# Атомная структура и оптические свойства слоев CaSi<sub>2</sub>, выращенных на CaF<sub>2</sub>/Si-подложках

© В.А. Зиновьев<sup>1</sup>, А.В. Кацюба<sup>1</sup>, В.А. Володин<sup>1,2</sup>, А.Ф. Зиновьева<sup>1,2</sup>, С.Г. Черкова<sup>1</sup>, Ж.В. Смагина<sup>1</sup>, А.В. Двуреченский<sup>1,2</sup>, А.Ю. Крупин<sup>3</sup>, О.М. Бородавченко<sup>4</sup>, В.Д. Живулько<sup>4</sup>, А.В. Мудрый<sup>4</sup>

<sup>1</sup> Институт физики полупроводников им. А.В. Ржанова Сибирского отделения Российский академии наук,

630090 Новосибирск, Россия

<sup>2</sup> Новосибирский государственный университет,

630090 Новосибирск, Россия

<sup>3</sup> Новосибирский государственный технический университет,

630073 Новосибирск, Россия

<sup>4</sup> Государственное научно-производственное объединение

"Научно-практический центр Национальной академии наук Беларуси по материаловедению",

220072 Минск, Республика Беларусь

E-mail: zinoviev@isp.nsc.ru

Поступила в Редакцию 12 апреля 2021 г. В окончательной редакции 19 апреля 2021 г. Принята к публикации 19 апреля 2021 г.

Проведено исследование особенностей роста, а также структурных и оптических свойств слоев CaSi<sub>2</sub>, сформированных в процессе последовательного осаждения Si и CaF<sub>2</sub> на подложку Si(111) при одновременном облучении пучком быстрых электронов. Спектры комбинационного рассеяния света, снятые в областях воздействия электронным пучком, продемонстрировали пики, характерные для кристаллических слоев CaSi<sub>2</sub>. Исследование морфологии поверхности сформированных структур показало, что в выбранных условиях синтез слоев CaSi<sub>2</sub> при электронном облучении происходит по двумерно-слоевому механизму. Спектры фотолюминесценции, измеренные в областях, модифицированных электронным пучком, имеют существенные отличия от спектров, снятых вне области электронного облучения.

Ключевые слова: силициды кальция, фторид кальция, молекулярно-лучевая эпитаксия, электронное облучение, атомная структура, фотолюминесценция.

DOI: 10.21883/FTP.2021.09.51284.11

#### 1. Введение

В последнее время растет интерес к созданию слоев силицидов металлов на кремниевых подложках. Это интерес связан с потенциальной возможностью получения графеноподобных кремниевых структур. Ожидается, что эти материалы будут иметь электронную структуру с прямой запрещенной зоной. Это должно приводить к эффективной фотолюминесценции в видимом диапазоне. Недавно было обнаружено, что слои кремния, интеркалированные в CaSi2, проявляют электронные свойства, характерные для графеноподобных материалов [1]. Обычно тонкие пленки силицидов формируют на кремниевых подложках с помощью таких методов, как твердофазная эпитаксия [2], реактивная эпитаксия [3] или молекулярно-лучевая эпитаксия [4]. В последнем из перечисленных методов формирование силицидов кальция происходит в процессе совместного осаждения Са и Si на кремниевую подложку, нагретую до температуры 500°С. Недавно был предложен метод создания CaSi<sub>2</sub> в процессе осаждения CaF<sub>2</sub> на подложку Si(111) с одновременным облучением пучком быстрых электронов [5]. Метод основан на использовании явления радиолиза, разложения фторида кальция на фтор и кальций, происходящего в процессе эпитаксиального роста при облучении электронами. Фтор может легко десорбироваться с поверхности растущей пленки, а оставшийся кальций вступает в химическую связь с кремнием, который при достаточно высоких температурах роста (> 350°C) поступает на поверхность растущего слоя за счет термически активируемой диффузии из нижележащих слоев кремния. В результате происходит формирование силицидов кальция. В настоящий момент существует ряд проблем, связанных с формированием пленок силицидов кальция данным методом, в частности, непланарность получаемой пленки и неоднородность ее по составу (присутствие различных фаз силицида). В данной работе выдвинута идея, что дополнительное осаждение промежуточных слоев кремния приведет к росту более планарных и более однородных по составу пленок. Было проведено исследование, как дополнительные слои кремния, встроенные в растущую пленку, влияют на рост и формирование силицидов кремния, а также на их структурные и оптические свойства.

