01.1

Моделирование условий охлаждения германата висмута Bi₂GeO₅

© Т.В. Бермешев¹, В.П. Жереб^{1,2}, И.Ю. Губанов¹, А.Б. Набиулин³, В.П. Ченцов⁴, В.В. Рябов⁴, А.С. Ясинский^{1,5}, Н.В. Мердак¹, О.В. Юшкова¹, М.П. Бундин¹, В.М. Беспалов¹, Е.В. Мазурова⁶, Д.С. Ворошилов¹, Е.Ю. Подшибякина¹

¹Сибирский федеральный университет, Красноярск, Россия

² Сибирский университет науки и технологий им. акад. М.Ф. Решетнева, Красноярск, Россия

³ ООО "Красноярский котельный завод", Красноярск, Россия

⁴ Институт металлургии УрО РАН, Екатеринбург, Россия

⁵ IME, Institute for Process Metallurgy and Metal Recycling, RWTH Aachen University, Aachen, Germany

⁶ Институт химии и химической технологии СО РАН, Красноярск, Россия

E-mail: irbis_btv@mail.ru

Поступило в Редакцию 5 апреля 2021 г. В окончательной редакции 30 апреля 2021 г. Принято к публикации 30 апреля 2021 г.

Показана возможность моделирования процессов охлаждения метастабильного соединения Bi₂GeO₅ при помощи программного комплекса ProCAST. Несмотря на ряд допущений, использованных при моделировании, результаты расчетов показали хорошую сходимость с реальными скоростями охлаждения расплавов и могут быть полезны для развития моделирования в системе Bi₂O₃-GeO₂ с целью получения метастабильных материалов с заданным комплексом свойств и характером микроструктуры.

Ключевые слова: германат висмута, метастабильное соединение, моделирование, время охлаждения, кристаллизация.

DOI: 10.21883/PJTF.2021.15.51230.18803

Метастабильный германат висмута (Bi_2GeO_5) со слоистой кристаллической структурой типа Ауривиллиуса, образующийся при кристаллизации переохлажденного расплава, является сегнетоэлектриком с высокой температурой Кюри, обладает высокой ионной проводимостью по кислороду, а также уникальными каталитическими свойствами. Он вызывает большой интерес для водородной энергетики и экологии благодаря своим фотокаталитическим свойствам в оптическом диапазоне излучений, в том числе для дезактивации токсичных органических соединений и оксидов азота (NO), а также в качестве катализатора для окислительной димеризации метана. Данное соединение также используется для синтеза перспективных стеклокерамических материалов.

Система $Bi_2O_3-GeO_2$ представлена стабильной диаграммой состояния и двумя метастабильными. В [1–4] по результатам исследований область жидкого состояния на фазовой диаграмме системы $Bi_2O_3-GeO_2$ была разделена на три температурные зоны: *А*, *В* и *С*, охлаждение расплава от которых (от температур начала охлаждения $t_{st.cool.}$) по-разному влияет на состояние образующихся кристаллических фаз. Существование температурных зон и влияние условий охлаждения расплава на фазовый состав образующихся кристаллических фаз экспериментально подтверждены в [5,6].

Способы получения Bi_2GeO_5 (гидротермальный синтез, метод осаждения, закалка с отжигом, твердофазный синтез, золь-гель и др.) хотя и имеют вполне определенные достоинства и преимущества, но все же в большинстве своем представляют собой довольно трудоемкие и длительные по времени процессы, требующие значительных затрат, дополнительного оборудования и компонентов реакции. В работе [6] нам удалось надежно показать, что способ синтеза из расплава данных слоистых соединений не только возможен, но и максимально прост и удобен в исполнении при простой термической обработке расплава. При этом для его осуществления требуются лишь исходные компоненты (Bi_2O_3 , GeO_2), тигель и печь.

С учетом того факта, что синтез метастабильного германата висмута Bi_2GeO_5 из расплава является одним из самых быстрых и простых способов получения этого перспективного материала, встает вопрос о возможности моделирования процессов нагрева и охлаждения с целью получения данного соединения с заранее заданным комплексом свойств и характером микроструктуры.

Таким образом, цель настоящей работы состоит в систематизации известных теплофизических характеристик и попытке моделирования условий охлаждения метастабильного соединения Bi₂GeO₅ с помощью программного комплекса ProCAST, а также оценке полученных результатов с помощью сравнения их с результатами, полученными экспериментальным путем.

