# $^{01}$ Спектроскопия барьерного разряда низкого давления. Послесвечение с ионами Ne $_2^+$ , Ne $^+$ и Ne $^{2+}$

© В.А. Иванов

Санкт-Петербургский государственный университет, 198504 Санкт-Петербург, Россия

e-mail: v.a.ivanov@spbu.ru

Поступила в редакцию 09.03.2021 г. В окончательной редакции 15.04.2021 г. Принята к публикации 23.04.2021 г.

> Промоделировано излучение распадающейся плазмы, формируемое процессами электрон-ионной рекомбинации с участием трех ионов неона: молекулярного иона  $Ne_2^+$  и атомных ионов  $Ne^+$  и  $Ne^{2+}$ . Подобная комбинация ионов, одновременно участвующих в формировании спектра плазмы, впервые обнаружена в послесвечении импульсного барьерного разряда цилиндрической конфигурации при давлениях неона менее 1 Torr и плотности электронов  $\leq 4 \cdot 10^{10}$  cm<sup>-3</sup>. Основное внимание уделено сравнительному анализу механизмов ударно-радиационной рекомбинации ионов  $Ne^+$  и  $Ne^{2+}$  на базе численного решения системы дифференциальных уравнений для плотностей ионов и долгоживущих возбужденных атомов в послесвечении с учетом основных элементарных процессов в распадающейся плазме с импульсным "подогревом" электронов. Особенно подробно рассмотрены закономерности релаксации температуры электронов от разрядных значений несколько электрон-вольт до 300 K в далеком послесвечении. Сравнение модельных решений с результатами измерений интенсивностей спектральных линий методом многоканального счета фотонов показывает, что при их хорошем согласии в случае однозарядных ионов адекватное описание эволюции ионных линий требует расширения имеющихся сведений о рекомбинации ионов  $Ne^{2+}$ .

> Ключевые слова: диэлектрический барьерный разряд, двукратно заряженные ионы, ударно-радиационная рекомбинация, распадающаяся плазма, элементарные процессы, константа скорости.

DOI: 10.21883/OS.2021.08.51193.1987-21

#### Введение

Настоящая работа является одним из результатов поиска оптимального способа спектроскопического исследования процессов электрон-ионной рекомбинации в слабоионизованной плазме. В качестве источника плазмы используем протяженный импульсный низкочастотный диэлектрический барьерный разряд (DBD) цилиндрической конфигурации [1,2]. Проявляющиеся в стадии распада плазмы свойства DBD — ионизация газа со смещенным от центра цилиндра r = 0 максимумом плотности электронов [e](r) [2] и практически без его разогрева [3,4] — оказались весьма удобными для анализа послесвечения в условиях предельно малых плотностей нейтральных частиц. Это позволило минимизировать роль неупругих атом-атомных столкновений в кинетике возбужденных атомов и подойти к решению задачи о распределении потока диссоциативной рекомбинации молекулярных ионов Ne<sup>2+</sup> с электронами:

$$\operatorname{Ne}_{2}^{+} + e \xrightarrow{a_{j}} \operatorname{Ne}^{*}(j) + \operatorname{Ne}$$
 (1)

по выходным каналам процесса [2,5]. Иными словами, подойти к определению парциальных констант рекомбинации  $\alpha_j$ . Для целей данной работы важным выводом экспериментов [2,5] является заключение о четкой границе, разделяющей возбужденные состояния атома

неона на две группы. Доступными для заселения вследствие диссоциативной рекомбинации оказываются уровни атома неона, расположенные в шкале энергий ниже уровня  $3p_5$  (в обозначениях Пашена), т.е.  $3p_3$ ,  $3p_6-3p_{10}$ конфигурации  $2p^54p$ , а также уровни конфигураций  $2p^53d$  и  $2p^53p$ . В то же время заселение более высоких уровней обусловлено ударно-радиационной рекомбинацией (CRR) ионов Ne<sup>+</sup>:

$$Ne^+ + e + e \xrightarrow{\alpha_{1\alpha}} Ne^* + e$$
 (2)

 $(\alpha_{1cr}$  — константа скорости процесса). Интенсивности спектральных линий, связанных с процессами (1) и (2), во-первых, имели разные зависимости от времени в послесвечении и, во-вторых, по-разному реагировали на импульсный "подогрев" электронов высокочастотным (HF) полем индукционного разряда [2] или продольным электрическим полем несамостоятельного разряда однонаправленного тока [5]. Следует подчеркнуть, что наличие упомянутой границы характерно только для распадающейся плазмы при температуре электронов, близкой к комнатной. В послесвечении с "подогревом" электронов диссоциативная рекомбинация может являться источником высоковозбужденных атомов [6].

При давлениях неона  $P_{\text{Ne}} \leq 1$  Тогг проявилось еще одно свойство DBD используемой конфигурации [2]: в спектре послесвечения появлялись и увеличивались

по интенсивности с уменьшением давления неона спектральные линии переходов между возбужденными уровнями иона Ne<sup>+\*</sup>. Заметим, что речь идет о плазме с плотностью электронов менее  $5 \cdot 10^{10}$  cm<sup>-3</sup> [2]. Эти переходы составили третью группу линий, отличающуюся значительно более быстрым спадом в послесвечении по сравнению с упомянутыми выше и реакцией на подогрев электронов еще более выраженной, чем у линий атома неона, связанных с процессом (2). Последнее обстоятельство вместе со спектральным составом этого "нового" излучения позволило предположить, что его источником является ударно-радиационная рекомбинация двукратно заряженных (Z = 2) ионов Ne<sup>2+</sup>:

$$Ne^{2+} + e + e \xrightarrow{\alpha_{2cr}} Ne^{+*} + e, \qquad (3)$$

развивающаяся в послесвечении разряда низкого давления на фоне процессов (1) и (2). Моделирование послесвечения с участием этого процесса и составило задачу данной работы.

