#### 06

# Моноокись кремния, карбонизированная фторуглеродом, как композитный материал для анодов литий-ионных аккумуляторов

© Д.А. Ложкина, Е.В. Астрова, А.И. Лихачев, А.В. Парфеньева, А.М. Румянцев, А.Н. Смирнов, В.П. Улин

Физико-технический институт им. А.Ф. Иоффе, РАН 194021 Санкт-Петербург, Россия e-mail: darina.lozhka94@gmail.com

Поступило в Редакцию 26 марта 2021 г. В окончательной редакции 23 апреля 2021 г. Принято к публикации 24 апреля 2021 г.

Дисперсные композитные материалы на базе моноокиси кремния и углерода (SiO/C) получены в результате термообработки смеси порошков, состоящей из 40 wt.% SiO и 60 wt.% CF<sub>0.8</sub>. Отжиг производился в атмосфере аргона при температурах  $1000-1250^{\circ}$ C. С помощью электронной микроскопии и комбинационного рассеяния света установлено, что при  $T \ge 1100^{\circ}$ C в твердофазном продукте появляется карбид кремния, в том числе в форме нановискеров кубической модификации. На основании данных об убыли веса реакционной смеси вычислен состав образующихся продуктов в зависимости от температуры отжига. Аноды, изготовленные из композитов, полученных при температуре выше  $1100^{\circ}$ C, демонстрируют резкое падение емкости и кулоновской эффективности. Показано, что наблюдаемые изменения обусловлены не столько образованием SiC, сколько возрастанием содержания кислорода в матрице, окружающей преципитаты кремния, которые образовались в результате диспропорционирования SiO. Установлено, что оптимальной температурой отжига, обеспечивающей наиболее высокие значения емкости электродов, кулоновской эффективности работать при высоких плотностях тока, является  $T = 1050^{\circ}$ C.

Ключевые слова: монооксид кремния, карбонизация, вискеры карбида кремния, аноды для литий-ионных аккумуляторов.

DOI: 10.21883/JTF.2021.09.51218.83-21

#### Введение

Моноокись кремния SiO перспективна как альтернатива элементарному кремнию в составе анодных материалов для литий-ионных аккумуляторов. Присутствие в них SiO способствует длительному стабильному циклированию на больших токах при достаточно высокой емкости [1]. К недостаткам электродов на основе SiO следует отнести малую кулоновскую эффективность первого цикла и низкую электронную проводимость [2]. Для повышения кулоновской эффективности и электропроводности анодного материала используются различные варианты композитов SiO с углеродом [3,4]. Их изготавливают, смешивая порошки SiO с графитом, графеном, углеродными нанотрубками и т.п., или же в результате карбонизации SiO в процессе пиролиза органических соединений. При этом небезразлично, в какой форме углерод находится в композите (размер частиц и соотношение  $s p^2$ - и  $s p^3$ -углеродных связей). В наших предыдущих работах для создания углеродсодержащих композитов на базе Si и SiO был предложен простой метод их карбонизации с использованием твердофазного фторуглерода CF [5-7]. При диссоциации CF, начинающейся с  $T \sim 450^{\circ}$ C, выделяются газообразные фториды углерода C<sub>n</sub>F<sub>m</sub>, экзотермически реагирующие с частицами Si или SiO, в результате чего поверхность каждой из таких частиц покрывается слоем восстановленного углерода, а кремний и кислород переходят в газовую фазу в виде SiF<sub>4</sub>, SiF<sub>2</sub> и СО [6,8]. При проведении этих процессов в инертной среде (Ar) из смесей порошков CF с Si или с SiO получаются достаточно однородные электропроводящие композиты Si/C или SiO/C, обладающие пористой структурой. В случае SiO/C композитных электродов важную роль играет наличие отклонений от стехиометрического состава моноокиси  $(SiO_x)$  и степень ее диспропорционирования. Диспропорционирование моноокиси кремния, т.е. последовательная перегруппировка в ней атомов кислорода и кремния, приводящая, в конечном счете, к сегрегации Si и SiO<sub>2</sub> фазовых выделений, развивается при температурах выше 900°С [9]. Предварительное диспропорционирование SiO, как компонента анодного материала (d-SiO), обеспечивает снижение необратимых потерь начального цикла заряда/разряда аккумулятора [4,10]. Применительно к предлагаемому нами методу диспропорционирование SiO и ее фторуглеродная карбонизация могут совмещаться в едином технологическом процессе. Но, как оказалось, при высоких температурах отжига, помимо формирования d-SiO/C композита, дополнительным продуктом протекающих в системе процессов становится карбид кремния, в том числе и в форме нановискеров, преимущественно кубической модификации [8]. Нитевидные нанокристаллы SiC, как показано в [11], также способны обратимо внедрять литий и обеспечивать устойчивое циклирование аккумуляторов [12].

В настоящей работе с помощью сканирующей электронной микроскопии (SEM) и комбинационного рассеяния света (КРС) исследовано влияние температуры отжига смеси моноокиси кремния и фторуглерода на состав образующихся композитов и на электрохимические характеристики изготовленных из них анодов.

