08,04

Сверхтонкое и квадрупольное взаимодействия в ЭПР изотопов ¹⁵³Eu²⁺ и ¹⁵¹Eu²⁺ в иттрий-алюминиевом гранате

© А.П. Потапов¹, В.А. Важенин^{1,¶}, А.Г. Петросян², К.Л. Ованесян², Г.Р. Асатрян³, М.Ю. Артёмов¹

¹ Уральский федеральный университет (Институт естественных наук и математики), Екатеринбург. Россия

² Институт физических исследований НАН РА,

Аштарак-2, Армения

³ Физико-технический институт им. А.Ф. Иоффе РАН,

Санкт-Петербург, Россия

[¶] E-mail: Vladimir.Vazhenin@urfu.ru

Поступила в Редакцию 23 апреля 2021 г. В окончательной редакции 23 апреля 2021 г. Принята к публикации 26 апреля 2021 г.

В специально выращенных монокристаллах иттрий-алюминиевого граната исследованы ромбические центры ¹⁵³Eu²⁺ и ¹⁵¹Eu²⁺. Определены параметры сверхтонкого и квадрупольного взаимодействий, описывающие сверхтонкую структуру спектра ЭПР обоих изотопов.

Ключевые слова: примесные ионы, гранат, парамагнитный резонанс, сверхтонкая структура.

DOI: 10.21883/FTT.2021.09.51274.095

1. Введение

Электронный парамагнитный резонанс (ЭПР) центров Eu^{2+} (электронный спин S = 7/2) с естественным содержанием изотопов (распространенность ¹⁵¹Eu и ¹⁵³Eu -48% и 52%, соответственно) в иттрий-алюминиевом гранате был исследован в работе [1]. Ионы Eu²⁺ занимают в кристалле $Y_3Al_5O_{12}$ позиции Y^{3+} , образуя 6 магнитно-неэквивалентных ромбических центров, которые в ориентациях $B \parallel C_2$, $B \parallel C_4$, $B \parallel C_3$ (B — индукция магнитного поля, C_i — оси кубического кристалла с пространственной группой $Ia\bar{3}d(O_h^{10}))$ объединяются в эквивалентные группы. Но даже в этих выделенных ориентациях магнитного поля сигналы центров Eu²⁺ представляют собой либо широкие бесструктурные линии, либо линии с частично разрешенной сверхтонкой структурой (СТС), в которой практически невозможно соотнести наблюдаемые компоненты СТС с переходами между электронно-ядерными подуровнями разных изотопов (ядерные спины изотопов ¹⁵¹Eu и ¹⁵³Eu I = 5/2). Такое соотнесение необходимо для определения параметров спинового гамильтониана (СГ), описывающих СТС парамагнитных центров.

Используя центры СТС сигналов Eu²⁺ как резонансные положения переходов несуществующего изотопа с нулевым ядерным спином и комплексную матрицу энергии 8-го порядка (2S + 1), минимизацией среднеквадратичного отклонения экспериментальных и расчетных частот были определены параметры СГ, описывающие тонкою структуру спектра ЭПР изотопов ¹⁵¹Eu и ¹⁵³Eu. Оказалось, что спектры Eu²⁺ в Y₃Al₅O₁₂ при различных температурах и необычное ориентационное поведение положений переходов шести магнитно-неэквивалентных центров при вращении магнитного поля в плоскости $C_2-C_3-C_4$ при 300 К (рис. 5 в [1]) объясняются большой величиной и примерным равенством параметров начального расщепления b_{20} , b_{22} и используемого в спектрометре кванта СВЧ. Абсолютные знаки параметров начального расщепления не определялись, а из-за плохо разрешенной СТС только для изотопа ¹⁵¹Eu удалось оценить параметры сверхтонкого взаимодействия (СТВ) $A_x = A_y = A_z \approx 100$ MHz.