Ударно-радиационная рекомбинация играет ключевую роль в ионизационном балансе низкотемпературной плазмы. Ее исследованию, начиная с 1924 г. [7], посвящено большое количество работ, содержащих результаты численных расчетов [8] и теоретические модели как чисто столкновительной кинетики возбужденных атомов [9-11], так и с учетом радиационных переходов [8,12–14]. Сравнение с экспериментальными данными по рекомбинации однозарядных ионов Z = 1 [11–13] показывает, что имеющихся представлений о процессе достаточно для понимания кинетики заряженных частиц плазмы с этими ионами. Послесвечение, связанное с процессом (2), в настоящей работе анализируется в плазме с температурой и плотностью электронов менее 1000 К и  $5 \cdot 10^{10}$  cm<sup>-3</sup> соответственно. Этим условиям отвечает промежуточная модель CRR: константа скорости процесса определяется столкновительной кинетикой высоковозбужденных атомов, в то время как в пространстве уровней с небольшими главными квантовыми числами рекомбинационный поток переносится в основном излучением.

Несколько иначе ситуация представляется при обращении к процессу с участием ионов с Z > 1, хотя механизмы процессов идентичны, а их коэффициенты рекомбинации, согласно расчетам [8] и теории [10], отличаются только множителем, пропорциональным заряду Z (по  $[10] - Z^3$ ). Однако их присутствие в плазме может не только изменить спектральный состав излучения, но и непростым образом повлиять на ход деионизации. Во-первых, они обладают иной подвижностью, что отражается на коэффициенте амбиполярной диффузии электронов, и во-вторых, их "время жизни" в плазме зависит также и от эффективности процесса передачи заряда при столкновениях с атомами. Например, в случае неона это процесс

$$Ne^{2+} + Ne \longrightarrow Ne^{+} + Ne^{+},$$
 (4)



**Рис. 1.** (*a*) Схема совмещения барьерного разряда и импульсного HF-разряда (RF Pulse), D — диафрагма диаметром 5 mm, W — кварцевые окна. (*b*) Расположение электродов DBD на поверхности разрядной трубки.

константа скорости которого превышает  $10^{-14}\,cm^3\cdot s^{-1}$ [15-17], что делает скорость ухода ионов Ne<sup>2+</sup> зависящей также и от плотности нейтральных частиц. Этих обстоятельств, на наш взгляд, достаточно, чтобы попытаться использовать послесвечение DBD для изучения рекомбинации ионов  $Ne^{2+}$ , тем более, что процессы (2) и (3) происходят одновременно, что допускает прямое сравнение их характеристик. Мы не обнаружили в литературе экспериментальных данных об ударно-радиационной рекомбинации ионов с зарядом Z>1, так что, вероятно, такое исследование будет предпринято впервые. В данной работе в качестве первого шага основное внимание уделено моделированию реакции интенсивностей спектральных линий на импульсный "подогрев" электронов в послесвечении.

# Постановка и результаты эксперимента

Плазма создавалась низкочастотным барьерным разрядом в цилиндрической стеклянной трубке (рис. 1) длиной 20 cm и диаметром 3.9 cm. Ток такого разряда представляет собой две полуволны противоположной полярности длительностью несколько микросекунд каждая [1] при равенстве нулю среднего значения. Каждая полуволна ионизирует газ так, что в результате создается плазма с максимумом плотности электронов, смещенным к стенке разрядной трубки. Преимущества исследования рекомбинационных процессов в послесвечении такого разряда и подробное описание эксперимента изложено в [2]. Частота разряда 80-160 Hz. Наблюдения велись вдоль оси разрядной трубки, давление неона 0.1-1 Torr. Время единичного измерения интенсивности J(t) методом многоканального счета фотонов варьировалось в зависимости от яркости линий и мощности разряда от ~ 5 min до нескольких часов. Здесь мы анализируем результаты, полученные при минимальной плотности электронов в послесвечении  $[e] \le 4 \cdot 10^{10} \, {\rm cm}^{-3}$ . Величина [e] оценивалась по характеру реакции населенности атомов неона в резонансных состояниях Ne  $3s({}^{3}P_{1})$ на импульсный HF-нагрев электронов при временах



**Рис. 2.** Интегральные по времени спектры DBD (*a*) и импульсного HF-разряда (*b*). Давление неона 0.55 Torr. Отмечены наиболее сильные ионные линии.

 $\approx 1.5\,\mathrm{ms}$ от начала послесвечения. При всех условиях температура стенки трубки оставалась комнатной.

Для подогрева электронов в стадии распада плазмы на несколько микросекунд подавалось высокочастотное напряжение на катушку индуктивности, намотанную поверх электродов DBD на разрядную трубку. Уровень нагрева регулировался напряжением на схеме HF-разряда, так что можно было наблюдать переход от рекомбинационной ветви зависимости интенсивности спектральных линий от температуры электронов Te, для которой характерен спад интенсивности с увеличением Те, к ее резкому росту за счет ступенчатого возбуждения вплоть до развития импульсного самостоятельного ВЧ разряда. Последний использовался, в частности, для регистрации спектров излучения с целью их сравнения с формируемыми DBD. На рис. 2 показаны фрагменты таких спектров в ближней ультрафиолетовой области при давлении неона 0.55 Torr. Сравнительно низкое спектральное разрешение обусловлено трудностями региВ.А. Иванов

страции слабых световых потоков и необходимостью в этой связи установки широких входной и выходной щелей монохроматора.

Рис. З демонстрирует характерные различия зависимостей интенсивностей линий  $J_{\lambda}(t)$  трех упомянутых выше групп от времени и их реакцию на импульсный нагрев электронов НF-полем. Измерения выполнены при давлении неона 0.65 Torr и плотности электронов  $[e](t_{
m max}) \sim 4 \cdot 10^{10} \, {
m cm}^{-3}$   $(t_{
m max}$  — время формирования максимумов интенсивностей в послесвечении). Модельные расчеты  $J_{\lambda}(t)$  на рис. 3 сравниваем с суммарным излучением неразрешенных в данном эксперименте линий 334.4, 334.5, 334.6 nm — в дальнейшем  $J_{334.5}(t)$ . Аналогичным образом вели себя и другие ионные линии, например 371.3 nm, также показанная на рис. 3. Форма отклика интенсивностей на импульс HF-поля крутой передний фронт и сравнительно медленное возвращение к значению  $J_{\lambda}(t)$  в послесвечении без нагрева электронов — объясняется спецификой постановки эксперимента при малых давлениях. Как видно из рис. 3, характерное время релаксации температуры электронов в этих условиях  $au_T \sim 400\,\mu s$  сравнимо с характерным временем спада интенсивности  $J_{334,5}(t)$ , так что во избежание заметного уменьшения плотности  $[Ne^{2+}]$  в течение  $au_{HF}$ -импульса нагрева приходилось устанавливать его длительность так, чтобы  $\tau_{\rm HF} \ll \tau_T$ . В качестве реперных линий, отражающих процессы (1) и (2), использовались линии 585.2 nm (переход  $3p \rightarrow 3s$ ) и 576.4 nm  $(4d \rightarrow 3p)$ . На рис. 3 также представлены результаты моделирования процессов в послесвечении, которые мы обсудим позднее, а пока лишь заметим, что близкий к экспоненциальному характер спада интенсивностей всех трех линий указывает на преобладание диф-