Плотность материала измерялась при комнатной температуре с помощью аналитических автоматических весов "Vibra HT" методом гидростатического взвешивания и далее принималась за константу вплоть до температуры солидуса. Значение плотности расплава при температуре 1297°С было взято из работы [7] и

Рис. 1. Схема режимов термообработки расплава при охлаждении от температур начала охлаждения $(t_{st.cool.})$, относящихся к различным температурным зонам: C(a), B(b) и A(c). 1 — охлаждение с печью, 2 — охлаждение на воздухе, 3 — охлаждение тигля в воде.

Таблица 1. Значения теплофизических характеристик Ві₂GeO₅ в зависимости от температуры

$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
82174 [8]207.4817127179 [8]12977.66 [7]227.1188 [8] $t, ^{\circ}C$ $\lambda, W/(m \cdot K)$ 327195 [8]2991.02427.1201 [8]4000.95527206 [8]5001.07627.1211 [8]6001.35727217 [8]7001.8982722410670.20 [9]927230102723711272432491067	t, °C	C_p , J/(mol · K)	t, °C	ρ , g/cm ³	
127179 [8]12977.66 [7]227.1188 [8] $t, ^{\circ}C$ $\lambda, W/(m \cdot K)$ 327195 [8]2991.02427.1201 [8]4000.95527206 [8]5001.07627.1211 [8]6001.35727217 [8]7001.8982722410670.20 [9]927230102723711272432491067	82	174 [8]	20	7.4817	
227.1188 [8] $t,^{\circ}C$ $\lambda, W/(m \cdot K)$ 327195 [8]2991.02427.1201 [8]4000.95527206 [8]5001.07627.1211 [8]6001.35727217 [8]7001.8982722410670.20 [9]9272301027102723711127243112272491	127	179 [8]	1297	7.66 [7]	
327 195 [8] 299 1.02 427.1 201 [8] 400 0.95 527 206 [8] 500 1.07 627.1 211 [8] 600 1.35 727 217 [8] 700 1.89 827 224 1067 0.20 [9] 927 230 1027 237 1127 243 1227 249	227.1	188 [8]	t,°C	λ , W/(m · K)	
427.1 201 [8] 400 0.95 527 206 [8] 500 1.07 627.1 211 [8] 600 1.35 727 217 [8] 700 1.89 827 224 1067 0.20 [9] 927 230 1027 237 1127 243 1227 249	327	195 [8]	299	1.02	
527 206 [8] 500 1.07 627.1 211 [8] 600 1.35 727 217 [8] 700 1.89 827 224 1067 0.20 [9] 927 230 1127 243 1127 249 249 1067	427.1	201 [8]	400	0.95	
627.1 211 [8] 600 1.35 727 217 [8] 700 1.89 827 224 1067 0.20 [9] 927 230 1127 243 1227 249 1067 1020 [9]	527	206 [8]	500	1.07	
727 217 [8] 700 1.89 827 224 1067 0.20 [9] 927 230 1027 237 1127 243 1227 249	627.1	211 [8]	600	1.35	
827 224 1067 0.20 [9] 927 230 1027 237 1127 243 1227 249	727	217 [8]	700	1.89	
927 230 1027 237 1127 243 1227 249	827	224	1067	0.20 [9]	
1027 237 1127 243 1227 249	927	230			
1127 243 1227 249	1027	237			
1227 249	1127	243			
	1227	249			

также принималось за константу вплоть до температуры ликвидуса.

Для расчетов температуры ликвидуса и солидуса брались согласно диаграммам метастабильного равновесия. В зависимости от температуры начала охлаждения они составили 837 и 820°С для зоны *C* и 879°С для зоны *B*.

С учетом сохранения метастабильного состояния расплава после его термической обработки [6] для расчетов охлаждения расплава из зоны A принимались значения ликвидуса и солидуса не стабильной диаграммы состояния, а метастабильной, полученной охлаждением из зоны B.

Аналогичные допущения были приняты и для коэффициента теплопроводности.

Значения теплоемкости при температуре в диапазоне $82-727^{\circ}$ С были взяты из работы [8] и методом математического прогнозирования (расчет по уравнению (1), описывающему линейную аппроксимацию, где *x* — температура нагрева) продолжены до температуры 1227°С:

$$y = 0.0629x + 172.1. \tag{1}$$

Измерение коэффициента температуропроводности проводилось на установке LFA 457 MicroFlash (компания Netzsch). Расчет коэффициента теплопроводности (λ) осуществлялся по формуле

$$\lambda = \alpha C_p \rho, \qquad (2)$$

где α — коэффициент температуропроводности, C_p — теплоемкость материала, ρ — плотность материала.