С целью более точного определения параметров СГ, описывающих СТС нечетных изотопов Eu²⁺, были выращены и исследованы монокристаллы иттрий-алюминиевого граната, обогащенные изотопом ¹⁵¹Eu до 97.5% [2]. СТС большинства наблюдаемых переходов в ориентациях магнитного поля вдоль кристаллографических осей, естественно, стала проще, а некоторые переходы центров (особенно при В || С2) вообще представляли из себя, в соответствии с ядерным спином изотопа ¹⁵¹Еи, квазиэквидистантные шестерки. С учетом положений идентифицированных компонент СТС при $B \parallel C_2$, $B \parallel C_4, B \parallel C_3$ численными методами с использованием матрицы энергии 48-го порядка $((2S+1) \cdot (2I+1))$ были уточнены параметры, описывающие тонкую структуру спектра ЭПР ионов Eu²⁺ при 120, 200, 300 К. Также было установлено, что наблюдаемая СТС изотопа ¹⁵¹Еи может быть описана практически изотропной константой A = -102(2) MHz. Влияния на СТС изотопа ¹⁵¹Еи квадрупольного взаимодействия выявлено не было. Из анализа вида СТС на одном переходе при $B \parallel C_4$, сформированном разрешенными и запрещенными электронно-ядерными переходами (рис. 5 и 6 в [2]) было получено, что параметры начального расщепления b₂₀ и сверхтонкого взаимодействия А — одного знака. Правила отбора для разрешенных электронно-ядерных переходов в СТС — $\Delta m = 0$, для запрещенных — $\Delta m \neq 0$ (где m — проекция ядерного спина).

Настоящая работа посвящена детальному исследованию и описанию СТС ромбических центров нечетных изотопов Eu²⁺ в специально выращенных монокристаллах иттрий-алюминиевого граната (YAG).

Выращивание кристаллов и методика измерений

Монокристаллы YAG: ¹⁵³Eu выращивались методом вертикальной направленной кристаллизации из расплава. Изотопный состав использованного оксида Eu_2O_3 соответствовал ¹⁵³Eu (99.2%) и ¹⁵¹Eu (0.8%). Для стабилизации состояний Eu^{2+} в расплав вводился кремний в виде оксида SiO₂. Условия кристаллизации, методы контроля качества и ориентации кристаллов были аналогичны описанным в [2].

Измерения ЭПР проводились на спектрометре трехсантиметрового диапазона EMX Plus Bruker при разных температурах с использованием штатного одноосного автоматического гониометра. Для реализации вращения в двух перпендикулярных плоскостях (с целью получения любой ориентации постоянного магнитного поля относительно кристаллографических осей) кристалл помещался в тефлоновый бочонок, расположенный на штанге гониометра и обеспечивающий вращение образца вокруг горизонтальной оси.

3. Результаты эксперимента и обсуждение

В структуре граната существует 12 структурно-эквивалентных, но различно ориентированных позиций с симметрией D_2 . Именно эти позиции занимают ионы европия [1]. Спектры центров в позициях, связанных инверсией, в магнитном резонансе не отличаются; поэтому наблюдается только шесть магнитно-неэквивалентных центров. Оси Z и Y локальной системы координат указанных ромбических центров, как и в работах [1,2], были выбраны параллельно осям C_2 кубической ячейки, ось X совпадала с направлением C_4 кристалла.

В ориентации $B \parallel C_2$ четыре ромбических центра (из шести наблюдаемых) эквивалентны ($\theta = 60^\circ$, θ угол между магнитным полем и осью Z локальной системы координат), а оставшиеся два центра являются одиночными с $\theta = 0^\circ$ и 90°. На сигналах именно этих одиночных центров больше всего заметна разница в СТС изотопов ¹⁵¹Еи и ¹⁵³Еи (рис. 1).

Худшее разрешение и меньшая интенсивность на рис. 1 компонент СТС переходов центров с $B \parallel Z$ ($\theta = 0^{\circ}$) по сравнению с $B \perp Z$ ($\theta = 90^{\circ}$) объяснены в [2]. Различие в положениях центров структур одних и тех же переходов в кристаллах, обогащенных изотопами

Рис. 1. Фрагменты спектров ЭПР в Y₃Al₅O₁₂ при 300 К и $B \parallel C_2$: a - для кристаллов, обогащенных изотопом ¹⁵¹Eu(частота 9450 MHz), стрелки указывают на центры СТС пе $реходов одиночных спектров (толстые — с <math>B \perp Z$, тонкие с $B \parallel Z$); b - для кристаллов, обогащенных изотопом ¹⁵³Eu(частота 9831 MHz). Цифры <math>1-5 на рисунке используются в тексте.