**Рис. 3.** Послесвечение с импульсным подогревом электронов.  $[e] (t \approx 1.5 \,\mathrm{ms}) \approx 4 \cdot 10^{10} \,\mathrm{cm}^{-3}$ ,  $P_{\mathrm{Ne}} = 0.65 \,\mathrm{Torr.}$  Для удобства числа фотоэлектронов умножены на следующие коэффициенты: 3 (585.2 nm), 5 (576.4), 0.3 (334.5), 0.15 (371.3). Сплошные кривые — модельный расчет.

фузионного ухода заряженных частиц над процессами электрон-ионной рекомбинации при плотности электронов  $[e] \leq 4 \cdot 10^{10} \, \mathrm{cm}^{-3}$ .

В данной работе не обсуждается процесс диссоциативной рекомбинации молекулярных ионов и связанное с ним излучение плазмы. Отметим только, что показанное на рис. З модельное решение для линии 585.2 nm соответствует начальному условию  $[Ne_2^+](t=0) \ll [Ne^+](t=0)$ , потому что учтенные в модели процессы образования молекулярных ионов — конверсия  $Ne^+ \rightarrow Ne_2^+$  при тройных столкновениях и парные столкновения атомов в метастабильных и резонансных состояниях (см. ниже) — при наших плотностях атомов не успевают за время DBD создать количество молекулярных ионов, заметное в ионном составе плазмы.

#### Параметры модели

Для моделирования поведения интенсивностей спектральных линий использовалось численное решение в среде Mathcad системы семи дифференциальных уравнений, описывающих эволюцию во времени плотностей ионов Ne<sup>+</sup>, Ne<sup>2+</sup> и Ne<sup>+</sup><sub>2</sub>, плотностей атомов конфигурации  $2p^53s$  в метастабильных ( ${}^{3}P_{2}$  и  ${}^{3}P_{0}$ ) и резонансном  ${}^{3}P_{1}$ -состояниях и температуры электронов  $T_{e}(t)$ . Последний параметр является наиболее критичным ввиду сильной температурной зависимости коэффициентов  $\alpha_{1cr}$  и  $\alpha_{2cr}$ . Поэтому процессы, определяющие  $T_{e}(t)$  в послесвечении, рассмотрим наиболее детально.

### Температура электронов

#### Упругие столкновения

Закон изменения  $T_e(t)$  в плазме за счет упругих столкновений при отсутствии источников тепла запишем следующим образом:

$$dT_e/dt = -(2m/M)\nu_{ea}(T_e - T_a) = -(T_e - T_a)/\tau_{ea}(T_e),$$
(5)

где m/M — отношение масс электрона и атома неона,  $v_{ea}$  — транспортная частота упругих столкновений, au характерное время релаксации  $T_e, T_a$  — температура атомов. Ход  $T_e(t)$  задается частотой столкновений  $v_{ea}$ , т.е. транспортным сечением упругого рассеяния и его зависимостью от энергии электрона  $\sigma_t(E_e)$ . Испробовав различные варианты представления частоты vea на основе экспериментальных или расчетных данных о сечении упругого рассеяния, выбираем следующий алгоритм, позволивший наилучшим образом описать интенсивности J(t). Использовались результаты эксперимента [18] по исследованию изменения температуры электронов в послесвечении разряда в инертных газах. Для неона в диапазоне температуры  $450 > T_e > 300 \,\mathrm{K}$  авторы [18] нашли:  $\tau_{ea}P_{\mathrm{Ne}} = 3.5 \cdot 10^{-4} \,\mathrm{Torr} \cdot \mathrm{s.}$  С этим результатом, выражая частоту через сечение  $v_{ea} = N_a \sigma_t v_e$  ( $N_a$  —



**Рис. 4.** *1* — транспортное сечение для электронов в неоне по расчетам [19], *2* — аналитическая аппроксимация.

плотность атомов) и учитывая, что скорость электрона  $v_e \sim (T_e)^{1/2}$ , для произвольной температуры найдем

$$1/\tau_{ea}(T_e) = (P_{\rm Ne}/3.5 \cdot 10^{-4})\sigma_t(3kT_e/2)/\sigma_t(0.03\,{\rm eV})$$
  
  $\times (T_e/300)^{1/2}.$ 

Сечение  $\sigma_t(E_e)$ , заимствованное из работы [19], аппроксимировалось аналитической функцией, степень соответствия которой данным [19] демонстрирует рис. 4.

Правая часть уравнения (5) была дополнена слагаемым, описывающим релаксацию энергии электронов при столкновениях с ионами. В данном случае использовалось предложенное в [20] (стр. 79) приближение для частоты передачи энергии ионам, из которого следует

$$\tau_{ei} \sim 3.15 \cdot 10^8 A T_e^{3/2} / [e] \, {\rm Ln}\Lambda$$
 (6)

(A = 20 — атомная масса иона, LnA  $\approx 10$  — кулоновский логарифм,  $T_e$  — в единицах eV). Как показывают модельные расчеты, электрон-ионные столкновения при давлении неона  $\sim 1$  Тогт становятся заметными по их влиянию на ход J(t) в послесвечении. В уравнении (5) естественно складываются обратные величины времен релаксации  $1/\tau_{ei} + 1/\tau_{ea}$ .