Плотность рассчитывалась по формуле

$$\rho = m/v, \tag{3}$$

где *m* — масса образца, *v* — объем образца. Пористость материала в расчет не принималась.

Насколько нам известно, исследований теплопроводности расплава состава метастабильного соединения Bi_2GeO_5 (1:1 $Bi_2O_3-GeO_2$) ранее не проводилось, и в литературе таких данных найти не удалось. Поэтому в качестве значения теплопроводности расплава для наших первичных расчетов было взято значение для ближайшего стабильного соединения $Bi_4Ge_3O_{12}$ (2:3 $Bi_2O_3-GeO_2$), исследованного в работе [9]. В табл. 1 данное значение выделено курсивом.

Материал тигля — чистая платина. Геометрия изделия соответствует изделию № 100-10 по ГОСТ 6563-75. Масса навески для плавки равна 10 g. Толщина закристаллизовавшегося расплава составляет 1.97-2.4 mm. Теплофизические характеристики материала тигля (чистой платины) были взяты из работы [10].

Моделирование проводилось с использованием профессионального программного комплекса ProCAST. Расчеты повторяют девять режимов охлаждения, представленных в работе [6] (рис. 1). Отличием от указанной работы являлось только то, что охлаждение с печью велось с контролируемой скоростью (4°С/min) с целью сравнения расчетных и реальных скоростей кристаллизации в максимально равновесных условиях. Параметры моделирования тепловой задачи были следующими: температура окружающей среды 20°С, температура воды 15°С, температура ликвидуса платины 1768°С. Коэффициент теплопередачи в случае

Рис. 2. Распределение времени охлаждения по сечению образца (расплава) в тигле при закалке из зоны C ($t_{st.cool.} = 1160^{\circ}$ C). a — охлаждение до полной кристаллизации, b — охлаждение от температуры ликвидуса до температуры солидуса сплава.

расплав-тигель 10 000 W/(m² · K), в случае тигель-вода 5000 W/(m² · K), в случае тигель-шамотный кирпич 300 W/(m² · K).

Значения теплофизических характеристик (теплоемкости C_p , плотности ρ и теплопроводности λ) Bi₂GeO₅ в зависимости от температуры сведены в табл. 1. Полужирным шрифтом выделены значения, полученные с помощью математического прогнозирования, курсивом — значение теплопроводности расплава, взятого от ближайшего стабильного соединения Bi₄Ge₃O₁₂ (2:3 Bi₂O₃-GeO₂), исследованного в работе [9].

По результатам моделирования на рис. 2, a приведен пример распределения времени охлаждения по сечению материала в тигле при закалке расплава в тигле в воду из зоны C (режим 3 на рис. 1, a). Аналогичное распределение при охлаждении расплава от ликвидуса до солидуса показано на рис. 2, b.

Зависимости температуры от времени при охлаждении расплава до комнатной температуры в режимах, представленных на рис. 1, приведены в табл. 2 и в качестве примера закалки на рис. 3. Из данных расчетов видно, что при закалке в воду (рис. 3) скорость охлаждения расплава в центральной части тигля и на расстоянии 0.5*R* (*R* — радиус модели, имитирующей объем охлаждаемого расплава, от центра тигля до внутренней стенки тигля) практически одинакова и отличается только на периферии — у стенок тигля и дна, где происходит наиболее быстрый теплоотвод. На этот факт также будут оказывать влияние количество расплава и геометрия самого тигля. При охлаждении на воздухе от температуры начала охлаждения до полного охлаждения скорость охлаждения расплава по сечению в тигле будет различаться меньше, чем при закалке в воду. В случае же охлаждения с печью материал будет иметь минимальный градиент температур между

Рис. 3. Зависимость температуры от времени при закалке из зоны C ($t_{st.cool.} = 1160^{\circ}$ C) в центральной части тигля (I), на расстоянии 0.5R (2) и 0.9R (3).

слоями. Из табл. 2 видно, что полученные расчетные значения как для времени кристаллизации, так и для полного охлаждения хорошо коррелируют между собой и не имеют грубых и явно заметных выпадов.