Рис. 2. Фрагмент спектра ¹⁵³ Еи на частоте 9844 МНz при 300 К и $B \parallel C_3$: a — экспериментальный (верхняя шестерка стрелок указывает на компоненты центра с $\theta = 90^\circ$, нижняя — $c \ \theta = 35.26^\circ$), b — симулированный, c — расчетный для центров с $\theta = 90^\circ$, d — расчетный для центров с $\theta = 35.26^\circ$.

¹⁵¹Еи и ¹⁵³Еи, обусловлено разными частотами регистрации. Схема уровней энергии, поясняющая положения переходов одиночных центров Eu^{2+} при $B \parallel C_2$, приведена в [2] на рис. 2.

На рис. 1 видно, что у 153 Еu по сравнению с 151 Еu протяженность СТС одинаковых переходов примерно в 2 раза меньше, что коррелирует с отношением магнитных моментов изотопов [3], а отсутствие у 153 Еu шести эквидистантных компонент — с влиянием квадрупольного взаимодействия. Квадрупольный момент изотопа 153 Еu примерно в 2.5 раза больше, чем у 151 Еu [3] и в сочетании с соотношением величин *А* этих изотопов это может привести к ситуации, когда СТС переходов 153 Еu будет формироваться совместным влиянием соиз-

меримых по величине сверхтонкого и квадрупольного взаимодействий.

Для описания СТС изотопа ¹⁵³Eu в спиновый гамильтониан, использованный в [1,2], были добавлены следующие слагаемые [4]:

$$H_{hfs} = A_z S_z I_z + A_x S_x I_x + A_y S_y I_y + P_z \left(I_z^2 - \frac{1}{3} I(I+1) \right) + \frac{1}{3} P_{xy} (I_x^2 - I_y^2) - g_n \beta_n(BI), \qquad (1)$$

где I_i и S_i — операторы проекций ядерного и электронного спина, A_i — параметры сверхтонкого взаимодействия, P_i — параметры квадрупольного взаимодействия, g_n — ядерный g-фактор (¹⁵³ $g_n = 0.612$ [3]), β_n — ядерный магнетон.

Из всех наблюдаемых электронных переходов ¹⁵³Eu²⁺ только самые нижние по полю в ориентациях $B \parallel C_2$, $B \parallel C_4, B \parallel C_3$ демонстрировали СТС из шести интенсивных компонент, что позволяло приписать их известным электронно-ядерным переходам. Но даже в этих случаях, как следует из соответствующих схем уровней энергии в приближении нулевого ядерного спина (например, для $B \parallel C_2$ из рис. 2 в [2]), наблюдаемая СТС одного низкополевого перехода искажалась наложением интенсивной шестикомпонентной структуры от другой группы центров ¹⁵³Eu²⁺. Две шестикомпонентные структуры (как наиболее разрешенные) при В || С3 в полях (57-70) mT показаны на рис. 2, а. В ориентации $B \parallel C_2$ в полях (46-57) mT вид СТС двух переходов практически такой же, а вот в ориентации $B \parallel C_4$ две структуры наложились так, что образовали одну группу из шести уширенных интенсивных компонент. При этом во всех случаях СТС каждого отдельного перехода имеет характерную особенность: крайние интервалы (верхний и нижний по полю) в шестикомпонентной структуре на (0.3-0.4) mT меньше средних.