#### Процессы с появлением "быстрых" электронов

В плазме разрядов в тяжелых инертных газах суммарные населенности атомов в метастабильных и резонансных состояниях конфигураций  $np^5(n+1)s$  (n — главное квантовое число) близки к плотности электронов (в гелиевой плазме плотность атомов в метастабильном состоянии  $2^3S_1$  может на порядок величины превышать концентрацию электронов [20]). Их столкновения с электронами или друг с другом, как, например, в случае неона:

$$Ne^* + e \rightarrow Ne + e \ (\varepsilon_e \approx 16.7 \,eV),$$
 (7)

| Частица                                                                                    | Реакция                                                                                                            | Константа скорости                                                                             | Подвижность, ст $^2 \cdot V^{-1} \cdot s^{-1}$ (300 K) |
|--------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| Ne <sup>+</sup>                                                                            | $Ne^+ + Ne + Ne \rightarrow Ne_2^+ + Ne$                                                                           | $0.47 \cdot 10^{-31}  \text{cm}^6 \cdot \text{s}^{-1}$ [40]                                    | 3.9 [42]                                               |
| Ne <sup>2+</sup>                                                                           | $\mathrm{Ne}^{2+} + \mathrm{Ne} \rightarrow \mathrm{Ne}^{+} + \mathrm{Ne}^{+}$                                     | $9 \cdot 10^{-14}$ [16] cm <sup>3</sup> · s <sup>-1</sup> (3.7 · 10 <sup>-14</sup> )           | 6 [16]                                                 |
| Ne <sup>2+</sup> ( <sup>3</sup> <i>P</i> , <sup>1</sup> <i>D</i> , <sup>1</sup> <i>S</i> ) | $\mathrm{Ne}^{2+} + \mathrm{Ne} \rightarrow \mathrm{Ne}^{+} + \mathrm{Ne}^{+}$                                     | $\{2.1, 1.9, 2.7\} \cdot 10^{-14} \mathrm{cm}^3 \cdot \mathrm{s}^{-1}  [17]$                   | {7, 6.5, 8.5} [41]                                     |
|                                                                                            | $\mathrm{Ne}^{2+} + \mathrm{Ne} + \mathrm{Ne} \rightarrow \mathrm{Ne}^{+} + \mathrm{Ne}^{+} + \mathrm{Ne}$         | ${5.1, 3.5, 3.5} \cdot 10^{-31} \text{ cm}^{6} \cdot \text{s}^{-1} [17]$                       |                                                        |
| Ne <sub>2</sub> <sup>+</sup>                                                               | $\mathrm{Ne}_2^+ + e \rightarrow \mathrm{Ne}^* + \mathrm{Ne}$                                                      | $1.7 \cdot 10^{-7} \mathrm{cm}^3 \cdot \mathrm{s}^{-1} \left(T_e = 300 \mathrm{K}\right) [44]$ | 6.1 [42]                                               |
| Ne $2p^5 3s(^3P_1)$                                                                        | $\operatorname{Ne}({}^{3}P_{1}) + e \rightarrow \operatorname{Ne}({}^{1}S_{0}) + \mathbf{e}$                       | $2 \cdot 10^{-10} \mathrm{cm}^3 \cdot \mathrm{s}^{-1}$ [23]                                    |                                                        |
| Ne $2p^5 3s(^3P_2)$                                                                        | $\operatorname{Ne}({}^{3}P_{2}) + e \rightarrow \operatorname{Ne}({}^{1}S_{0}) + \mathbf{e}$                       | $2 \cdot 10^{-10} \mathrm{cm}^3 \cdot \mathrm{s}^{-1}$ [23]                                    |                                                        |
| $Ne^* + Ne^*$                                                                              | $\operatorname{Ne}({}^{3}P_{2}) + \operatorname{Ne}({}^{3}P_{2}) \rightarrow \operatorname{Products} + \mathbf{e}$ | $3.8 \cdot 10^{-10} \mathrm{cm}^3 \cdot \mathrm{s}^{-1}$ [23]                                  |                                                        |
| $Ne^* + Ne^*$                                                                              | $\operatorname{Ne}({}^{3}P_{2}) + \operatorname{Ne}({}^{3}P_{1}) \rightarrow \operatorname{Products} + \mathbf{e}$ | $1.3 \cdot 10^{-9} \mathrm{cm}^3 \cdot \mathrm{s}^{-1}$ [23]                                   |                                                        |

Константы скоростей основных реакций с участием ионов и атомов Ne  $2p^53s({}^3P_2, {}^3P_1)$ , в фигурных скобках — величины для основного состояния иона Ne<sup>2+</sup>( ${}^3P$ ) и метастабильных состояний  ${}^1D$  и  ${}^1S$ , в круглых скобках — константа по результатам данной работы

$$Ne^* + Ne^* \rightarrow Ne^+ + Ne + e \ (\varepsilon_e \approx 12 \text{ eV})$$
  
 $\rightarrow Ne_2^+ + e \ (\varepsilon_e \approx 13 \text{ eV}),$  (8)

приводят к появлению "быстрых" электронов с энергиями, намного превышающими среднюю энергию электронов послесвечения. Вследствие электрон-электронных столкновений часть их энергии передается основной группе электронов, что может заметно замедлить спад  $T_e(t)$  вследствие упругих столкновений. Константы скоростей процессов (7), (8) представлены в таблице. Алгоритм учета влияния реакций (7), (8) на температуру электронов в послесвечении неоднократно обсуждался в литературе (например, [21-24]). В нашем случае применим подход, отвечающий нелокальной кинетике электронов, так как длина их энергетической релаксации λ<sub>e</sub> в условиях эксперимента намного превосходит радиус разрядной трубки:  $\lambda_e \gg R$ . В такой плазме быстрые электроны либо уходят из объема в режиме свободной диффузии и передают за счет е-естолкновений основной группе электронов малую долю энергии  $\varepsilon_e$ , либо, если их достаточно много для формирования высокого скачка пристеночного потенциала и они оказываются частично "запертыми" в плазме, доля  $\delta$  передаваемой энергии определяется отношением частоты е-е-столкновений к суммарной частоте передачи энергии при столкновениях с частицами плазмы. Имея в виду приближенный характер этих оценок и возможное влияние обсуждаемых процессов на ход  $T_e(t)$  и соответственно на результаты моделирования при сильной температурной зависимости коэффициентов  $CRR(T_e)$ , мы провели расчеты при различных параметрах  $\delta$  от 0 до 1. Особенно критичным оказалось влияние параметра  $\delta$  на результаты моделирования эксперимента с подогревом электронов (рис. 3). Для величин δ, превышающих 0.4, не удалось подобрать набор других параметров, определяющих  $T_e(t)$ , варьируя

их в разумных пределах, для достижения приемлемого согласия с экспериментом. На рис. 3 данные модели соответствуют  $\delta = 0.25$ .