#### 1. Эксперимент

Исходным материалом служили коммерческий продукт моноокиси кремния марки ОСЧ (особо чистый) и фторид углерода состава СF<sub>0.8</sub> (галополимер). Порошки SiO и CF<sub>0.8</sub>, взятые в соотношении 40 wt.% SiO+60 wt.% CF<sub>0.8</sub>, перемешивались и протирались в агатовой ступке. Из полученной смеси при давлении 180 МРа всухую (без связующих) прессовались таблетки диаметром 10 mm и толщиной  $\sim 400 \, \mu m$ , которые отжигались затем в квазизамкнутом объеме графитовых кассет. Кассеты помещались в муфельную печь с кварцевой трубой, продуваемой аргоном высокой чистоты 99.998% (ТУ 6-21-12-94) и нагретой до 400°С. Далее осуществлялось медленное повышение температуры со скоростью 3.3° С/тіп до температуры 800-1250°C, выдержка в течение 1 h и охлаждение в течение 30 min на краю трубы в потоке Ar. Таким образом, карбонизация и диспропорционирование моноокиси кремния могли совмещаться в едином процессе отжига. Таблетки взвешивались до и после отжига, до отжига их масса составляла  $\sim 60 \, \mathrm{mg}$ , после  $-21 - 28 \, \mathrm{mg}$ . Данные об образцах приведены в табл. 1.

Структура полученных композитов исследовалась методом SEM с помощью растрового электронного микроскопа JSM 7001F (JEOL, Япония).

| Таблица 1 | . Номера | образцов | и температура | их отжига |
|-----------|----------|----------|---------------|-----------|
|-----------|----------|----------|---------------|-----------|

| № образца  | <i>T</i> , °C |
|------------|---------------|
| 2a         | 1250          |
| 2b         | 1200          |
| 2c         | 1150          |
| 2d         | 1100          |
| 2 <i>e</i> | 1050          |
| 2f         | 1000          |

Измерения спектров КРС проводилось при комнатной температуре на спектрометре Horiba Jobin Yvon T64000 (пр-во Франция), оснащенном конфокальным микроскопом Olympus BX41 (пр-во Япония). Для возбуждения спектров КРС использовался твердотельный лазер с диодной накачкой Nd:YAG (Torus, Великобритания) с  $\lambda_{ex} = 532$  nm. Лазерный луч фокусировался на поверхности образца с помощью объектива  $100 \cdot (NA = 0.9)$  в пятно диаметром  $\sim 0.9 - 1 \, \mu$ m.

Электрохимические испытания проводились в двухэлектродных дисковых ячейках CR2032 с литиевым противоэлектродом и электролитом марки TC-E918 (Тіпсі, КНР), LiPF<sub>6</sub> в смеси EC/PC/DEC/EMC/PA (этиленкарбонат, пропиленкарбонат, диэтилкарбонат, этилметилкарбонат, пропилацетат). Влагосодержание электролита было определено с помощью кулонометрического титратора Mettler Toledo C20 и составляло 22 ppm. Гальваностатические измерения выполнялись на стенде CT3008W-5V10mA (Neware, KHP). Напряжение на электроде ограничивалось 10 mV при заряде (внедрении лития) и 2 V при разряде (экстракции лития).

### 2. Результаты эксперимента и обсуждение

#### 2.1. Вискеры SiC

Внешний вид таблеток после термообработки при разной температуре дставлен на рис. 1. Хорошо видно, что при  $T \ge 1150^{\circ}$ С на поверхности образцов появляется голубой налет, который, как было показано в [8], образован вискерами  $\beta$ -SiC, кристаллизующимися из газовой фазы.

SEM-изображения образовавшихся нитевидных кристаллов SiC показаны на рис. 2. Видно, что с повышением температуры отжига вискеры SiC увеличиваются в диаметре и длине, тогда как сферические частицы, располагающиеся обычно на их концах (рис. 2, d), уменьшаются в размере. Присутствие таких частиц указывает на то, что кристаллизация наблюдаемых вискеров происходила с участием промежуточной жидкой фазы (по-видимому, силикатного расплава) по механизму пар-жидкость-твердое тело. По сравнению с внешней поверхностью таблеток в объеме твердофазного про-



Рис. 1. Внешний вид таблеток d-SiO/C с исходным составом 40 wt. SiO и 60 wt.% CF<sub>0.8</sub>, отожженных при разной температуре.





1250°

**Рис. 2.** SEM-изображения поверхностей образцов после отжига при температурах: a - 1250, b - 1200, c - 1150, d - 1100,  $e - 1050^{\circ}$ C, f - поперечное сечение образца 2a.

дукта вискеры SiC обнаруживаются редко, обычно в виде небольших скоплений внутри пор (не показаны). При наиболее высокой температуре (1250°C) толщина непрерывного слоя, состоящего из вискеров SiC, на

поверхности образцов составила  $15-30\,\mu$ m (рис. 2, *f*). С понижением температуры отжига области формирования SiC вискеров локализуются в отдельные неравномерно распределенные островки.

## 2.2. Количество образовавшегося карбида кремния

На графике рис. 3 показано, как изменяется относительная потеря массы  $\Delta m/m$  таблеток по мере увеличения температуры отжига.

Проанализируем фактическое изменение массы исходной смеси, происходящее за счет удаления газообразных продуктов реакции, и определим общее количество SiC, образующегося при заданной температуре отжига (в любых формах). Химическое взаимодействие в смеси моноокиси кремния SiO и твердофазного фторуглерода  $CF_{0.8}$  начинается при  $T \sim 450^{\circ}$ C [8]. Если температура не превышает 1000°C, то суммарная реакция для совокупности происходящих в такой закрытой системе процессов может быть записана как

$$\mathrm{SiO} + 5\mathrm{CF}_{0.8} = \mathrm{SiF}_4 \uparrow + 4\mathrm{C} + \mathrm{CO} \uparrow . \tag{1}$$

Тогда, чтобы SiO оставалась в конечном продукте, ее весовая доля в исходной смеси должна превышать 24.5%. Обозначив через r исходное содержание CF<sub>0.8</sub> в весовых процентах и учитывая молекулярные массы компонентов реакции (1), их весовой баланс может быть представлен как:

$$(100 - r)$$
SiO +  $r$ CF<sub>0.8</sub> = 0.765 $r$ SiF<sub>4</sub>  $\uparrow$  +0.206 $r$ CO  $\uparrow$   
+ 0.353 $r$ C + [100 - 1.324 $r$ ]SiO. (2)

