05

Зондирование молекул метанола в атмосфере по спектрам комбинационного рассеяния света

© В.Е. Привалов¹, В.Г. Шеманин^{2,3}

¹ Санкт-Петербургский политехнический университет Петра Великого,
 194021 Санкт-Петербург, Россия
 ² Филиал Белгородского государственного технологического университета им. В.Г. Шухова,
 308012 Новороссийск, Россия
 ³ Новороссийский политехнический институт (филиал)
 Кубанского государственного технологического университета,
 353900 Новороссийск, Россия
 e-mail: vaevpriv@yandex.ru

Поступила в редакцию 03.11.2020 г. В окончательной редакции 04.04.2021 г. Принята к публикации 05.04.2021 г.

Представлены результаты численного решения лидарного уравнения для комбинационного рассеяния света (КРС) молекулами метанола в направлении назад при зондировании молекул в атмосфере с концентрациями в диапазоне $10^{12}-10^{18}$ cm⁻³ на расстояниях до 1000 m в режиме синхронного счета фотонов. Показано, что за время измерения 1 s лидаром КРС на длине волны лазерного излучения 405 nm можно зондировать молекулы метанола с уровнем концентрации порядка 10^{16} cm⁻³ на расстояниях до 600 m.

Ключевые слова: лидар, уравнение, комбинационное рассеяние света, метанол, концентрация, счет фотонов.

DOI: 10.21883/OS.2021.08.51200.236-21

Введение

В настоящее время метанол все активнее используется в качестве замены традиционным видам моторного топлива [1]: он гораздо дешевле и при этом наносит гораздо меньший вред окружающей среде, чем привычные бензин, керосин или дизтопливо. Поэтому становится актуальной разработка новых лидаров для измерения концентрации молекул метанола CH₃OH как загрязняющего вещества на уровне предельно-допустимых концентраций (ПДК) в атмосферном воздухе. Для метанола, класс опасности которого 3, значение ПДК 1.0 mg/m³ [2,3] или порядка $1.9 \cdot 10^{16}$ cm⁻³.

Ранее было показано, что лидар комбинационного рассеяния света (КРС) может использоваться для дистанционного измерения концентрации молекул на уровне сотен ПДК и более [2,4,5]. А мониторинг паров метанола лидаром в атмосферном пограничном слое в диапазоне расстояний зондирования до 1500 m может стать эффективным способом решения этой проблемы. Поэтому целью настоящей работы является оценка параметров лидара КРС для зондирования молекул метанола в атмосферном пограничном слое на уровне ПДК и выше в режиме синхронного счета фотонов. Для этого выполнено численное решение лидарного уравнения для КРС молекулами метанола с целью выбора длины волны лазерного излучения и параметров лидара для измерения минимального значения концентрации молекул СН₃ОН на заданном расстоянии зондирования.

Спектр КРС метанола

Был выполнен анализ спектра КРС молекулами метанола для выбора сильных характеристических полос КРС метанола и сравнения их с полосами возможных молекул примесей, таких как метан, этанол и формальдегид в предположении, что концентрации исследуемых молекул равны 1 ПДК. Значение максимумов полос валентных СН-колебаний всех четырех молекул и валентных СО-колебаний молекул метанола, этанола и формальдегида взяты из [2,5–7] и собраны в табл. 1. Значения дифференциальных сечений КРС для исследуемых молекул взяты из [5,8] и оценены по данным [5] для сравнения интенсивностей полос. Эти параметры также собраны в табл. 1.

По данным табл. 1 был сделан вывод о том, что зондирование молекул метанола может быть реализовано по двум выбранным полосам валентных колебаний СН и СО.

Лидар КРС

Для регистрации спектра КРС рассмотрим оптическую схему варианта лидара из [2,9], приведенную на рис. 1.