## Другие процессы, влияющие на температуру электронов в распадающейся плазме

В послесвечении разрядов при низких давлениях наблюдается явление диффузионного "охлаждения" электронов [23–29]. Суть явления в том, что в процессе амбиполярной диффузии на стенки контейнера плазменного образования уходят наиболее быстрые электроны, способные преодолеть амбиполярное электрическое поле и пристеночный потенциальный барьер, тормозящие их движение, унося тем самым энергию, превышающую среднюю энергию электронов. Не углубляясь в тонкости анализа [24,30] вариантов движения электронов в условиях нелокальной кинетики, для оценки эффективности диффузионного охлаждения воспользуемся оценкой [31] (стр. 206), согласно которой правую часть уравнения (5) следует дополнить слагаемым —  $\beta T_e / \tau_D$ , в котором *τ*<sub>D</sub> — время амбиполярной диффузии, β коэффициент, слабо (логарифмически) зависящий от параметров плазмы и по порядку величины  $\beta \sim 10$ . Расчеты с этой оценкой не выявили заметного влияния диффузионного охлаждения на модельные кривые: смещение максимума модельных интенсивностей оказалось намного менее значительным, чем при учете электронионных столкновений. Аналогичным оказался и результат учета рекомбинационного "нагрева" электронов послесвечения: в каждом трехчастичном акте ударнорадиационной рекомбинации, начинающимся захватом электрона ионом и заканчивающимся появлением атома в основном состоянии, электронам плазмы передается энергия, равная нескольким kT<sub>e</sub>, что нетрудно было учесть в уравнении (5).



**Рис. 5.** Интенсивность линии 692.9 nm (кружки, черная сплошная кривая — модельный расчет) и температура электронов  $T_e$  (синяя кривая, для удобства изображения умножена на 0.1) в разряде и раннем послесвечении.

Проверку адекватности описания релаксации температуры электронов мы провели следующим образом. На рис. 5 показано изменение во времени интенсивности линии 692.9 nm (переход  $2p_6 \rightarrow 1s_2$ ), начиная с включения разряда в условиях рис. 3. Выбор линии 692.9 nm обусловлен тем, что эволюция ее интенсивности не искажена поглощением излучения ввиду малости населенности нижнего резонансного уровня  $2p^53s(^1P_1)$ . Наличие и положение максимумов  $J_{692.9}(t)$ отражает характер развития DBD. На рис. 5 изображена также модельная кривая J(t), построенная на основе решения упомянутой выше системы дифференциальных уравнений. При этом в качестве начального условия задано  $T_e(t=0) = 300 \,\mathrm{K}$ , а в предшествующие положениям максимумов интенсивности времена  $t_1$  и  $t_2$ заданы температурные возмущения, амплитуды которых подбирались из условия наилучшего соответствия расчетной и экспериментальной кривых. Вместе с этими двумя параметрами варьировались также еще два параметра d и s, отвечающих за относительный вклад процессов прямого и ступенчатого возбуждения уровня 2*p*<sub>6</sub>:

$$J(t) = d f_1(t) + s f_2(t),$$

где функции  $f_1(t) = \langle \sigma_d v_e \rangle$  и  $f_2(t) = \langle \sigma_s v_e \rangle$  вычислялись интегрированием сечений прямого (из основного состояния)  $\sigma_d$  и ступенчатого  $\sigma_s$  (из метастабильного состояния  $2p^53s(^3P_2)$ ) возбуждения по функции распределения электронов, которая считалась максвелловской с температурой  $T_e(t)$ . В вычислениях использовались аналитические аппроксимации сечений, полученные в работе [32]. Из рис. 5 видно, что имеет место заметное несоответствие расчета и эксперимента в стадии разряда

и хорошее, на наш взгляд, описание в раннем послесвечении. Расхождения в максимумах интенсивности понятны, так как корректный учет прямого возбуждения требует адекватного вычисления функции распределения электронов при энергиях  $E_e \approx 20$  eV, и они не существенны для целей настоящей работы. Здесь важно, что модельный расчет дает значение  $T_e \approx 45000$  K по окончании разряда, которое мы использовали в качестве начального условия при анализе послесвечения.

Отметим, что для ионных линий характерен значительно более глубокий, чем показанный на рис. 5, "провал" интенсивностей при времени в послесвечении  $t_1 < t < t_2$  ([2], Fig.6). Очевидно, это отражает существенно более сильную температурную зависимость скорости возбуждения ионных уровней электронным ударом в разряде и ранней стадии послесвечения.

## Амбиполярная диффузия

Наличие нескольких сортов ионов в плазме усложняет описание амбиполярного ухода заряженных частиц. Вслед за [33] к решению этой задачи в приложениях к различным типам плазменных объектов обращались авторы многих исследований [34-37]. Искомое решение должно давать скорости амбиполярной диффузии ионов с различными подвижностями и электронов, зависящие от времени в соответствии с изменением ионного состава и температуры электронов так, чтобы выполнялось условие квазинейтральности плазмы. Строгий подход требует обращения к системе дифференциальных уравнений в частных производных с заданием начальных пространственных распределений заряженных частиц. Такими данными мы не располагаем, поэтому, как это принято в большинстве цитированных выше исследований, будем предполагать радиальные распределения плотностей  $Ne^+(r)$ ,  $Ne^{2+}(r)$  и [e(r)] диффузионными и пренебрежем молекулярными ионами, что допустимо при давлениях менее 1 Torr [2]. В качестве обоснования возможности реализации подобной ситуации в наших условиях сошлемся на тот факт, что анализировать послесвечение будем с задержкой по времени от его начала не менее, чем  $\tau_D$ , в надежде на работу высших диффузионных мод. Воспользуемся результатами [16,33] для распадающейся плазмы с двумя типами ионов, которые представлены следующими соотношениями для коэффициентов амбиполярной диффузии ионов Ne<sup>+</sup> и Ne<sup>2+</sup>:

$$D_{a,1} \approx D_1(1 + T_e/T_a), \quad D_{a,2} \approx D_2(1 + 2T_e/T_a).$$

Коэффициенты диффузии  $D_1$  и  $D_2$  связаны с мобильностями ионов соотношениями Эйнштейна (предполагаем максвелловское распределение электронов)  $\mu_1/D_1 = (1/2)\mu_2/D_2 = e/kT_a$ , если температуры ионов одинаковы и равны температуре газа  $T_a$ . Данные о подвижностях ионов представлены в таблице. Заметим,

что для численного решения задачи нет необходимости дополнять систему уравнений уравнением для плотности электронов. Для выполнения условия квазинейтральности достаточно в качестве [e](t) подставить  $[Ne^+](t) + 2[Ne^{2+}](t)$ , и таким же образом находить решение для [e](t).