При более высоких температурах образование карбида кремния изменяет материальный баланс (2). В предельном высокотемпературном случае полной карбидизации остающегося в твердой фазе кремния:

$$3SiO + 5CF_{0.8} = 2SiC + SiF_4 \uparrow + 3CO \uparrow .$$
 (3)

В соответствии с реакцией (3) содержание SiO в исходной смеси может составлять до 49.25%. В общем же случае, когда часть SiO расходуется в реакциях со фторидами углерода по схеме (1), а другая часть — по схеме (3) с образованием SiC, полную реакцию можно представить как

$$(y+1)\text{SiO} + 5\text{CF}_{0.8} = y\text{SiC}$$
$$+ \text{SiF}_4 \uparrow + (y+1)\text{CO} \uparrow + (4-2y)\text{C}, \qquad (4)$$

где y < 2.

Тогда для произвольного содержания фторуглерода в исходной смеси r в wt.%, весовой баланс для компонентов реакции запишется как:

$$(100 - r)\text{SiO} + r\text{CF}_{0.8} = 0.294yr\text{SiC} + 0.765r\text{SiF}_4 \uparrow + 0.206(y + 1)r\text{CO} \uparrow + 0.176(2 - y)r\text{C} + [100 - r(0.324y + 1.324)]\text{SiO}.$$
(5)

Из (5) находим, что

$$\Delta m/m = r(0.971 + 0.206y), \tag{6}$$



Рис. 3. Зависимость относительной потери массы таблеток от температуры отжига.

где  $\Delta m$  — сумма весов летучих компонентов SiF<sub>4</sub> и CO. При этом, чтобы SiO оставалась в конечном продукте рассматриваемых превращений, квадратная скобка в (5) должна быть больше нуля. Следовательно, безотносительно температуры, при которой проходит реакция, SiO-содержащий композит может быть получен, если

$$y < 308.64/r - 4.086. \tag{7}$$

В нашем случае, когда в исходной смеси r = 60%, получаем, что y < 1.058.

Для достаточно низких температур, когда заведомо y = 0,  $\Delta m/m = 0.971r$ , т.е. расчетное  $\Delta m/m$  должно равняться 58.26%. Сравнивая это ожидаемое изменение массы с экспериментально полученным при 1000°С значением  $\Delta m/m = 54.96\%$ , видим, что расчетная величина больше, чем найденная в эксперименте, в 1.06 раза. Причинами такого расхождения могут быть как неконтролируемый выход из камеры непрореагировавших газообразных фторидов углерода, так и отклонение от использованных для записи реакций стехиометрических коэффициентов в формулах исходных реагентов — моноокиси кремния и фторуглерода. Для лучшего согласования с расчетом соответствующая поправка может быть внесена в экспериментальные данные, как нормирующий коэффициент, т.е.

$$\Delta m/m (\text{corr}) \approx 1.06 \Delta m/m.$$
 (8)

Тогда из (6) с учетом (8) получаем выражение для расчета у:

$$y \approx 0.086 \Delta m/m - 4.71.$$
 (9)

В табл. 2 приведены полученные значения у и вычисленный с их помощью состав твердой фазы образовавшегося композита.

Из табл. 2 видно, что в нашем случае даже при наиболее высокой температуре эксперимента карбида кремния образуется примерно в 2 раза меньше, чем в

| №<br>образца | <i>Т</i> ,<br>°С | Эксперимент<br><i>Δm/m</i> ,% | После<br>$\Delta m/m$ (corr),%<br>корректировки | у    | SiC,<br>mol.% | C,<br>mol.% | SiO,<br>mol.% | SiC, wt.%<br>wt.% | C,<br>wt.% | SiO'<br>wt.% |
|--------------|------------------|-------------------------------|-------------------------------------------------|------|---------------|-------------|---------------|-------------------|------------|--------------|
| 2a           | 1250             | 66.87                         | 70.9                                            | 1.04 | 35.0          | 64.5        | 0.6           | 63.6              | 35.3       | 1.1          |
| 2b           | 1200             | 61.15                         | 64.8                                            | 0.55 | 13.9          | 73.2        | 12.9          | 27.6              | 44.0       | 28.4         |
| 2c           | 1150             | 57.34                         | 60.8                                            | 0.22 | 4.8           | 77.0        | 18.2          | 10.0              | 48.3       | 41.8         |
| 2d           | 1100             | 56.09                         | 59.5                                            | 0.11 | 2.4           | 78.0        | 19.6          | 5.0               | 49.5       | 45.6         |
| 2e           | 1050             | 55.30                         | 58.6                                            | 0.05 | 0.9           | 78.6        | 20.4          | 2.0               | 50.2       | 47.8         |
| 2f           | 1000             | 54.96                         | 58.3                                            | 0    | 0             | 79.0        | 21.0          | 0                 | 50.7       | 49.3         |

**Таблица 2.** Экспериментальные значения относительной потери массы смеси 40%SiO+60%CF<sub>0.8</sub> в зависимости от температуры отжига, найденные из них величины выхода SiC (*y*) и соответствующий состав твердофазного продукта реакции



**Рис. 4.** Изменение количества карбида кремния, углерода и моноокиси кремния в твердофазном продукте реакции (4) в зависимости от температуры отжига. Состав исходной смеси 40 wt.% SiO+60 wt.% CF<sub>0.8</sub>.