В качестве возможных вариантов рассмотрим использование второй гармоники YAG:Nd-лазера с длиной волны 532 nm и полупроводниковых лазеров с длинами волн 405 и 655 nm с длительностью импульсов 10 ns и

Молекула	CH ₃ OH		CH ₄		C ₂ H ₅ OH		CH ₂ O	
Параметры полос	νCH_{sym}	νCO	vCH _{sym}	νCH _{as}	νCH_{sym}	νCO	νCH _{sym}	νCO
Максимум, cm^{-1}	2846	1033	2914	3017	2943	1079	2766	1746
Дифференциальное сечение, 10 ³⁰ cm ²	14				19			3.8

Таблица 1. Значения максимумов полос КРС валентных СН- и валентных СО-колебаний всех исследованных молекул

Рис. 1. Оптическая схема лидара КРС: 1 — сферическое зеркало приемного телескопа, 2 — волоконный ввод, 3 — глухое зеркало, 4 — стеклянная пластина, 5 — интерференционный светофильтр, 6 — фотоприемник, 7 — лазер, 8 — микроспектрометр, 9 — линзовый объектив.

энергиями в импульсе до $100 \,\mu$ J при частоте следования лазерных импульсов f до 1 MHz [2].

Излучение лазера 7 направлялось вдоль оси приемного телескопа, а излучение КРС молекулами метанола в атмосферном пограничном слое в направлении назад собиралось приемным телескопом типа Ньютона со сферическим зеркалом I диаметром 400 mm и фокусировалось линзовым объективом 9 в волоконный световод 2 микро-спектрометра FSD-8 8, работающего под управлением ПК. Часть лазерного излучения направлялось стеклянной пластиной 4 через интерференционный светофильтр 5 на фотоприемник 6, напряжение U_0 с которого записывалось в память ПК для контроля энергии лазерного измураелия начала отсчета времени измерения.

Лидарное уравнение для КРС

Лазер лидара будем характеризовать числом фотонов n_0 в импульсе посылаемого в атмосферу лазерного излучения длительностью τ_0 , а линию генерации лазера будем считать гауссовой с максимумом на частоте v_0 и полушириной Γ_0 . Тогда число фотонов n(v, z) излучения КРС исследуемыми молекулами метанола с концентрацией N(z) на фотоприемнике лидара можно получить из лидарного уравнения в направлении назад в режиме счета фотонов как интеграл в интервале от $(\nu_0 - \Gamma_0)$ до $(\nu_R + \Gamma_R)$ [2,9,10]:

$$n(\nu, z) = \frac{c\tau_0}{2z^0} n_0 S_0 G(z) N(z) f t_d(d\sigma \Omega) \int_{\nu_0 - \Gamma}^{\nu_R + \Gamma_a} \Phi(\nu')$$

$$\times \exp\left[-\int_0^z \left\{\alpha(\nu_0, r) + \alpha(\nu_R, r)\right\} dr\right] A(\nu') d\nu', \qquad (1)$$

где n(v, z) — число фотонов, зарегистрированное фотодетектором лидара на частоте v_R КРС с расстояния зондирования z; n₀ — число фотонов на частоте v₀ лазерного излучения, которое определяется выражением $n_0 = E_0 / h v_0$, где E_0 — энергия импульса лазерного излучения длительностью au_0 (в отличие от au_1 — времени одного измерения или длительности синхроимпульса), h — постоянная Планка. Кроме того, введены обозначения: S₀ — площадь приемной апертуры телескопа, G(z) — геометрическая функция лидара [2,5], 0 < G(z) < 1. А также N(z) — концентрация исследуемых молекул, t_d — время измерения или накопления сигнала, $(d\sigma/d\Omega)$ — дифференциальное сечение КРС исследуемыми молекулами; величины $\alpha(v_0, r)$ и $\alpha(v_R, r)$ — это коэффициенты ослабления на частотах лазерного излучения и КРС молекулами метанола, они характеризуют пропускание атмосферы [2,11]; $\Phi(\nu)$ функция Гаусса для распределения фотонов лазерного излучения в линии генерации [12]. Когда полуширина линии генерации много меньше, чем полуширина аппаратной функции лидара, можем считать, что $\Phi(\nu) = 1$. Кроме того, будем считать, что аппаратная функция или спектральный коэффициент пропускания приемной системы лидара A(v) [2,5,10] также описывается функцией Гаусса и настроена точно на частоту v_R полосы КРС молекулами метанола с полушириной Γ_a , которая больше, чем Γ_R и Γ_0 :

$$A(\nu) = \frac{K_1 \xi(\nu)}{\sqrt{2\pi} \Gamma_0} \exp\{-(\nu - \nu_{RT})^2 / (2\Gamma_a^2)\}, \qquad (2)$$