Относительная плотность молекулярных ионов  $[Ne_2^+]/[e]$  по нашим оценкам в послесвечении составляет не более 1-2%, так что их роль в формировании амбиполярных потоков незначительна. Тем не менее связанное с ними излучение (рис. 3) сравнительно легко регистрируется, что объясняется двумя обстоятельствами. Во-первых, коэффициент диссоциативной рекомбинации ионов  $Ne_2^+$  по крайней мере на 2 порядка при имевших место плотностях [e] превышает коэффициент  $\alpha_{1cr}$ , и во-вторых, упомянутым выше свойством селективности процесса.

# Плотности атомов конфигурации 2p<sup>5</sup>3s

Населенности этой группы атомов измерялись по методу поглощения с использованием в качестве дополнительного источника излучения разрядной трубки диаметром 2 cm, наполненной неоном при давлении 2 Torr и расположенной поперек оптической оси. Детали измерений и расчетов изложены в [5]. Нам не удалось надежно зарегистрировать поглощение на переходах в состояние  ${}^{1}P_{1}$ , оказавшееся менее 1% (измерения проводились в основном на линии 585.2 nm), поэтому можем лишь указать оценку населенности  $[{}^{1}P_{1}]$  $(1s_2$  в обозначениях Пашена) — менее  $10^9 \, {\rm cm}^{-3}$ , в то время как суммарная населенность  $[{}^{3}P_{0}] + [{}^{3}P_{1}] + [{}^{3}P_{2}]$ в начале послесвечения при всех условиях была близка к плотности электронов. Мы не приводим подробности описания кинетики населенностей уровней  $2p^53s$ . Отметим только, что имеющихся в литературе данных об элементарных процессах с участием атомов этой конфигурации оказалось достаточно для достижения хорошего соответствия экспериментальных данных и модельных расчетов. Единственный параметр, который приходилось подбирать из условия наилучшего согласия с экспериментом, — вероятность выхода резонансного излучения на переходе в основное состояние  ${}^{3}P_{1} \rightarrow {}^{1}S_{0} + hv$ . Подобный прием был применен нами в работе [38], результаты которой по измерению константы скорости  $k_{e}(T_{e})$  электронно-стимулированных переходов

$${}^{3}P_{2} + e \xrightarrow{k_{e}} {}^{3}P_{1} + e$$

мы использовали в данной работе для оценки плотности электронов в послесвечении с импульсным подогревом электронов.

# Температурные зависимости интенсивностей спектральных линий и констант скоростей ударно-радиационной рекомбинации

В модельных вычислениях, результаты которых приведены на рис. 3, полагаем, что температурные зависимости интенсивностей линий 576.4 и 334.5 nm тождественны зависимостям коэффициентов рекомбинации  $\alpha_{1cr}(T_e)$  и  $\alpha_{2cr}(T_e)$  соответственно. Это требует обоснования, поскольку населенности возбужденных атомов распадающейся с участием обсуждаемых процессов плазмы существенно по-разному отслеживают ее параметры в зависимости от энергии связи возбужденного электрона  $\varepsilon_n$  (n — главное квантовое число). Высоковозбужденные состояния атома в плазме с достаточно высокой плотностью электронов находятся в равновесии со свободными электронами, так что их населенности (и соответственно температурные зависимости излучаемых ими линий) описываются формулой Саха:

$$N_n \sim \exp(\varepsilon_n / kT_e) / (T_e)^{3/2}.$$
 (9)

Это означает, что в их кинетике радиационные процессы не играют роли, а поток рекомбинации переносится "вниз" по энергии возбуждения в последовательных столкновительных переходах:

$$\operatorname{Ne}_{n}^{*} + e \leftrightarrow \operatorname{Ne}_{n-1}^{*} + e.$$
 (10)

С уменьшением энергии возбуждения (увеличением  $\varepsilon_n$ ) ситуация меняется вследствие двух факторов: уменьшения вероятностей электронно-стимулированных переходов (10) между уровнями и увеличением вероятностей  $A_n$  их излучательного опустошения (для водородоподобных уровней  $A_n \sim n^{-4.5}$  [39]). Начиная с некоторых  $\varepsilon_{ns}$ , радиационные переходы становятся преобладающими, и уже они в основном переносят поток рекомбинации. Интенсивности спектральных линий этих переходов поэтому пропорциональны потоку рекомбинации. В случае линии 576.4 nm

$$J_{576.4} \sim \alpha_{1cr}(T_e)[e][\mathrm{Ne}^+].$$
 (11)

Для оценки  $\varepsilon_{ns}$  воспользуемся результатами [11], согласно которым применительно к нашим условиям  $\varepsilon_{ns} \ge 5kT_e$ . Экспериментальные данные сравниваем с модельными при временах, начиная непосредственно перед максимумом интенсивностей, когда температура электронов по модельным расчетам  $T_e(t) < 0.1$  eV. Энергия связи уровня 4*d*, с которого исходит линия 576.4 nm,  $\varepsilon_{ns} = 0.86$  eV, что оправдывает соотношение (11).

В качестве коэффициента рекомбинации ионов Ne<sup>+</sup> используем аппроксимацию, предложенную авторами [14]:

$$\alpha_{1cr} = 1.55 \cdot 10^{-10} T_e^{-0.63} + 6.0 \cdot 10^{-9} T_e^{-2.18} [e]^{0.37} + 3.8 \cdot 10^{-9} T_e^{-4.5} [e].$$
(12)



**Рис. 6.** Температура электронов  $T_e$  в послесвечении: 1 — импульсный НF-подогрев электронов в расчете с коэффициентом  $\delta = 0.25, 2$  — без подогрева и без учета передачи энергии от быстрых электронов.

Здесь  $T_e$  — температура электронов в кельвинах, [e] — плотность в сm<sup>-3</sup>,  $\alpha_{1cr}$  — коэффициент рекомбинации в сm<sup>3</sup>/s. Первое слагаемое в (12) — вклад радиационной рекомбинации, второе — результат сложной конкуренции столкновительных и излучательных процессов, третий — коэффициент рекомбинации в столкновительной плазме. Последний практически совпадает с вычисленным в [10] для Z = 1.