соответствии с реакцией (3), и при этом SiO все еще остается в конечном продукте. На рис. 4 показано, как изменяется с температурой процентное соотношение между веществами, остающимися в твердой фазе. Видно, что с увеличением температуры отжига, начиная с 1100°С, количество образующегося SiC резко возрастает, а содержание SiO резко падает. При этом количество выделившегося углерода уменьшается менее заметно. В области  $T < 1050^{\circ}$ С, когда выход SiC пренебрежимо мал, исходная смесь 40% SiO+60% CF<sub>0.8</sub> преобразуется в SiO/С-композит с практически одинаковой весовой долей компонентов.

#### 2.3. KPC

Спектры КРС регистрировались в разных точках на поверхности таблетки. Разложение пиков на составляющие осуществлялось с помощью программы Fityk [13]. Форма пиков аппроксимировалась функцией Лоренца.

На рис. 5 представлены спектры КРС, полученные для образцов 2a и 2f, отожженных при 1250 и 1000°С соответственно. В спектре образца 2a (рис. 5, a) наблюдается три области:  $500-1000 \text{ cm}^{-1}$  (фононный спектр SiC),  $1000-2000 \text{ cm}^{-1}$  (спектр первого порядка углерода, C(1)) и 2300–3500 cm<sup>-1</sup> (спектр второго порядка углерода, C(2)). В то же время в спектре КРС образца 2f (рис. 5, b) отсутствует область, связанная с фононным спектром SiC (аналогичные спектры были получены на образцах 2c, 2d и 2e, не показаны). Таким образом, данные спектроскопии КРС подтверждают результаты расчета о том, что при T < 1150°С карбид кремния образуется в незначительных количествах. Об этом же свидетельствует и исчезновение вискеров (рис. 1 и 2).

На рис. 6 представлено разложение спектров КРС образца 2а. Из этих спектров видно, что на поверхности образца присутствует карбид кремния (пики ТО 792 ст<sup>-1</sup> и LO 932 ст<sup>-1</sup>). Ширина пика TO на половине высоты FWHM = 25.86 ст<sup>-1</sup>, что согласуется с данными для вискеров SiC (22-31 cm<sup>-1</sup>) [14]. Для объемного SiC характерны только 2 полосы ТО и LO. В наших образцах на спектрах карбида кремния появляется третий пик 884 cm<sup>-1</sup>, который можно связать с наличием вискеров. В работах по исследованию вискеров *β*-SiC утверждается, что размерный эффект не влияет на спектр КРС, а влияют только структурные дефекты [12,15,16]. Так, в работе [15] в спектре КРС вискера SiC толщиной 40 nm наблюдался пик 842 cm $^{-1}$ , а в работах [12,16] пик 864 сm<sup>-1</sup>, который связывают с интерфейсной модой в нитевидных кристаллах SiC с множественными дефектами упаковки. Эти значения близки к наблюдавшимся нами в спектрах КРС образцов, отожженных при температурах 1200 и 1250°С (858-884 ст<sup>-1</sup>).

В спектрах КРС образцов, отожженных в диапазоне 1000–1250°С, наблюдаются полосы, которые идентифицируются как пики первого  $(D, G, D_2, D_3)$  и второго порядка  $(2D, D + D_2)$  углерода [17,18]. При разложении спектров для образцов, отожженных при  $T \leq 1200$ °С, появляются еще один широкий пик первого порядка  $D_4$  и один пик второго порядка  $2D_2$  (рис. 7).

Происхождение пиков КРС в графитоподобных пленках, полученных магнетронным распылением, подробно



**Рис. 5.** Спектры КРС образцов, отожженных при 1250 (*a*) и 1000°С (*b*).



**Рис. 6.** Разложение на составляющие пики спектра КРС для образца 2*a*, отожженного при 1250°С, в области: *a* — SiC, *b* — углерода (первый порядок КРС).



**Рис. 7.** Разложение на составляющие спектра КРС углерода в области первого (*a*) и второго (*b*) порядка для образца 2*c*, отожженного при 1150°С.



**Рис. 8.** Отношение интегральных интенсивностей пиков D и G(a) и соответствующих им латеральных размеров графитовых кластеров (b) в зависимости от температуры отжига.



**Рис. 9.** Зависимость от температуры отжига: a — спектрального положения пика G, b — FWHM пиков D и G.

рассмотрено в работе [19]. С-пик обусловлен валентными колебаниями связей *s p*<sup>2</sup>-гибридизованных атомов углерода в плоскости графенового слоя, а *D*-пик симметричными колебаниями образующих такой слой ароматических колец, как целого (дышащая мода). Для совершенных кристаллов графита Д-мода оказывается запрещенной, но начинает проявляться при их разупорядочении, когда латеральные размеры совершенных участков графеновых слоев становятся ограниченными [20]. На рис. 8, а показана зависимость отношения интегральных интенсивностей полос D и G от температуры отжига  $I_D/I_G$ . Следует заметить, что измерения, которые, как правило, проводились для каждого из образцов в двух точках, обнаруживают довольно большой разброс данных. Тем не менее они указывают на тенденцию к снижению отношения  $I_D/I_G$  с ростом температуры отжига (от  $\sim 3.1$  до  $\sim 2.3$ ). Можно ожидать, что повышение этой температуры ведет к прогрессирующему слиянию в более крупные кластеры графита отдельных, малых по размеру, группировок ароматических колец углерода, сформировавшихся непосредственно в ходе

реакции SiO с фторуглеродами. Действительно, в полученных спектрах положение пика G находится в диапазоне, характерном для нанокристаллического графита, при энергиях, существенно больших, чем для аморфного углерода (1520 cm<sup>-1</sup>) [17] и даже немного сдвигается в сторону высоких частот по мере роста температуры отжига (рис. 9, *a*). Поэтому для определения латеральных размеров образовавшихся кластеров,  $L_a$ , мы использовали формулу Tuinstra–Koenig (TK) [21], справедливую для нанокристаллического графита  $L_a = C(I_D/I_G)^{-1}$ .