где K_1 — лидарная константа на частоте v_0 лазерного излучения, измеренная экспериментально в [13];

 $\xi(v_R)$ — относительная спектральная чувствительность фотоприемника на частоте v_R излучения КРС. Предположение о том, что полуширина аппаратной функции на порядок больше, чем полуширина линии генерации лазера, вполне допустимо для промышленных лазеров и спектрометров [2]. Тогда перепишем уравнение (1) в виде

$$n(\nu, z) = \frac{B}{z^2} N(z) t_d I(\nu, z), \qquad (3)$$

в котором константа В есть

$$B = \frac{c\,\tau_0}{2}\,S_0f\,,\tag{4}$$

и функция частоты и расстояния зондирования I(v, z)имет вид

$$I(\nu, z) = G(z)n_0 \int_{\nu_0 - \Gamma}^{\nu_R + \Gamma_a} (d\sigma/d\Omega) \times \\ \times \exp\left[-\int_0^z \left\{\alpha(\nu_0, r) + \alpha(\nu_R, r)\right\} dr\right] A(\nu') d\nu'.$$
(5)

Сделаем некоторые преобразования, вынеся дифференциальное сечение КРС (оно выступает как молекулярная константа) и экспоненту из-под интеграла. Получим

$$I(\nu, z) = G(z)n_0(d\sigma/d\Omega) \times \\ \times \exp\left[-\int_0^z \left\{\alpha(\nu_0, r) + \alpha(\nu_R, r)\right\} dr\right] \int_{\nu_0 - \Gamma}^{\nu_R + \Gamma_a} A(\nu') d\nu'.$$
(6)

Последний интеграл может быть преобразован с учетом интеграла ошибок [10] в произведение

$$\int_{\nu_0-\Gamma}^{\nu_R+\Gamma_a} A(\nu')d\nu' = \frac{K_1\xi(\nu)}{\sqrt{2\pi}\Gamma_a} \int_{\nu_0-\Gamma}^{\nu_R+\Gamma_a'} \exp[-(\nu-\nu_R)^2/(2\Gamma_a^2)]d\nu$$
$$= \operatorname{erf}(1/\sqrt{2})K_1\xi(\nu) = \frac{K_1\xi(\nu)}{2} \, 0.68269 = 0.34K_1\xi(\nu).$$
(7)

Тогда выражение (6) с учетом (7) перепишем в виде

$$I(\nu, z) = G(z)n_0(d\sigma/d\Omega)0.34K_1\xi(\nu) \times \exp\left[-\int_0^z \{\alpha(\nu_0, r) + \alpha(\nu_R, r)\}dr\right].$$
(8)

Теперь с учетом (4) и (8) из уравнения (3) выразим концентрацию N(z):

$$N(z) = \frac{n(v, z)z^2}{Bt_d I(v, z)}.$$
(9)

Рис. 2. Графики логарифмической зависимости времени измерения t_d (в s) от расстояния зондирования z (в m) для концентрации метанола $N(z) = 10^{16}$ сm⁻³. Подробности в тексте.

Результаты решения лидарного уравнения и обсуждение

Рассмотрим однократное КРС и однородную атмосферу [2,5,12]. Значения максимумов полос валентных симметричных СН- и валентных СО-колебаний молекулы СН₃ОН взяты из [2,6–8] и равны 2846 и 1033 ст⁻¹. Значения дифференциального сечения полос КРС молекулы метанола $(d\sigma/d\Omega)$ для выбранных длин волн лазерного излучения 405, 532 и 655 nm были оценены по данным [5,8], которые представлены в последней строке табл. 2. Рассчитанные с учетом зависимости $1/\lambda^4$ (как в [4]) значения для интересующих нас длин волн приведены в табл. 2. Значения коэффициентов ослабления для этих частот $\alpha(v_0, z)$ и $\alpha(v_R, z)$ из [13,14] также собраны в табл. 2. Поперечное сечение зеркала приемного телескопа лидара было 0.12 m², а шаг по расстоянию — 7.5 m для времени одного измерения 50 ns, за которое может быть зарегистрировано 200 фотонов. Лидарная константа K₁ определялась как произведение спектрального пропускания приемного телескопа на величину относительной спектральной чувствительности фотоприемника $\xi(\lambda)$ на длине волны λ [2,13] из табл. 2.