Минимизацией среднеквадратичного отклонения расчетных и экспериментальных положений компонент СТС только в двух ориентациях магнитного поля $(B \parallel C_3 \, \mathrm{u} \, B \parallel C_2)$ для $T = 300 \, \mathrm{K}$ получено: $A_x = A_y = A_z = -45(2) \, \mathrm{MHz}$, $P_{xy} = \mp 52(9) \, \mathrm{MHz}$, $P_z = \pm 21(7) \, \mathrm{MHz}$. Попытка выбрать один набор знаков для констант квадрупольного взаимодействия симуляцией структуры при $B \parallel C_3$ (рис. 2, *a*), используя разные формы линий, не дала желаемого результата. На рис. 2, *b* показан лучший результат с $\Delta B_{pp} = 0.5 \, \mathrm{mT}$ для центров с $\theta = 90^{\circ}$ и $\Delta B_{pp} = 0.8 \, \mathrm{mT}$ для центров с $\theta = 35.26^{\circ} \, (\Delta B_{pp} -$ ширина линии между экстремумами первой производной линии Лоренца).

Сравнение экспериментальной и симулированной структур на рис. 2 показывает хорошее согласие резонансных положений компонент, а вот их интенсивности описываются хуже. Последнее может быть связано с несколькими причинами. Во-первых, с ошибкой в параметрах (особенно квадрупольного взаимодействия) описывающих СТС, которые были определены не из резонансных положений обусловленных ими запрещенных переходов, а из небольших сдвигов широких компонент, соответствующих интенсивным разрешенным переходам. Во-вторых, в ориентации $B \parallel C_3$ шесть наблюдаемых центров объединяются в две группы по три (одна с $\theta = 90^{\circ}$, другая с $\theta = 35.26^{\circ}$), вследствие чего могут быть очевидные проблемы в получении достаточно хорошей ориентации постоянного магнитного поля для такой многокомпонентной структуры (рис. 2, *a*). И наконец, даже имея для всех центров группы одинаковую ориентацию *B*, центры в группе имеют разную ориентацию относительно переменного поля СВЧ, что может приводить к разным вкладам от них в суммарные интенсивности компонент.

На рис. 2, с и d показаны расчетные структуры двух групп центров, использованные для симуляции СТС при $B \parallel C_3$ (рис. 2, b), представленные для наглядности линиями Лоренца с $\Delta B_{pp} = 0.05$ mT. Видно, что влияние квадрупольного взаимодействия приводит к появлению слабых запрещенных переходов за счет уменьшения интенсивностей разрешенных, но в симулированном суммарном спектре (как и в экспериментальном) запрещенные переходы практически не проявляются из-за большой ширины и малой интенсивности линий.

Разрешить проблему знаков констант квадрупольного взаимодействия для ¹⁵³Eu ($P_{xy} = -52$ MHz, $P_z = +21$ MHz или $P_{xy} = +52$ MHz, $P_z = -21$ MHz) помогла симуляция самой разрешенной (со странным для I = 5/2 числом компонент) СТС этого изотопа для одиночного центра с $B \perp Z$, помеченная цифрой I (рис. 1, b) при $B \parallel C_2$. На рис. 3 представлены экспериментальная, две расчетных и две симулированных СТС этого перехода с разными наборами квадрупольных параметров. Сравнение экспериментальной СТС с симулированны-

Рис. 3. СТС перехода при $B \parallel C_2$ для одиночного центра ¹⁵³Eu²⁺ с $B \perp Z$: *a* — симулированная ($P_{xy} = +52$ MHz, $P_z = -21$ MHz), *b* — экспериментальная, *c* — симулированная ($P_{xy} = -52$ MHz, $P_z = +21$ MHz), *d* — рассчитанная с константами $P_{xy} = -52$ MHz и $P_z = +21$ MHz ($\Delta B_{pp} = 0.1$ mT), *e* — рассчитанная с константами $P_{xy} = +52$ MHz и $P_z = -21$ MHz ($\Delta B_{pp} = 0.1$ mT).

Рис. 4. СТС перехода при $B \parallel C_2$ для одиночного центра ¹⁵³Eu²⁺ с $B \parallel Z$: a — экспериментальная, b — симулированная ($P_{xy} = -52$ MHz, $P_z = +21$ MHz), c — рассчитанная с константами $P_{xy} = -52$ MHz и $P_z = +21$ MHz ($\Delta B_{pp} = 0.1$ mT).