В работе [22] коэффициент С определен с учетом длины волны возбуждающего лазера  $C = C_0 + \lambda_0 C_1$ , где  $C_0 = -126$  Å,  $C_1 = 0.033$  Å,  $\lambda_0$  — длина волны возбуждающего лазера. В нашем случае  $\lambda_0 = 5320$  Å, что дает C = 49.56Å. Результаты расчета приведены на рис. 8, *b*. Видно, что  $L_a$  проявляет тенденцию к возрастанию от  $\sim 1.56$  до  $\sim 2.17$  nm.

Как видно из рис. 9, *b*, FWHM пика *G*, в отличие от пика *D*, практически не изменяется с температурой и составляет  $\sim 40 \,\mathrm{cm}^{-1}$ . Так как *D*-мода связана с рассеянием, в котором участвуют дефекты кристаллической



Рис. 10. Зависимость относительной интенсивности  $I_{2D}/I_G$  (a) и FWHM пика 2D (b) от температуры отжига.

решетки, она более чувствительна к беспорядку, чем *G*-мода. Сужение соответствующей полосы с ростом температуры отжига (рис. 9, *b*) также свидетельствует об увеличении размеров кластеров графита. Полосы D и  $D_2$  обусловлены дефектами в графеновых слоях, а полосу  $D_3$  связывают с присутствием аморфного углерода [18]. Что касается пика  $D_4$  в виде низкоэнергетического плеча полосы D, то его появление характерно для очень дефектного материала [20]. В наших образцах он исчезает в спектрах КРС при температуре отжига  $T = 1250^{\circ}$  С.

Проанализируем полосы второго порядка. Полоса 2D при 2700 сm<sup>-1</sup>, состоящая из одиночного пика, характерна для углеродного материала с преобладанием отдельных двумерных образований из гексагональных колец. В работе [23] при высокотемпературных ( $2200-2700^{\circ}C$ ) отжигах различных саж отмечалось уменьшение ее интенсивности и появление двух новых пиков, один из которых связывают с трехмерным упорядочением. Наблюдаемое нами снижение  $I_{2D}/I_G$  с температурой (рис. 10, *a*), по-видимому, также можно связать с начальной стадией формирования областей с трехмерной структурой графита, что вместе с сужением пика 2D от 220 до 100 сm<sup>-1</sup> (рис. 10, *b*) свидетельствует о повышении степени структурного совершенства в образовавшихся углеродных кластерах.

Таким образом, наблюдавшиеся температурные изменения спектров КРС углерода, выделившегося при карбонизации SiO, такие как снижение ширины полос D и 2D, уменьшение отношений  $I_D/I_G$  и  $I_{2D}/I_G$ свидетельствуют о возрастающей степени графитизации исследуемого материала [18,23].

Следует отметить, что в спектрах КРС образцов, отожженных при температурах  $1000-1150^{\circ}$ С, наблюдались очень слабые особенности в области частот 440-505 сm<sup>-1</sup>. Эти особенности могут быть приписаны колебаниям SiO [24]. Однако из-за малой эффективности рассеяния (по сравнению с эффективностью КРС в SiC и углеродном материале), регистрация этих особенностей была затруднительна.

#### 2.4. Электрохимические характеристики SiO/C-анодов

Электрохимические характеристики анодов на базе полученных SiO/C-композитов исследовались при плотности тока 6.25 mA/g. На рис. 11 показаны зарядноразрядные кривые для 1-го и 10-го циклов, из которых видно, что высокотемпературный отжиг приводит к существенному изменению формы кривых и снижению емкости до значений менее 100 mAh/g.

На рис. 12 показана температурная зависимость зарядной/разрядной емкости и кулоновской эффективности (СЕ) исследованных образцов.

Из рис. 12 видно, что емкость и СЕ первого цикла резко падают для образцов, отжигавшихся при  $T > 1100^{\circ}$  C. Можно предположить, что это обусловлено образованием карбида кремния в форме, непригодной для интеркаляции лития, как это наблюдалось в работе [7]. Для проверки этого предположения была использована двустадийная обработка SiO, включающая предварительный отжиг при высоких температурах, с целью ее диспропорционирования, и последующую карбонизацию при  $T = 800^{\circ}$ С в смеси с фторуглеродом. Для электрохимических испытаний из полученного композита d-SiO/С изготавливались электроды по намазной технологии. Электродная масса составлялась в этом случае из: 88%*d*-SiO/C + 5% сажа + 5%PVDF + 2% углеродные волокна VGCF. При этом с ростом температуры предварительного отжига SiO также отмечалось падение зарядной и разрядной емкостей, хотя при такой последовательности проведения процесса получения композита карбид кремния образоваться в нем не мог.

Для анализа причин снижения емкости при использовании высокотемпературного отжига SiO были опробованы порошки, подвергшиеся после карбонизации дополнительной обработке в HF. Как известно, при диспропорционировании SiO происходит выделение новой фазы нанокристаллического кремния, который может участвовать в реакции электрохимического литирования. Поскольку скорость растворения оксидов кремния в



Рис. 11. Зарядно-разрядные кривые для 1-го и 10-го циклов для образцов, отжигавшихся: а — при 1050, b — при 1200°С.



Рис. 12. Зависимость емкости заряда и разряда (а) и кулоновской эффективности первого цикла (b) от температуры отжига.