Что касается иона Ne<sup>2+</sup>, то мы не располагаем информацией, подобной изложенной выше в отношении рекомбинации ионов Ne<sup>+</sup>. Единственное, что представляется достаточно очевидным, это значительно более сильное влияние взаимодействия Ne<sup>+\*</sup> с электронами плазмы в формировании рекомбинационного потока по системе высоковозбужденных уровней иона, вследствие чего, согласно [10],  $\alpha_{Zer} \sim Z^3$ . Опираясь на это соображение, сравнение экспериментальных интенсивностей  $J_{334.5}(t)$  с модельными вычислениями мы начали с коэффициентом рекомбинации ионов [Ne<sup>2+</sup>] в виде

$$\alpha_{2\rm cr} = Z^3 \cdot 3.8 \cdot 10^{-9} T_e^{-4.5}[e], \tag{13}$$

а интенсивность линии 334.5 nm представили как

$$J_{334.5}(t) \sim \alpha_{2cr}(T_e)[e][Ne^{2+}].$$
 (14)

В таблице указаны основные, критичные для результатов моделирования частицы, реакции и их характеристики.

# Сопоставление модели с экспериментальными данными

Обработку результатов эксперимента, показанных на рис. 3, мы провели следующим образом. В качестве первого шага использовали данные рис. 3, 5 для контроля

Оптика и спектроскопия, 2021, том 129, вып. 8

степени корректности расчета температуры  $T_e(t)$  послесвечении. Наилучшее описание эксперимента достигнуто при несколько измененном по сравнению с заложенным в модель значением времени  $\tau_{ea} = 5.4 \cdot 10^{-4}$  s (при  $P_{\rm Ne} = 0.65$  Torr), а именно  $\tau_{ea} = 6.3 \cdot 10^{-4}$  s. Рисунок 6 показывает результаты расчета  $T_e(t)$  в эксперименте с импульсным нагревом электронов, а также влияние процессов (7), (8) с участием долгоживущих возбужденных атомов, которые были учтены при вычислении интенсивностей  $J_{\rm Mod}(t)$ .

Как уже отмечалось, характер изменения интенсивностей  $J_{\text{Exp}}(t)$  атомных и ионных линий в этих условиях позволяет допустить преобладание амбиполярной диффузии в балансе числа заряженных частиц. Для сопоставления расчетных и экспериментальных кривых необходимы данные об относительной плотности ионов  $[Ne^+]/[Ne^{2+}]$ , которыми мы не располагаем. Однако, как показали расчеты, ход  $J_{Mod}(t)$  линий 576.4 и 334.5 nm заметно реагирует на изменение относительной плотности ионов, что позволило оценить (с точностью до полутора раз) оптимальное для рис. З отношение плотностей  $[Ne^+]/[Ne^{2+}](t=0) \sim 3$ . Далее подбором параметров модели кривые  $J_{Mod}(t)$  совмещались с  $J_{Exp}(t)$  до наилучшего совпадения в среднем по времени. При этом мы учитывали, что сумма  $([Ne^+] + 2[Ne^{2+}])(t = 1.5 \text{ ms})$ должна быть близка к оценочной плотности электронов  $[e] \sim 4 \cdot 10^{10} \, {\rm cm}^{-3}$ . В результате таких процедур были найдены несколько наборов констант скоростей процессов, отвечающих вводимым в модель наиболее критичным в данной задаче параметрам, ответственным за температуру электронов в послесвечении — времени  $\tau_{ea}$ и коэффициенту б передачи энергии от быстрых электронов. Наиболее существенные для целей настоящей работы выводы, полученные в результате сопоставления  $J_{\text{Exp}}(t)$  и  $J_{\text{Mod}}(t)$ , заключаются в следующем.

а) Небольшие вариации  $\tau_{ea}$  (несколько процентов) и  $\delta$  (несколько десятков процентов) могли быть скомпенсированы в целях соответствия  $J_{\text{Exp}}(t)$  и  $J_{\text{Mod}}(t)$  подбором других параметров задачи в пределах их отклонения от литературных данных 10–15%.

б) Некоторые параметры задачи во всех наборах оказались заметно отличающимися от первоначально использованных литературных данных — это упомянутое выше время  $\tau_{ea}$  и константа скорости процесса (4). У нас нет оснований предполагать участие в формировании послесвечения линии 334.5 nm ионов Ne<sup>2+</sup> в различных состояниях конфигурации  $2s^22p^4$  (таблица), поэтому все полученные данные относим к одному иону. В качестве такового, по-видимому, логично рассматривать основное состояние Ne<sup>2+</sup>(<sup>3</sup>*P*). Константы скорости реакции (4), как следует из таблицы, по результатам [16,17] заметно расходятся. Наши данные наилучшим образом согласуются со значением  $\sim 3.7 \cdot 10^{-14} \text{ cm}^3/\text{s}.$ 

в) Никакие вариации параметров задачи не смогли устранить несоответствие  $J_{\rm Exp}(t)$  и  $J_{\rm Mod}(t)$  непосредственно после импульса нагрева электронов. Очевид-



**Рис. 7.** Послесвечение DBD при  $P_{\text{Ne}} = 0.1$  Torr. t = 0 соответствует началу разряда.

но, в рассматриваемой модели не удается корректно учесть разрушение ионов Ne<sup>2+</sup> при нагреве электронов. В меньшей степени, как следует из рис. 3, это относится и к Ne<sup>+</sup>. Напомним, что коэффициент  $\alpha_{1cr}$ в виде (12) заимствован из теории [14], в которой, как и в других подобных работах, анализ потока рекомбинации основан на вычислениях скоростей столкновительных переходов (10) между водородоподобными уровнями атома. Поскольку формирование потока происходит преимущественно в области больших квантовых чисел, результаты распространяются и на тяжелые ионы. Учет реальной структуры возбужденных уровней может внести заметные изменения в вычисляемые скорости рекомбинации, особенно для повышенных температур электронов [43]. С другой стороны, пропорциональность интенсивностей спектральных линий потокам рекомбинации (12) также основана на приближенных оценках, а что касается (13), то таковые и вовсе отсутствуют. Заметим, что увеличение вклада второго слагаемого в формуле (12) в модели заметно сглаживало упомянутое выше расхождение на линии 576.4 nm (и на линии 585.2 nm вследствие заметного вклада рекомбинации (2) в заселение уровней 3*p*).