ми ($\Delta B_{pp} = 1.6 \text{ mT}$) не оставляет сомнений в реализации знаков квадрупольных констант: $P_{xy} = -52 \text{ MHz}$, $P_z = +21 \text{ MHz}$.

Подтверждением такого соотношения знаков является и рис. 4. На нем представлены экспериментальная (рис. 4, *a*), симулированная (рис. 4, *b*) и расчетная (рис. 4, *c*) структуры перехода одиночного центра с *B* || *Z* при *B* || *C*₂. СТС этого перехода отмечена на рис. 1, *b* цифрой 2 и обладает, как видно, заметно худшим разрешением. Хорошее согласие экспериментальной и симулированной структур достигнуто здесь также с использованием квадрупольных констант $P_{xy} = -52$ MHz, $P_z = +21$ MHz, но получено при использовании линий Лоренца с $\Delta B_{pp} = 2.4$ mT. Большая величина ΔB_{pp} для этого перехода обусловлена статическим разбросом параметров СГ, описывающих тонкую структуру спектра ЭПР ионов Eu²⁺ [2].

Полученное соотношение знаков квадрупольных констант подтверждается симуляцией всех, имеющих скольнибудь заметное разрешение СТС переходов центров изотопа ¹⁵³Eu, не перекрытых структурами от переходов других групп эквивалентных центров [2], в ориентациях $B \parallel C_2$, $B \parallel C_4$, $B \parallel C_3$, что одновременно является и подтверждением достаточно точного определения их величин.

Из ЭПР ионов Eu²⁺ с природным содержанием изотопов ¹⁵¹Eu и ¹⁵³Eu часто удается определить только параметры СТВ [5]. Объективная причина этого — суперпозиция резонансных сигналов двух нечетных изотопов с разными параметрами сверхтонкого и квадрупольного взаимодействий, которая сильно усложняет наблюдаемую СТС. При этом отношение измеренных констант СТВ ¹⁵¹A/¹⁵³A находится в достаточно хорошем согласии с отношением магнитных моментов [5–8]. Не является исключением в этом смысле и иттрий-алюминиевый гранат (¹⁵¹A/¹⁵³A = -102 MHz/-45MHz ≈ 2.27 [3]).

Выше уже упоминалось, что в кристаллах YAG, обогащенных изотопом ¹⁵¹Eu [2], влияние квадрупольного взаимодействия на СТС выявлено не было. Во всех случаях, когда наблюдались шестерки интенсивных и широких компонент (рис. 1 *a*), соответствующих разрешенным переходам [2], их резонансные положения удалось описать с использованием только изотропной константы A = -102(2) MHz. Возможная причина меньший примерно в 2.5 раза квадрупольный момент изотопа ¹⁵¹Eu по сравнению с ¹⁵³Eu, что в сочетании с большей сверхтонкой константой делает практически незаметным влияние квадрупольного взаимодействия на СТС многих переходов.

Предположив, что отношение соответствующих квадрупольных параметров (включая знаки) для нечетных изотопов Eu²⁺ определяется отношением квадрупольных моментов, для ¹⁵¹Eu получим: ${}^{151}P_{xy} \approx -52 \cdot 0.39$ $\approx -20 \,\mathrm{MHz}, \quad {}^{151}P_z \approx +21 \cdot 0.39 = +8 \,\mathrm{MHz}.$ Допустимость сделанного предположения сначала проверим на переходе с $B \perp Z$ при $B \parallel C_2$, СТС которого помечена на рис. 1, а цифрой 3. На рис. 5 представлены экспериментальная (рис. 5, a), симулированная (рис. 5, b) и расчетная (рис. 5, с) структуры этого перехода. В расчетной структуре, представленной линиями Лоренца с $\Delta B_{pp} = 0.05 \,\mathrm{mT}$, влияние квадрупольных констант приводит к появлению запрещенных переходов с интенсивностью на 2 порядка меньшей чем у разрешенных, а также к сдвигу некоторых интенсивных компонент максимум на 0.07 mT. Такие изменения структуры за счет квадрупольных констант не проявляются в симулированной структуре (рис. 5, b) и, естественно, не могут быть детектированы в эксперименте (рис. 5, a). Похожая ситуация реализуется на переходах, отмеченных на рис. 1, а цифрами 4 и 5, а также на всех детектированных в виде шести интенсивных широких компонент в кристаллах YAG, обогащенных изотопом