Сопоставление расчетного времени охлаждения с практическими результатами (табл. 2) еще раз подтверждает наши выводы и показывает хорошую сходимость теоретического моделирования с практическими результатами.

Таким образом, показана возможность моделирования процессов охлаждения метастабильного соединения Bi₂GeO₅ с кристаллической структурой типа Ауривиллиуса при помощи программного комплекса ProCAST. Результаты моделирования показывают хорошую сходимость расчетных значений с реальными скоростями охлаждения расплавов. Данный способ расчетов в программном комплексе ProCAST может быть пригоден для моделирования процессов нагрева и охлаждения мета**Таблица 2.** Время кристаллизации и полного охлаждения расплава состава 1:1 Bi₂O₃-GeO₂ при охлаждении его от различных температур начала охлаждения и в различных режимах, полученное с помощью математического моделирования в программном комплексе ProCAST (сравнение расчетного и реального времени кристаллизации расплава)

	Способ охлаждения тигля с расплавом	Расчетное время кристаллизации, s (значения округлены до целых)	Реальное (практическое) время кристаллизации, s	Расчет полного охлаждения	
$t_{st.cool.},$ C°				Температура, °С (контроль по центру тигля, значения округлены до целых)	Время, s (значения округлены до целых)
1160	Закалка в воду Охлаждение на воздухе Охлаждение с печью	3	5-8	36	17
		17	24	36	392
		5115	5100	360	12011
1102	Закалка в воду Охлаждение на воздухе Охлаждение с печью	3		38	16
		13		38	356
		3368		360	11141
1037	Закалка в воду Охлаждение на воздухе Охлаждение с печью	2		56	14
		10		57	236
		2394		360	10171

стабильных соединений в системе $Bi_2O_3 - GeO_2$ с целью получения их с заранее заданным комплексом свойств и характером микроструктуры, что имеет важное научное и практическое значение.

Благодарности

Использовано оборудование Красноярского краевого научно-исследовательского центра Федерального исследовательского центра "Красноярский научный центр СО РАН".

Финансирование работы

Работа выполнена в рамках государственного задания Министерства науки и высшего образования РФ (код научной темы ФСРЗ-2020-0013).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 И.В. Тананаев, В.М. Скориков, Ю.Ф. Каргин, В.П. Жереб, Изв. АН СССР. Неорган. материалы, 14 (11), 2024 (1978).

- [2] В.П. Жереб, Ю.Ф. Каргин, В.М. Скориков, Изв. АН СССР. Неорган. материалы, 14 (11), 2029 (1978).
- [3] V.P. Zhereb, V.M. Skorikov, Inorg. Mater., 39 (2), S121 (2003).
- https://doi.org/10.1023/B:INMA.0000008890.41755.90 [4] В.П. Жереб, Метастабильные состояния в оксидных висмутсодержащих системах (МАКС Пресс, М., 2003).
- [5] G. Corsmit, M.A. Van Driel, R.J. Elsenaar, W. Van De Guchte, A.M. Hoogenboom, J.C. Sens, J. Cryst. Growth., 75 (3), 551 (1986)
- [6] В.П. Жереб, Т.В. Бермешев, Ю.Ф. Каргин, Е.В. Мазурова,
 В.М. Денисов, Неорган. материалы, 55 (7), 782 (2019).
 DOI: 10.1134/S0002337X19060162
 [Пер. версия: 10.1134/S0020168519060165].
- [7] В.П. Жереб, Физико-химические исследования метастабильных равновесий в системах Bi₂O₃-ЭO₂, где Э — Si, Ge, Ti, автореф. канд. дис. (Институт общей и неорганической химии им. Н.С. Курнакова, М., 1980).
- [8] Л.Т. Денисова, Н.В. Белоусова, Н.А. Галиахметова, В.М. Денисов, В.П. Жереб, ФТТ, 59 (8), 1659 (2017). DOI: 10.21883/FTT.2017.08.44773.41
 [Пер. версия: 10.1134/S106378341708008X].
- [9] V.D. Golyshev, M.A. Gonik, V.B. Tsvetovsky, High Temp.-High Press., 35/36 (2), 139 (2003/2004).
 DOI: 10.1068/htjr106
- [10] В.Е. Зиновьев, Теплофизические свойства металлов при высоких температурах. Справочник (Металлургия, М., 1989).