плавиковой кислоте на несколько порядков выше, чем самого кремния, удаление матрицы SiO<sub>x</sub>, окружающей преципитаты кремния, позволяет выявить роль Si в процессах заряда и разряда ячейки. Травление композита в смеси HF:  $H_2O(1:1)$  проводилось в течение 2 h, далее осуществлялась фильтрация, промывка деионизованной водой и спиртом. Полученный порошок d-SiO/C (HF) использовался для изготовления анодов по намазной технологии, описанной выше. На рис. 13, а и с приводятся зарядно-разрядные кривые 1-го цикла и зависимость разрядной емкости от номера цикла для анодов из композитов, полученных в двустадийном процессе при разной температуре первого этапа (диспропорционирования), включая отсутствующий первый этап (initial). На рис. 13, b, d показаны аналогичные зависимости для анодов из тех же порошков, но подвергшихся после карбонизации дополнительному травлению в HF.

Из рис. 13 видно, что после обработки в HF поведение композитов меняется на прямо противоположное. Если увеличение температуры диспропорционирования SiO приводит к падению емкости анодов на основе d-SiO/C, то дополнительное травление композита в HF ведет к возрастанию емкости по мере того, как повышается температура предварительного отжига SiO. Очевидно, что в последнем случае SiO<sub>x</sub> матрица в частицах *d*-SiO должна содержать больше кислорода, приближаясь к SiO<sub>2</sub>. Это приводит к ее более эффективному растворению в HF. Образовавшиеся преципитаты кремния становятся доступнее для электролита и обеспечивают большую емкость электрода. Из табл. 3 видно, что кулоновская эффективность первого цикла для образцов *d*-SiO/C, обработанных в HF, также возрастает, что, очевидно, связано с меньшими потерями, обусловленными необратимым образованием силикатов и оксидов Li.

В табл. 4 приведены данные из предыдущей работы [9] о количестве и размере кластеров Si-фазы, а также о составе матрицы  $SiO_x$ , формирующейся при диспропорционировании моноокиси кремния в том же температурном и временном режиме.

Кроме того, формирующееся при литировании силикатное окружение преципитатов кремния в *d*-SiO оказывается, по-видимому, более плотным и в большей степени ограничивает проникновение к кремнию ионов лития из электролита, нежели это происходит в частицах



Рис. 13. Заряд/разрядные кривые 1-го цикла (a, b) и зависимость разрядной емкости от номера цикла (c, d) для композитных анодов с разной степенью диспропорционирования SiO до (a, c) и после обработки их в HF (b, d). Плотность тока заряда и разряда 9 mA/g.

**Таблица 3.** СЕ первого цикла до и после обработки композитов в HF

|               | CE, %        |                                              |  |  |
|---------------|--------------|----------------------------------------------|--|--|
| <i>T</i> , °C | После отжига | После отжига и дополнительной обработки в HF |  |  |
| Initial       | 48.2         | 44.1                                         |  |  |
| 1150          | 48.1         | 54.9                                         |  |  |
| 1225          | 35.6         | 60.4                                         |  |  |

SiO, не подвергшихся предварительному отжигу. Следовательно, если присутствие SiC в композите и влияет на емкостные характеристики анодов, то это влияние не оказывается определяющим.

Таким образом, проведенные эксперименты показали, что повышения емкости и стабильности при циклировании анодов можно ожидать от SiO/C-композитов, изготовленных при  $T < 1100^{\circ}$ C в условиях, когда SiO<sub>x</sub>-матрица, окружающая кремниевые преципитаты, остается при литировании еще достаточно проницаемой для ионов лития и когда карбид кремния еще не образуется.

Из табл. 2 и рис. 4 следует, что в области низких температур отжига исходной смеси  $(T < 1050^{\circ}\text{C})$ , ко-

**Таблица 4.** Содержание кремниевых преципитатов (wt.% Si), их диаметр (D) и состав окружающей их матрицы субоксида SiO<sub>x</sub> в зависимости от температуры отжига моноокиси кремния в Ar в течение 1 h

| <i>T</i> , °C | Si, wt.% | D, nm | x в SiO <sub><math>x</math></sub> |
|---------------|----------|-------|-----------------------------------|
| Initial       | 6.7      | 3.6   | 1.0                               |
| 800           | 10.3     | 3.3   | 1.1                               |
| 900           | 19.0     | 3.5   | 1.2                               |
| 1000          | 25.0     | 4.3   | 1.4                               |
| 1100          | 28.3     | 7.8   | 1.5                               |
| 1200          | 34.6     | 13.4  | 1.8                               |

гда y = 0, состав образующегося композита близок к 50 wt.% SiO+50 wt.% C. Вследствие выделения в процессе карбонизации газообразных тетрафторида кремния и моноокиси углерода, такой твердофазный продукт разрыхляется, приобретая дополнительную пористость. Его интегральную пористость можно оценить как

$$p = 1 - \rho_{\exp} / \rho_{\min} = 57.7\%,$$
 (10)

где  $\rho_{\exp} = 0.84 \,\text{g/cm}^3$  — плотность таблетки после отжига,  $\rho_{\min} = 1.99 \,\text{g/cm}^3$  — расчетная плотность компактной

1391

смеси, состоящей из равных массовых долей SiO и C, с учетом того, что  $\rho_{SiO} = 2.13 \text{ g/cm}^3$ ,  $\rho_{C} = 1.86 \text{ g/cm}^3$ .

#### 2.5. Влияние температуры термообработки на скоростные характеристики и СЕ

Исследования скоростной способности анодов d-SiO/C (1050°C) проводились на таблетке толщиной ~ 100 µm, изготовленной в одностадийном режиме при  $T = 1050^{\circ}$ С (рис. 14). Первые 10 циклов испытаний проводились при одинаковой плотности тока заряда и разряда 10 mA/g. При этом кулоновская эффективность возросла до 98.5%. Далее ток увеличивали, но оставляли одинаковым для заряда и разряда. Начиная с 16-го цикла, испытания проводились в режиме разных токов заряда и разряда (на рис. 14 плотности тока указаны соответственно как числитель и знаменатель). Для сравнения в таком же режиме проводились испытания образца, который карбонизировался при  $T=800^\circ\mathrm{C}$  и не содержал SiO, подвергшуюся диспропорционированию. Полученные результаты приведены также на рис. 14.

