситуация реализуется при $T < T_{\text{comp}}$. Наоборот, при $T > T_{\text{comp}}$ температурная производная намагниченности положительна, следовательно, $\Delta S_M > 0$, и образец охлаждается при адиабатическом приложении внешнего магнитного поля (так называемый обратный МКЭ).

Подобная смена знака МКЭ наблюдалась ранее в объемных образцах ферримагнитных соединений P3–ПМ [3,4]. Считается, что вблизи $T_{\rm comp}$ величина и знак ΔS_M определяются, в основном, РЗ-подрешеткой, так как намагниченность ПМ подрешетки практически не меняется в этом температурном интервале [14]. Расчет температурных зависимостей намагниченностей подрешеток Gd и Co в наших пленках Gd–Co, проведенный в рамках феноменологической теории коллине-

Рис. 2. Петли гистерезиса, измеренные при ориентации внешнего поля перпендикулярно (a) и вдоль плоскости (b) образца при температуре 5 К (1), 200 К (2) и 350 К (3).

Рис. 3. Температурные изменения магнитной части энтропии пленки $Gd_{19.8}Co_{80.2}$, полученные при ориентации магнитного поля перпендикулярно (*a*) и вдоль плоскости (*b*) образца.

арного ферримагнетизма Нееля, основанной на теории молекулярного поля, показал, что в исследованных образцах намагниченность подрешетки Со слабо меняется в окрестности *T*_{comp} [12], поэтому особенности МКЭ в пленках Gd–Co в данном температурном интервале также обусловлены подрешеткой Gd.

Величина МКЭ в исследованных пленках вблизи $T_{\rm comp}$ мала, как и в объемных ферримагнетиках [3,4,14]. Обусловлено это как малой скоростью изменения намагниченности образца при изменении температуры, так и меньшим откликом на внешнее магнитное поле в отличие от ситуации вблизи температуры Кюри.

Малость сигнала от образца, особенно вблизи $T_{\text{сотр}}$, является причиной разброса значений ΔS_M на зависимости $\Delta S_M(T)$. Однако отчетливо просматривается тенденция, что при ориентации поля перпендикулярно плоскости пленки (вдоль ОЛН) смена знака ΔS_M происходит в довольно узком температурном интервале, близко к скачкообразному поведению, при пересечении $T_{\rm comp}$ (рис. 3, *a*), в то время как при ориентации поля в плоскости образца этот переход плавно растянут по температуре (рис. 3, b). Теория предсказывает скачкообразное изменение знака ΔS_M при $T = T_{\text{comp}}$ [15]. Имеющиеся в литературе данные показывают, что на эксперименте для объемных ферримагнетиков изменение знака ΔS_M происходит в некотором интервале температур [3,4,14]. В качестве возможной причины этого, как правило, рассматриваются нарушение структурного порядка и связанная с ним флуктуация обменного взаимодействия или возникновение неколлинеарной магнитной структуры под воздействием внешнего магнитного поля [16,17]. В нашем случае вероятны оба сценария. В аморфных пленках отсутствует структурный порядок, но флуктуации обменного взаимодействия могут быть обусловлены локальными флуктуациями химического состава, которые, как известно, существуют в аморфных ферримагнитных пленках РЗ-ПМ [18,19]. Однако различающиеся зависимости $\Delta S_M(T)$, представленные на рис. 3, получены на одном и том же образце, это заставляет отказаться от предположения, что основной причиной протяженного изменения знака ΔS_M при ориентации поля в плоскости пленки является объемная флуктуация обменного взаимодействия в образце. В кристаллических соединениях РЗ-ПМ, аналогах наших аморфных пленок Gd-Co, величина критического магнитного поля, требуемого для индуцирования неколлинеарной магнитной структуры, измеряется сотнями килоэрстед [20]. Однако вблизи T_{comp} величина критического поля сильно уменьшается [21,22]. Подобное уменьшение критического поля можно ожидать и для исследованных пленок, тем более что так называемый "размерный фактор" снижает общую магнитную связь в образце, находящемся в тонкопленочном состоянии [23].

На рис. 4 представлены температурные зависимости намагниченности, измеренные в поле разной напряженности и при ориентации поля как перпендикулярно плоскости образца, т.е. вдоль ОЛН, так и в плоскости образца.