На первом этапе построим зависимость времени измерения t_d как меру эффективности нашего варианта лидара от расстояния зондирования z для концентрации молекул $N(z) = 10^{16}$ сm⁻³ и заданных параметров лидара. Рассмотрим численное решение уравнения (9) в предположении, что G(z) для нашего случая равно 1 и за время измерения будут зарегистрированы 200 фотонов. Результаты решения уравнения (9) для этого случая представлены на рис. 2.

На рис. 2 представлены результаты для длин волн лазерного излучения 655 (*I* и *3*), 532 (*2* и *4*) и 405 (*5* и *6*) nm, причем кривые *2* и *3* и кривые *4* и *5* практически совпадают. Расчеты выполнены для полос симметричного валентного СН-колебания (*3*, *4* и *6*) и

Длины волн, nm	Дифференциал $(d\sigma/d\Omega$	ьное сечение КРС 10^{30} , cm ²	Коэффициент	г ослабления	Относительная спектральная чувствительность ФП
	CO 1033 cm^{-1}	CH_{sym} 2846 cm^{-1}	$\alpha_a(\lambda_0, z), \mathrm{km}^{-1}$	$\alpha_a(\lambda, z), \mathrm{km}^{-1}$	$\xi(\lambda$
655	0.27	0.99	0.14		
703				0.11	0.28
805				0.106	0.25
532	0.61	2.26	0.16		
563				0.15	0.48
627				0.136	0.42
405	1.82	6.72	0.24		
423				0.21	0.8
458				0.173	0.84
3371	38	14.0			

Таблица 2. Длины волн лазерного излучения и полос КРС молекул метанола, дифференциальные сечения колебательного КРС для двух полос, коэффициенты ослабления в атмосфере на этих длинах волн и относительная спектральная чувствительность фотоприемника

валентного СО-колебания (1, 2 и 5) молекулы метанола. Как следует из графиков рис. 2, спектральные зависимости величин, входящих в уравнение (9), приводят к минимальному значению времени измерения концентрации исследуемых молекул $N(z) = 10^{16}$ сm⁻³ на всех расстояниях зондирования для полосы симметричного валентного СН-колебания молекулы СН₃ОН (кривые 3, 4 и 6) и увеличению этого значения для полосы валентного СО-колебания (1, 2 и 7) для каждой длины волны лазерного излучения, причем на первых 100 m это значение растет: $11.7 \rightarrow 51.2 \rightarrow 163$ ms.

Минимальное время измерения можно получить на длине волны 405 nm: для 50 m это значение составит 2.86 ms, для 100 m - 11.7 ms, для 500 m - 345 ms и для 1 km - 1.7 s при частоте следования лазерных импульсов 1 MHz и времени одного измерения 50 ns (шаг по высоте $\Delta H = 7.5 \text{ m}$). Очевидно, что уменьшение времени измерения возможно за счет увеличения частоты следования лазерных импульсов или увеличения их энергии.

Теперь получим зависимость измеренной лидаром концентрации исследуемых молекул от расстояния зондирования z для времени измерения $t_d = 1$ s.

На рис. 3 расчеты выполнены для длин волн лазерного излучения 655 (1 и 3), 532 (2 и 4) и 405 (5 и 7) nm, причем кривые 2 и 3 и кривые 4 и 5 практически совпадают. Так же, как и ранее, представлены результаты для полос симметричного валентного СНколебания (3, 4 и 6) и валентного СО-колебания (1, 2 и 5) молекулы метанола. На рис. 3 приведены результаты решения уравнения (9) для концентрации молекул метанола от 10^{12} до 10^{18} сm⁻³ и диапазона расстояний зондирования до 1000 m и времени измерения 1 s. Сравнение с уровнем ПДК (прямая 6) показывает, что только использование лазерного излучения с длиной волны 405 nm позволит зарегистрировать такую концентрацию на расстоянии зондирования до 1 km при

Рис. 3. Графики логарифмической зависимости концентрации N(z) (в сm⁻³) от расстояния зондирования z (в m). Прямая 6 — это уровень ПДК $1.9 \cdot 10^{16}$ сm⁻³. Подробности в тексте.