#### 2. Методика эксперимента

Методом молекулярно-лучевой эпитаксии (МЛЭ) на подложках Si(111) при температуре 550°C были сформированы два типа структур. Первая структура пред-

ставляла собой слой CaF2 толщиной 10 нм, поверх которого осаждалось около 1 бислоя Si (~0.3 нм), который затем закрывался слоем CaF2 толщиной 3 нм (структура I). Вторая структура была аналогична первой, но содержала 10 бислоев Si, разделенных прослойками CaF<sub>2</sub>, имеющими толщину 3 нм (структура II). В течение всего времени осаждения проводилось облучение электронным пучком в кристаллографическом направлении [110] с ускоряющим напряжением 20 кэВ и плотностью тока 50 мкА/см<sup>2</sup>. Угол падения электронного пучка по отношению к поверхности не превышал 2°. Скорости осаждения СаF<sub>2</sub> и Si составляли 0.3 и 0.1 Å/с соответственно. Морфология, атомная структура, элементный состав и люминесцентные свойства созданных эпитаксиальных структур исследовались методами атомно-силовой микроскопии (АСМ), комбинационного рассеяния света (КРС) и фотолюминесценции (ФЛ). Измерения ФЛ проводились при комнатной температуре и температуре жидкого азота (78 К). Фотовозбуждение носителей заряда осуществлялось лазерами с длиной волны излучения 473 и 532 нм.

### 3. Результаты и обсуждение

При создании многослойных структур предполагалось, что осаждение тонких слоев Si поверх CaF2 должно облегчить процесс формирования двумерных слоев силицида кремния в условиях облучения электронным пучком, что и подтвердилось в эксперименте. В областях воздействия электронным пучком на поверхности формировались светлые полосы с характерным металлическим блеском. На рис. 1 представлено изображение поверхности многослойной структуры, содержащий 10 бислоев Si (структура II) в местах воздействия электронным пучком, полученное методом АСМ в режиме фазового контраста. Из представленного изображения следует, что рост пленки в условиях облучения пучком ускоренных электронов происходит послойно без образования трехмерных островков, т.е. по двумернослоевому механизму. Согласно данным, полученным методом АСМ, минимальная высота ступеньки между двумя последовательно растущими слоями составляет ~ 1.6 нм, что близко к постоянной кристаллической решетки полиморфной фазы CaSi2 с 3-слойным трансляционным периодом (З*R*-модификация) [6].

Спектры КРС от созданных структур, снятые в областях воздействия электронным пучком (рис. 2, сплошная линия I), продемонстрировали особенности, характерные для кристаллических слоев CaSi<sub>2</sub> в 3R-модификации [6]. Для обоих типов структур, независимо от толщины структуры, наблюдаются три пика при 418, 388 и 346 см<sup>-1</sup>, что является принципиальным отличием от работы [7], где для толстых пленок (толщиной > 20 нм), выращенных без прослоек кремния, наблюдались дополнительные пики, характерные для другой полиморфной фазы CaSi<sub>2</sub> с 6-слойным трансляционным

<u>S00 mm</u>

**Рис. 1.** АСМ-снимок поверхности многослойной структуры CaF<sub>2</sub>/Si/CaF<sub>2</sub>/Si(111), содержащей 10 бислоев Si в местах воздействия электронным пучком, полученный методом АСМ в режиме фазового контраста.



**Рис. 2.** Спектры КРС от многослойной структуры CaF<sub>2</sub>/Si/CaF<sub>2</sub>/Si(111), содержащей 10 бислоев Si, снятые в области воздействия электронным пучком (сплошная линия *I*) и вне этой области (пунктирная линия *2*).

периодом (6*R*-модификация). Вне области воздействия электронным пучком, спектры КРС (рис. 2, пунктирная линия 2), оказались аналогичны спектру КРС от исходной подложки Si(111).