При ориентации поля вдоль ОЛН и его напряженности до 20 kOe на зависимости M(T) наблюдается острый минимум при $T = T_{\text{comp}}$, а при $H \ge 30 \,\text{kOe}$ данный минимум "размывается", и величина М не достигает нуля (рис. 4, a), что является следствием нарушения антипараллельного упорядочения магнитных моментов подрешеток Co и Gd и возникновения неколлинеарной магнитной структуры в сильном магнитном поле. При ориентации поля вдоль плоскости пленки размытие минимума на зависимости M(T) наблюдается уже при $H = 10 \, \text{kOe} \, (\text{рис. 4}, b)$, т.е. вероятность возникновения неколлинеарной структуры ожидаемо [21,22] выше при ориентации внешнего поля перпендикулярно ОЛН. Для большей наглядности на рис. 5 приведены зависимости M(T), измеренные при ориентации магнитного поля как перпендикулярно, так и вдоль плоскости образца.

Рис. 4. Температурные зависимости намагниченности пленки $Gd_{19.8}Co_{80.2}$, измеренные при ориентации магнитного поля перпендикулярно (*a*) и вдоль плоскости (*b*) образца.

Рис. 5. Температурные зависимости намагниченности пленки $Gd_{19.8}Co_{80.2}$, измеренные при ориентации магнитного поля перпендикулярно (открытые символы) и вдоль плоскости образца (заполненные символы). H = 50 kOe.

При ориентации поля вдоль ОЛН в температурных интервалах ниже T_1 и выше T_2 наблюдается линейный ход зависимости M(T), что характерно для однородных ферримагнитных пленок РЗ-ПМ [12,13,22] при антипа-

раллельной выстроенности намагниченностей подрешеток РЗ и ПМ. В температурном интервале между T_1 и T_2 под воздействием внешнего магнитного поля возникает неколлинеарная магнитная структура. При ориентации поля в плоскости образца (перпендикулярно ОЛН) наблюдается аналогичная ситуация, однако, если величины T₂ для двух ориентаций поля практически совпадают, то нижняя граница возникновения неколлинеарной магнитной структуры при плоскостной ориентации поля заметно отличается (T₁' < T₁). Подобный фазовый переход и зависимость температурного интервала существования неколлинеарной магнитной структуры от взаимной ориентации поля и ОЛН ранее наблюдался в аморфных ферримагнитных пленках Dy-Co [22]. Таким образом, возникновение неколлинеарной магнитной структуры под воздействием внешнего магнитного поля представляется более вероятной причиной протяженного по температуре изменения знака ΔS_M . Кроме того, в ходе дальнейших исследований необходимо рассмотреть роль компоненты МКЭ, связанной с магнитной анизотропией пленок [24,25].

4. Заключение

Установлено, что особенности магнитокалорического эффекта в тонкопленочном ферримагнетике во многом аналогичны особенностям, наблюдаемым в объемных объектах. В частности, вблизи температуры компенсации происходит смена знака изменения магнитной части энтропии $\Delta S_M(T)$, которая обусловлена температурным поведением намагниченности редкоземельной подрешетки. При ориентации поля перпендикулярно плоскости пленки смена знака ΔS_M происходит практически скачкообразно при пересечении T_{comp} , в то время как при ориентации поля в плоскости образца этот переход растянут внутри некоторого температурного интервала. Наиболее вероятной причиной размытия перехода является возникновение неколлинеарной магнитной структуры.

Финансирование работы

Работа выполнена при финансовой поддержке РНФ в рамках научного проекта № 18-72-10044.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Z.W. Wang, P. Yu, Y.T. Cui, L. Xia. J. Alloy Compd. 658, 598 (2016).
- [2] M. Tadout, C.-H. Lambert, M.S. El Hadri, O. Mounkachi, A. Benyoussef, M. Hamedoun, M. Benaissa, S. Mangin. J. Appl. Phys. **123**, 053902 (2018).