Из сравнения данных на рис. 14 видно, что отжиг при 1050°С, когда происходит частичное диспропорционирование SiO, приводит к росту абсолютного значения емкости  $Q_0$ , установившейся при токе 10 mA/g, по сравнению с образцом, отжигавшимся при низкой температуре 800°С, когда диспропорционирования еще нет  $(Q_0 = 717 \text{ mAh/g}$  по сравнению с  $Q_0 = 566 \text{ mAh/g}$ ). Для обоих образцов увеличение тока приводит к снижению емкости, но для 800-градусного образца это выражено сильнее. Например, для режима j = 25/50 mA/g новая емкость 800-градусного образца составляет 57% от  $Q_0$ , а для 1050-градусного — 74% от соответствующего этой температуре начального значения Q<sub>0</sub>. При возвращении после 20-го цикла к току 10 mA/g в обоих образцах емкость вновь поднимается до прежней величины Q<sub>0</sub>, что свидетельствует об отсутствии необратимых изменений



**Рис. 14.** Разрядная емкость анодов SiO/C (800°C) и *d*-SiO/C (1050°C) при разных токах заряда/разряда.



Рис. 15. СЕ-образцов, отожженных при разной температуре.

(разрушения) анодов при проведенном циклировании повышенными токами.

Диспропорционирование монооокиси кремния влияет и на кулоновскую эффективность. На рис. 15 показана зависимость кулоновской эффективности анодов из SiO/C и d-SiO/C (1050°C) от номера цикла, из которой видно, что оба образца характеризуются относительно низкой эффективностью в первом цикле, и постепенно возрастающей в последующих. Для 1050-градусного образца она выше: 62.5% против 52%, и для него же выход на полочку происходит быстрее.

#### Заключение

Проведенные исследования показали, что

• получение композитов моноокиси кремния с углеродом путем отжига смеси SiO и CF<sub>0.8</sub> может быть совмещено с диспропорционированием SiO;

• при  $T \ge 1100^{\circ}$ С в продукте реакции образуется заметное количество карбида кремния, частично в виде нановискеров, размеры которых существенно изменяются с температурой;

• из экспериментальных данных об изменении массы образцов до и после отжига сделаны оценки количества SiC, а также C и SiO в образовавшемся композите в зависимости от температуры термообработки. Согласно полученным данным для исходного состава 40 wt.% SiO+60 wt.% CF<sub>0.8</sub>, количество SiC, образующееся при отжиге 1250°C в течение 1 h, достигает 64 wt.%;

• спектры КРС от образцов, полученных при  $T > 1100^{\circ}$ С, также свидетельствуют о присутствии в них 3C–SiC. Проявленный в указанных спектрах пик с максимумом ~ 854 сm<sup>-1</sup>, подтверждает образование SiC в форме вискеров;

• из анализа спектров КРС композитов, полученных при  $T = 1000 - 1250^{\circ}$ С, следует, что образующийся углерод состоит из нанокристаллического графита с латераль-

ным размером кластеров  $\sim 2$  nm и аморфного углерода. По мере увеличения температуры отжига наблюдается небольшое повышение степени графитизации углерода;

• карбонизация SiO с помощью фторуглерода позволяет получить аноды, которые характеризуются удельной гравиметрической емкостью, превышающей емкость углеродных анодов;

• удаление из *d*-SiO/C композитов оксидной составляющей существенно улучшает емкостные характеристики полученных из них анодов;

• испытания показали, что высокие температуры отжига нежелательны для получения композитного анодного материала SiO/C, в то время как температуры вблизи 1050°C, при которых происходит не только карбонизация, но и частичное диспропорционирование моноокиси кремния, способствуют повышению разрядной емкости, скорости заряда/разряда и эффективности первого цикла.

#### Благодарности

Электронно-микроскопические исследования выполнены с использованием оборудования федерального ЦКП "Материаловедение и диагностика в передовых технологиях".

#### Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

#### Список литературы

- K. Pan, F. Zou, M. Canova, Y. Zhu, J.-H. Kim. J. Power Sources, 413, 20 (2019).
- DOI: 10.1016/j.jpowsour.2018.12.010
  [2] J. Park, S.S. Park, Y.S. Won. Electrochim. Acta, 107, 467 (2013). DOI: https://doi.org/10.1016/j.electacta.2013.06.059
- [3] M. Yamada, A. Ueda, K. Matsumoto, T. Ohzuku.
   J. Electrochem. Soc., 158 (4), A417 (2011).
   DOI: 10.1149/1.3551539
- [4] T. Tan, P.-K. Lee, D.Y.W. Yu. J. Electrochem. Soc., 166 (3), A5210 (2019). DOI: 10.1149/2.0321903jes
- [5] Е.В. Астрова, В.П. Улин, А.В. Парфеньева, В.Б. Воронков. Письма в ЖТФ, 45 (13), 29 (2019).
  DOI: http://dx.doi.org/10.21883/PJTF.2019.13.47954.17818
  [E.V. Astrova, V.P. Ulin, A.V. Parfeneva, V.B. Voronkov. Tech. Phys. Lett., 45 (7), 664 (2019).
  DOI: http://dx.doi.org/10.1134/S1063785019070022]
- [6] E.V. Astrova, V.P. Ulin, A.V. Parfeneva, A.M. Rumyantsev, V.B. Voronkov, A.V. Nashchekin, V.N. Nevedomskiy, Y.M. Koshtyal, M.V. Tomkovich. J. Alloy. Compd., 826, 154242 (2020)
- DOI: http://dx.doi.org/10.1016/j.jallcom.2020.154242
- [7] Е.В. Астрова, А.В. Парфеньева, А.М. Румянцев, В.П. Улин,
   М.В. Байдакова, В.Н. Неведомский, А.В. Нащекин. Письма
   в ЖТФ, 46 (3), 14 (2020).
   DOI: http://dx.doi.org/10.21883/PJTF.2020.03.48985.18067
  - [E.V. Astrova, A.V. Parfeneva, A.M. Rumyantsev, V.P. Ulin, M.V. Baidakova, V.N. Nevedomskii, A.V. Nashchekin. Tech. Phys. Lett., 46 (2), 114 (2020).
  - DOI: http://dx.doi.org/10.1134/S1063785020020042]