Спектры ФЛ, измеренные в областях, модифицированных электронным пучком, и вне их, также имеют существенные отличия. Так, для структуры, содержащей 1 бислой Si (структура I), в спектрах ФЛ, снятых



**Рис. 3.** Спектры ФЛ для структуры CaF<sub>2</sub>/Si/CaF<sub>2</sub>/Si(111), содержащей 1 бислой Si, снятые на облученной области (кривая *I*) и вне нее (кривая *2*). Температура измерений составляла 300 К. Фотовозбуждение осуществлялось лазером с длиной волны излучения 473 нм.



Рис. 4. Спектры ФЛ для структуры CaF<sub>2</sub>/Si/CaF<sub>2</sub>/Si(111), содержащей 10 бислоев Si, снятые на облученной области (кривая 1) и вне нее (кривая 2). Температура измерений составляла 78 К. Фотовозбуждение осуществлялось лазером с длиной волны излучения 532 нм (цветной вариант рисунка представлен в электронной версии статьи).

на облученных областях, наблюдается широкая полоса излучения с максимумом при 570 нм (рис. 3, кривая 1). Данная полоса может быть связана с излучательной рекомбинацией фотовозбужденных носителей, которые локализуются на ловушках на границе раздела фаз CaSi<sub>2</sub> и CaF<sub>2</sub>. Вне области облучения электронным пучком наблюдается широкая полоса с максимумом при 675 нм (рис. 3, кривая 2), которая может быть обусловлена излучательной рекомбинацией носителей заряда, локализованных в тонких слоях Si, встроенных в диэлектрическую матрицу CaF<sub>2</sub>. В спектрах ФЛ от многослойной структуры, содержащей 10 бислоев Si (структура II), также наблюдаются эти две широкие полосы, только интенсивность их значительно меньше, что, по-видимому, связано с накоплением количества центров безызлучательной рекомбинации в многослойной структуре.

На рис. 4 представлены спектры ФЛ от многослойной структуры, содержащей 10 бислоев Si (структура II), измеренные в ближнем инфракрасном диапазоне. Спектры снимались как в области, модифицированной электронным пучком (рис. 4, кривая 1), так и вне нее (рис. 4, кривая 2). В обоих случаях наблюдается полоса излучения при 1545 нм ( $\approx 0.8$  эВ). Причем интенсивность обнаруженного пика примерно в 2 раза выше в области электронного воздействия, чем вне нее. Природа этой полосы пока не вполне понятна и может быть связана с тем, что помимо металлической фазы CaSi2 происходит формирование включений из полупроводниковых соединений кремния и кальция с шириной запрещенной зоны, близкой к 0.8 эВ [9]. Возможно также, что наблюдаемая полоса имеет дефектную природу, поскольку ФЛ кремния в этом диапазоне длин волн обычно связывают с дислокационной люминесценцией (см., например, [9]). Поскольку данная полоса наблюдается как на модифицированных, так и на немодифицированных электронным облучением участках поверхности, можно сделать вывод, что данная полупроводниковая фаза может формироваться в процессе обычного эпитаксиального роста  $CaF_2$  на Si(111) при температурах ~ 550°С. Усиление интенсивности данной полосы может быть связано с проявлением плазмонных эффектов за счет присутствия металлических включений CaSi<sub>2</sub>.

Другой интересной особенностью спектров ФЛ является то, что интенсивность полосы, связанной с излучательной рекомбинацией в подложке кремния, при 1127 нм ( $\approx 1.1$  эВ) оказалась почти на порядок меньше в области структуры, созданной с применением электронного облучения, чем без него. Последнее может быть связано с возрастанием поглощения излучения возбуждающего лазера в слоях структуры, содержащих металлическую фазу CaSi<sub>2</sub>.

# 4. Заключение

В ходе работы продемонстрировано, что встраивание слоев кремния при эпитаксии фторида кальция с одновременным облучением пучком быстрых электронов приводит к повышению степени планарности растущих пленок. Спектры КРС показывают, что пленки в областях, модифицированных электронным облучением, имеют однородный фазовый состав пленок CaSi<sub>2</sub> независимо от их толщины. Спектры ФЛ демонстрируют полосы, как в видимом диапазоне (при ~ 570 и ~ 675 нм), так и в ближнем инфракрасном диапазоне излучения (при ~ 1545 нм). Для последней полосы наблюдается усиление интенсивности излучения в областях, модифи

цированных электронным облучением. Эффект усиления может быть связан с проявлением плазмонных эффектов за счет присутствия металлических включений CaSi<sub>2</sub>.