- [3] К.П. Белов, Е.В. Талалаева, Л.А. Черникова, А.С. Андреенко, В.И. Ивановский. ЖЭТФ **66**, 655 (1974).
- [4] S.A. Nikitin, N.Yu. Pankratov, A.I. Smarzhevskaya, J. Čwik, Yu.S. Koshkid'ko, A.Yu. Karpenkov, D.Yu. Karpenkov, Yu.G. Pastushenkov, K. Nenkov, K. Rogacki. J. Alloys Compd. 854, 156214 (2021).
- [5] A.V. Svalov, V.O. Vas'kovskiy, J.M. Barandiaran, K.G. Balymov, I. Orue, G.V. Kurlyandskaya. Phys. Status Solidi A 208, 2273 (2011).
- [6] А.А. Фраерман, И.А. Шерешевский. Письма в ЖЭТФ 101, 693 (2015).
- [7] М.А. Кузнецов, А.Б. Дровосеков, А.А. Фраерман. ЖЭТФ 159, 95 (2021).
- [8] А.А. Фраерман. Письма в ЖЭТФ 113, 353 (2021).
- [9] D. Doblas, L.M. Moreno-Ramírez, V. Franco, A. Conde, A.V. Svalov, G.V. Kurlyandskaya. Mater. Design 114, 214 (2017).
- [10] R. Niemann, O. Heczko, L. Schultz, S. Fähler. Appl. Phys. Lett. 97, 222507 (2010).
- [11] P. Chaudhari, J.J. Cuomo, R.J. Gambino. Appl. Phys. Lett. 22, 337 (1973).
- [12] В.О. Васьковский, А.Н. Горьковенко, О.А. Аданакова, А.В. Свалов, Н.А. Кулеш, Е.А. Степанова, Е.В. Кудюков, В.Н. Лепаловский. ФММ 120, 1151 (2019).
- [13] В.О. Васьковский, В.В. Лесных, Г.С. Кандаурова, Т.Х. Агамальян. ФММ 59, 470 (1985).
- [14] Н.Ю. Панкратов, Т.П. Каминская, И.С. Терешина, А.А. Макуренкова, А.Ю. Карпенков, М.А. Пауков, С.А. Никитин. ФТТ 62, 719 (2020).
- [15] P.J. von Ranke, B.P. Alho, E.J.R. Plaza, A.M.G. Carvalho, V.S.R. de Sousa, N.A. de Oliveira. J. Appl. Phys. 106, 053914 (2009).
- [16] E. Burzo, I. Balasz, I. Deac, R. Tetean. J. Magn. Magn. Mater. 322, 1109 (2010).
- [17] С.А. Никитин, Е.В. Талалаева, Л.А. Черникова, А.С. Андреенко. ЖЭТФ 65, 2058 (1974).
- [18] T.-M. Liu, T. Wang, A.H. Reid et al. Nano Lett. 15, 6862 (2015).
- [19] E. Kirk, C. Bull, S. Finizio, H. Sepehri-Amin, S. Wintz, A.K. Suszka, N.S. Bingham, P. Warnicke, K. Hono, P.W. Nutter, J. Raabe, G. Hrkac, T. Thomson, L.J. Heyderman. Phys. Rev. Mater. 4, 074403 (2020).
- [20] Yu. Skourskia, M.D. Kuz'min, K.P. Skokov, M. Richter, D. Eckert, I.S. Tereshina, K.-H. Müller. J. Magn. Magn. Mater. 290–291, 435 (2005).
- [21] К.П. Белов, А.К. Звездин, А.М. Кадомцева, Р.З. Левитин. Ориентационные переходы в редкоземельных магнетиках. Наука, М. (1979). 317 с.
- [22] Б.П. Хрусталев, В.Г. Поздняков, Г.И. Фролов. ФТТ 35, 921 (1993).
- [23] A.V. Svalov, V.O. Vas'kovskiy, G.V. Kurlyandskaya. Phys. Met. Metallogr. 118, 1263 (2017).
- [24] Е.П. Найден, С.М. Жиляков. ФТТ 39, 1078 (1997).
- [25] S.A. Nikitin, K.P. Skokov, Yu.S. Koshkid'ko, Yu.G. Pastushenkov, T.I. Ivanova. Phys. Rev. Lett. 105, 137205 (2010).

Редактор К.В. Емцев