Рис. 5. СТС перехода при $B \parallel C_2$ для одиночного центра ¹⁵¹Eu²⁺ с $B \perp Z$: a — экспериментальная, b — симулированная ($\Delta B_{pp} = 2.8 \text{ mT}$), c — расчетная с константами A = -102 MHz, $P_{xy} = -20 \text{ MHz}$, $P_z = +8 \text{ MHz}$.

Рис. 6. Фрагменты спектра ЭПР на частоте 9450 MHz при 300 K и $B \parallel C_4$ в монокристаллах $Y_3Al_5O_{12}$, обогащенных изотопом ¹⁵¹Eu²⁺.

Рис. 7. СТС перехода с центром в поле $B \approx 590 \,\mathrm{mT}$ на частоте 9450 MHz при 300 K и $B \parallel C_4$ в монокристаллах Y₃Al₅O₁₂, обогащенных изотопом ¹⁵¹Eu: a — экспериментальная, b — симулированная ($A = -102 \,\mathrm{MHz}$, $P_{xy} = -20 \,\mathrm{MHz}$, $P_z = +8 \,\mathrm{MHz}$), c — симулированная ($A = -102 \,\mathrm{MHz}$, $P_{xy} = 0 \,\mathrm{MHz}$, $P_z = 0 \,\mathrm{MHz}$), d — рассчитанная с константами $A = -102 \,\mathrm{MHz}$, $P_{xy} = -20 \,\mathrm{MHz}$, $P_z = +8 \,\mathrm{MHz}$, e рассчитанная с константами $A = -102 \,\mathrm{MHz}$, $P_{xy} = 0 \,\mathrm{MHz}$, $P_z = 0 \,\mathrm{MHz}$.

¹⁵¹Eu [2]. Сказанное объясняет тот факт, что влияния квадрупольного взаимодействия на СТС в работе [2] обнаружено не было.

В настоящей работе заметное влияние квадрупольных констант на СТС изотопа ¹⁵¹Еи было выявлено при $B \parallel C_4$. В этой ориентации шесть ромбических центров объединяются в две группы (два центра с $\theta = 90^\circ$ и четыре с $\theta = 45^\circ$). На рис. 6 приведены два перехода четырехкратных центров. Они имеют структуры, совсем непохожие друг на друга, нетипичные для I = 5/2 и обусловленные, в первую очередь, смешиванием электронно-ядерных состояний кристаллическим ромбическим полем [2]. Расчет и симуляция СТС при $B \approx 1147$ mT, выполненные только с параметром

A = -102 MHz, представлены в [2] на рис. 5–6. Учет $P_{xy} = -20$ MHz, $P_z = +8$ MHz в расчете и симуляции CTC, сделанных в данной работе, существенно улучшает схожесть симулированной и экспериментальной структур.

Сильнее всего влияние квадрупольных констант проявляется при $B \parallel C_4$ на переходе с центром в поле $B \approx 590 \,\mathrm{mT}$ (рис. 6). В другом масштабе его экспериментальная СТС представлена на рис. 7, а. На рис. 7, е показана расчетная структура, посчитанная только с параметром A = -102 MHz, а на рис. 7, c — соответствующая симулированная ($\Delta B_{pp} = 1.0 \,\mathrm{mT}$). При сравнении симулированной и экспериментальной структур видно совпадение только резонансных положений пяти интенсивных компонент в центре и двух крайних, а шесть слабых не отображены совсем. На рис. 7, b и рис. 7, d представлены симулированная ($\Delta B_{pp} = 1.0 \,\mathrm{mT}$) и расчетная структуры с привлечением квадрупольных параметров. Видно очень хорошее согласие симулированной (рис. 7, b) и экспериментальной (рис. 7, a) СТС, что позволяет сделать однозначный вывод о корректности использованных при расчете и симуляции параметров квадрупольного взаимодействия изотопа ¹⁵¹Eu.