#### Благодарности

Авторы благодарят ЦКП "Наноструктуры" (ИФП СО РАН) и ЦКП "ВТАН" (НГУ) за предоставление измерительного оборудования.

#### Финансирование работы

Работа выполнена при финансовой поддержке РФФИ (грант № 20-52-00016) и БРФФИ (грант № Ф20Р-092).

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

# Список литературы

- [1] E. Noguchi, K. Sugawara, R. Yaokawa, T. Hitosugi, H. Nakano, T. Takahashi. Adv. Mater., **27**, 856 (2015).
- [2] J.F. Morar, M. Wittmer. Phys. Rev. B, 37, 2618 (1988).
- [3] G. Vogg, M.S. Brandt, M. Stutzmann, M. Albrecht. J. Cryst. Growth, 203, 570 (1999).
- [4] N.G. Galkin, S.A. Dotsenko, K.N. Galkin, A.M. Maslov, D.B. Migas, V.O. Bogorodz, A.B. Filonov, V.E. Borisenko, I. Cora, B. Pcecz, D.L. Goroshko, A.V. Tupkalo, E.A. Chusovitin, E.Y. Subbotin. J. Alloys Compd., **770**, 710 (2019).
- [5] A.V. Kacyuba, A.V. Dvurechenskii, G.N. Kamaev, V.A. Volodin, A.Y. Krupin. Mater. Lett., 268, 127554 (2020).
- [6] S.M. Castillo, Z. Tang, A.P. Litvinchuk, A.M. Guloy. Inorg. Chem., 55, 10203 (2016).
- [7] A.V. Kacyuba, A.V. Dvurechenskii, G.N. Kamaev, V.A. Volodin, A.Y. Krupin. J. Cryst. Growth, 562, 126080 (2021).
- [8] N.G. Galkin, D.A. Bezbabnyi, K.N. Galkin, S.A. Dotsenko, E. Zielony, R. Kudrawiec, J. Misiewicz. Phys. Status Solidi C, 10, 1819 (2013).
- [9] B. Pavlyk, M. Kushlyk, D. Slobodzyan. Nanoscale Res. Lett., 12, 358 (2017).

Редактор Г.А. Оганесян

# Atomic structure and optical properties of CaSi<sub>2</sub> layers grown on CaF<sub>2</sub>/Si substrates

V.A. Zinovyev<sup>1</sup>, A.V. Kacyuba<sup>1</sup>, V.A. Volodin<sup>1,2</sup>, A.F. Zinovieva<sup>1,2</sup>, S.G. Cherkova<sup>1</sup>, Zh.V. Smagina<sup>1</sup>, A.V. Dvurechenskii<sup>1,2</sup>, A.Y. Krupin<sup>3</sup>, O.M. Borodavchenko<sup>4</sup>, V.D. Zhivulko<sup>4</sup>, A.V. Mudryi<sup>4</sup>

 <sup>1</sup> Rzhanov Institute of Semiconductor Physics, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia
<sup>2</sup> Novosibirsk State University, 630090 Novosibirsk, Russia
<sup>3</sup> Novosibirsk State Technical University, 630073 Novosibirsk, Russia
<sup>4</sup> Scientific-Practical Material Research Centre of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus

**Abstract** In this work, we study the growth features, as well as the structural and optical properties of  $CaSi_2$  layers formed in the process of successive deposition of Si and  $CaF_2$  on a Si(111) substrate with simultaneous irradiation with high energy electron beam. The Raman spectra recorded in the regions of the electron beam action showed peaks characteristic of crystalline  $CaSi_2$  layers. The study of the surface morphology of the grown structures demonstrated that, under the chosen synthesis conditions, the formation of  $CaSi_2$  layers during electron irradiation occurs according to a two-dimensional layer mechanism. The photoluminescence spectra measured in the region modified by the electron beam have significant differences from the spectra measured outside this region.