зондировании в полосе симметричного валентного СНколебания молекулы метанола, по полосе валентного СО-колебания — только до 600 m.

Выводы

Таким образом, анализ полученных результатов показывает, что за время измерения 1 s лидаром КРС с выбранными параметрами на длине волны лазерного излучения 405 nm можно зондировать молекулы метанола с уровнем концентрации порядка 10^{16} cm⁻³ на расстояниях до 600 m. Полученные результаты хорошо согласуются с данными [5] и отражают различие в уровнях ПДК исследованных молекул углеводородов [2], а разработка новых вариантов лидаров, например [15], открывает потенциальные возможности для дистанционного зондирования низких концентраций молекул метанола в атмосфере над промышленным предприятием.

Финансирование работы

Работа была частично поддержана грантами РФФИ, проект № 9-42-230004 и проект № 19-45-230009.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Новый вид топлива сулит России большие прибыли.
 17 февраля 2020. [Электронный ресурс] Режим доступа: https://yandex.ru/turbo?promo=navbar&utm_referrer
 =https%3A%2F%2Fzen. yandex.com&utm_campaign=dbr& text=https%3A%2F%2Fvz.ru%2Fnews%
 2F2020%2F2%2F17%2F1024248.html
- [2] Привалов В.Е., Фотиади А.Э., Шеманин В.Г. Лазеры и экологический мониторинг атмосферы. СПб.: Лань, 2013. 288 с.
- [3] Гигиенические нормативы ГН 2.1.6.3492-17 (с изменениями на 31 мая 2018 г.). Предельно допустимые концентрации (ПДК) загрязняющих веществ в атмосферном воздухе городских и сельских поселений.
- [4] Креков Г.М., Крекова М.М., Суханов А.Я., Лысенко А.А. // Письма в ЖТФ. 2009. Т. 35. В. 15. С. 8.
- [5] Межерис Р. Лазерное дистанционное зондирование. М.: Мир, 1987. 550 с.
- [6] Свердлов Л.М., Ковнер М.А., Крайнов Е.П. Колебательные спектры многоатомных молекул. М.: Наука, 1970.
- [7] Ismail Hakki Boyaci, Hüseyin Efe Genis, Burcu Guven, Ugur Tamerb, Neslihan Alperc. // J. Raman Spectrosc. 2012.
 V. 43. P. 1171. doi 10.1002/jrs.3159
- [8] Лазерный контроль атмосферы / Под. ред. Хинкли Э.Д. М.: Мир, 1979.
- [9] Привалов В.Е., Шеманин В.Г. // Измерительная техника. 2016. № 9. С. 22.
- [10] Привалов В.Е., Шеманин В.Г. // Изв. РАН. Серия физическая. 2015. Т. 79. В. 2. С. 170.
- [11] Донченко В.А., Кабанов М.В., Кауль Б.В., Самохвалов И.В. Атмосферная электрооптика. Томск: Изд-во НТЛ, 2010. С. 178–181.
- [12] Долгих Г.И., Привалов В.Е. Лазеры. Лазерные системы. Владивосток: Изд. Дальнаука, 2009. 202 с.
- [13] Привалов В.Е., Шеманин В.Г. Параметры лидаров для дистанционного зондирования газовых молекул и аэрозоля в атмосфере. СПб.: Балт. ГТУ, BOEHMEX, 2001. 57 с.
- [14] Справочник по лазерам. / Под ред. Прохорова А.М. Т. І. М.: Советское Радио, 1978. 504 с.
- [15] Привалов В.Е., Шеманин В.Г. // Опт. и спектр. 2018.
 Т. 125. В. 4. С. 568. doi 10.21883/OS.2018.10.46714.129-18