Очевидно, согласие экспериментальной и симулированной СТС на рис. 7 обеспечено адекватной расчетной структурой (рис. 7, d), что дает возможность соотнести резонансные положения компонент СТС конкретным электронно-ядерным подуровням энергии. Предпринятая попытка численными методами определить квадрупольные параметры, описывающие СТС ¹⁵¹Eu, из 15 резонансных положений одиночных компонент на переходе с центром в поле $B \approx 590 \,\mathrm{mT}$ (рис. 7, *a*) дала следующий результат: $P_{xy} = -21(4)$ MHz, $P_z = +9(3)$ MHz. Полученное различие в сравнении с симуляцией несущественно и легко объясняется ширинами использованных в расчетах и симуляции компонент СТС, но одновременно является хорошим подтверждением допустимости оценки параметров, описывающих СТС изотопов, с использованием отношений магнитного и квадрупольного моментов.

4. Заключение

В специально выращенных качественных монокристаллах, обогащенных изотопами ¹⁵³Eu и ¹⁵¹Eu (выращивание кристаллов с ¹⁵¹Eu описано в [2]), определены параметры сверхтонкого и квадрупольного взаимодействий, формирующие сверхтонкую структуру ионов Eu^{2+} в иттрий-алюминиевом гранате. В кристаллах YAG с природным содержанием ¹⁵¹Eu и ¹⁵³Eu эта задача была нерешаема из-за сложности наблюдаемой структуры, обусловленной наложением сигналов двух нечетных изотопов с разными параметрами сверхтонкого и квадрупольного взаимодействий. Влияние квадрупольного взаимодействия на спектр ЭПР изотопа ¹⁵³Eu было выявлено на слабых, запрещенных по электронному

спину переходах, и подтверждено симуляцией на всех других, демонстрирующих сколь-нибудь разрешенную структуру в ориентациях $B \parallel C_2$, $B \parallel C_4$, $B \parallel C_3$. Параметры квадрупольного взаимодействия для ¹⁵¹Eu были получены из параметров для ¹⁵³Eu с учетом отношения квадрупольных моментов изотопов и подтверждены симуляцией и расчетами в ориентации $B \parallel C_4$.

Финансирование работы

Работа выполнена в рамках государственного задания Минобрнауки России для Уральского федерального университета (FEUZ-2020-0054). Основные измерения проведены на спектрометре Центра коллективного пользования "Современные нанотехнологии" Уральского федерального университета.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] В.А. Важенин, А.П. Потапов, Г.Р. Асатрян, Ю.А. Успенская, А.Г. Петросян, А.В. Фокин. ФТТ **58**, 1573 (2016).
- [2] В.А. Важенин, А.П. Потапов, Г.Р. Асатрян, А.Г. Петросян, К.Л. Ованесян, А.В. Фокин, Г.С. Шакуров. ФТТ 58, 2406 (2016).
- [3] Таблицы физических величин. Справочник / Под ред. И.К. Кикоина. Атомиздат, М. (1976). 1008 с.
- [4] А. Абрагам, Б. Блини. Электронный парамагнитный резонанс переходных ионов. Мир, М. (1972). Т. 1. 651 с.
- [5] T.H. Yeom, I.G. Kim, S. H. Lee, S.H. Choh, T.H. Kim, J.H. Ro. J. Appl. Phys. 87, 1424 (2000).
- [6] J.S.M. Harvey, H. Kiefte. Can. J. Phys., 47, 1505 (1969).
- [7] А.Д. Горлов. ФТТ 56, 2115 (2014).
- [8] А.П. Потапов, В.А. Важенин, А.Г. Петросян, А.В. Фокин. ФТТ **61**, 109 (2019).

Редактор Ю.Э. Китаев