[8] Е.В. Астрова, В.П. Улин, А.В. Парфеньева, А.В. Нащекин, В.Н. Неведомский, М.В. Байдакова. ФТП, **54** (8), 753 (2020).
DOI: http://dx.doi.org/10.21883/FTP.2020.08.49647.9402
[E.V. Astrova, V.P. Ulin, A.V. Parfeneva, A.V. Nashchekin, V.N. Nevedomskiy, M.V. Baidakova. Semiconductors, **54** (8), 900 (2020).

DOI: http://dx.doi.org/10.1134/S1063782620080059]

- [9] Д.А. Ложкина, Е.В. Астрова, Р.В. Соколов, Д.А. Кириленко, А.А. Левин, А.В. Парфеньева, В.П. Улин. ФТП, **55** (4), 373 (2021).
  DOI: http://dx.doi.org/10.21883/FTP.2021.04.50743.9575
  [D.A. Lozhkina, E.V. Astrova, R.V. Sokolov, D.A. Kirilenko, A.A. Levin, A.V. Parfeneva, V.P. Ulin. Semiconductors, **55** (4), 373 (2021). DOI: 10.1134/S1063782621040096]
- [10] Ch.-M. Park, W. Choi, Y. Hwa, J.-H. Kim, G. Jeong, H.-J. Sohn. J. Mater. Chem., 20, 4854 (2010). DOI: https://doi.org/10.1039/B923926J
- [11] D. Sri Maha Vishnu, J. Sure, H.-K. Kim, R. Vasant Kumar, C. Schwandt. Energy Storage Mater., 26, 234 (2020). DOI: https://doi.org/10.1016/j.ensm.2019.12.041
- Y. Hu, X. Liu, X. Zhang, N. Wan, D. Pan, X. Li, Y. Bai,
   W. Zhang. Electrochim. Acta, **190**, 33 (2016).
   DOI: https://doi.org/10.1016/j.electacta.2015.12.211
- [13] M. Wojdyr. J. Appl. Cryst., 43 (5), 1126 (2010).
   DOI: https://doi.org/10.1107/S0021889810030499
- [14] R. Dhiman, E. Johnson, P. Morgen. Ceram. Int, 37 (8), 3759 (2011). DOI: 10.1016/j.ceramint.2011.06.001
- [15] M. Bechelany, A. Brioude, D. Cornu, G. Ferro, P. Miele. Adv. Funct. Mater., 17, 939 (2007). DOI: 10.1002/adfm.200600816
- S.-L. Zhang, B.-F. Zhu, F. Huang, Y. Yan, E.-Y. Shang, S. Fan,
   W. Han. Solid State Commun., 111, 647 (1999).
   DOI: https://doi.org/10.1016/S0038-1098(99)00262-8
- [17] A. Merlen, J.G. Buijnsters, C. Pardanaud. Coatings, 7 (10), 153 (2017). DOI: https://doi.org/10.3390/coatings7100153
- [18] A. Sadezky, H. Muckenhuber, H. Grothe, R. Niessner, U. Pöschl. Carbon, 43 (8), 1731 (2005).
   DOI: 10.1016/j.carbon.2005.02.018
- [19] А.Я. Виноградов, С.А. Грудинкин, Н.А. Беседина, С.В. Коняхин, М.К. Рабчинский, Е.Д. Эйдельман, В.Г. Голубев. ФТП, **52** (7), 775 (2018).
  DOI: 10.21883/JTF.2021.09.51218.83-21
  [A.Y. Vinogradov, S.A. Grudinkin, N.A. Besedina, S.V. Koniakhin, M.K. Rabchinskii, E.D. Eidelman, V.G. Golubev. Semiconductors, **52** (7), 914 (2018).
  DOI: http://dx.doi.org/10.1134/S1063782618070266]
- [20] A.C. Ferrari, J. Robertson. Phys. Rev. B, 61 (20), 14095 (2000). DOI: https://doi.org/10.1103/PhysRevB.61.14095
- [21] F. Tuinstra, J.L. Koening. J. Chem. Phys., 53, 1126 (1970).
   DOI: https://doi.org/10.1063/1.1674108
- [22] M.S. Dresselhaus, M.A. Pimenta, P.C. Eklund, G. Dresselhaus. In: *Raman Scattering in Materials Science*, ed. by W.H. Weber, R. Merlin (Springer-Verlag, Berlin, Heidelberg 2000), v. 42, c. 314.
- [23] L.G. Cancado, K. Takai, T. Enoki, M. Endo, Y.A. Kim, H. Mizusaki, N.L. Speziali, A. Jorio, M.A. Pimenta. Carbon, 46, 272 (2008).

DOI: https://doi.org/10.1016/j.carbon.2007.11.015

[24] T.P. Nguyen, S. Lefrant. Solid State Commun., 57 (4), 235 (1986). DOI: https://doi.org/10.1016/0038-1098(86)90146-8