г) Еще одно неустранимое разночтение — предпочтительность увеличения в модели коэффициента рекомбинации (13) — множителя  $Z^R$ . Согласно расчетам [8], коэффициент R в зависимости от плотности и температуры электронов может принимать значения от R = 4до отрицательных величин при высоких  $T_e$ . Насколько нам известно, последнее пока не имеет экспериментального подтверждения. Наше утверждение следует понимать скорее как необходимость более детального исследования механизма CRR многозарядных ионов, в том числе в широком диапазоне изменения плотности электронов. Это и составит задачу наших следующих экспериментов.

В завершение отметим важное свойство послесвечения с атомными и молекулярными ионами при малых плотностях неона. На рис. 7 показаны интенсивности линий с поправкой на спектральную чувствительность схемы регистрации излучения при самом низком в эксперименте давлении  $P_{\rm Ne} = 0.1$  Тогг. Видно, что, за исключением особенностей ранней стадии, интенсивности ведут себя одинаково и тождественно линии 576.4 nm, связанной с ионами [Ne<sup>+</sup>], и практически одинаковы по числу фотонов. Качественное различие раннего послесвечения линий 585.2 nm (верхний уровень  $2p_1$ ) и 703.2 nm ( $2p_{10}$ ) свидетельствует о различии механизмов возбуждения, но их обсуждение выходит за рамки данной работы.

# Выводы

Спектроскопически исследовано послесвечение низкочастотного барьерного разряда цилиндрической геометрии в неоне при давлении менее 1 Torr и плотности электронов  $[e] \le 4 \cdot 10^{10} \, {\rm cm}^{-3}$ . На основе модели послесвечения, содержащей элементарные процессы с участием электронов, атомных и молекулярных ионов и долгоживущих возбужденных атомов в резонансных и метастабильных состояниях, интерпретированы результаты эксперимента, указывающего на формирование в плазме послесвечения трех групп возбужденных частиц, образование которых обусловлено конкуренцией процессов рекомбинации с участием молекулярных (Ne<sub>2</sub><sup>+</sup>) и атомных (Ne<sup>+</sup>, Ne<sup>2+</sup>) ионов. Излучаемые ими спектральные линии отчетливо различаются по зависимостям интенсивностей от времени и характеру отклика на импульсное возмущение электронной температуры в послесвечении высокочастотным электрическим полем. Сравнение модельных и измеренных зависимостей интенсивностей J(t, T<sub>e</sub>) ионных линий, впервые зарегистрированных в распадающейся плазме, указывает на недостаточность имеющихся сведений об ударно-радиационной рекомбинации двухзарядных ионов и необходимость детального исследования этого процесса.

Результаты данной работы вместе с предшествующими экспериментами с барьерным разрядом использованной конфигурации показывают перспективность этого способа создания плазмы для исследования элементарных процессов в широком диапазоне плотностей газа, достигающем четырех порядков величины без изменения его геометрии и схемы питания.

#### Конфликт интересов

Конфликт интересов отсутствует.

#### Список литературы

- Иванов В.А. // Опт. и спектр. 2019. Т. 126. № 3. С. 247; Ivanov V.A. // Opt. Spectrosc. 2019. V. 126. N 3. Р. 167. doi 10.21883/OS.2019.03.47361.185-18
- [2] Ivanov V.A. // Plasma Sources Sci. Technol. 2020. V. 29.
   P. 045022. doi org/10.1088/1361-6595/ab7f4c
- [3] Golubovskii Yu.B., Maiorov V.A., Behnke J., Behnke J.F. // J. Phys. D. 2003. V. 36. P. 39. stacks.iop.org/JPhysD/36/39
- [4] Ivkovic S.S., Obradovic B.M., Kuraica M.M. // J. Phys. D. 2012. V. 45. 275204. doi 10.1088/0022-3727/45/27/275204
- [5] Гордеев С.В., Иванов В.А., Скобло Ю.Э. // Опт. и спектр. 2019. Т. 127. № 3. С. 247. doi 10.21883/OS.2019.09.48190.106-19; Gordeev S.V., Ivanov V.A., Skoblo Yu.E. // Opt. Spectrosc. 2019. V. 127. N 3. P. 418.
- [6] Иванов В.А. // УФН. 1992. Т. 162. № 1. С. 35. doi 10.3367/UFNr.0162.199201b.0035; Ivanov V.A. // Sov. Phys. Usp. 1992. V. 35. N 1. P. 17. doi 10.1070/PU1992v035n01ABEH002192
- [7] *Thomson J.J.* // Phil. Mag. 1924. V. 47. P. 337. doi org/10.1080/14786442408634372
- [8] Bates D.R., Kingston A.E., McWhirter R.W.P. // Proc. Roy. Soc. (London). 1962. V. A267. P. 297. https://www.jstor.org/stable/2414257
- [9] Makin B., Keck J.C. // Phys. Rev. Lett. 1963. V. 11. N 6. P. 281.
- [10] Gurevich A.V., Pitaevskii L.P. // Sov. Phys. JETP. 1964. V. 19.
   N 4. P. 870.
- [11] Mansbach P., Keck J. // Phys. Rev. 1969. V. 181. N 1. P. 275.
- [12] Hinnov E., Hirschberg J.G. // Phys. Rev. 1962. V. 125. N 3. P. 795.
- [13] Johnson L.C., Hinnov E. // JQSRT. 1973. V. 13. P. 333.
- [14] Stevefelt J., Boulmer J., Delpech J-F. // Phys. Rev. A. 1975.
   V. 12. N 4. P. 1246.
- [15] Hertel G.R., Koski W.S. // J. Chem. Phys. 1964. V. 40. P. 3452.
- [16] de Hoog F.J., Oskam H.J. // J. Appl. Phys. 1973. V. 44. P. 3496.
- [17] Johnsen R., Biondi M.A. // Phys. Rev. A. 1978. V. 18. N 3. P. 996.
- [18] Dean A.G., Smith D., Adams N.G. // J. Phys. B. 1974. V. 7.
   N 5. P. 644. doi org/10.1088/0022-3700/7/5/016
- [19] Adibzadeh M., Theodosiou C.E. // Atomic Data and Nuclear Data Tables. 2005. V. 91. P. 8. doi 10.1016/j.adt.2005.07.004
- [20] Райзер Ю.П. Физика газового разряда. Издательский Дом "Интеллект", 2009. 736 с.
- [21] Deloche R., Monchicourt P., Cheret M., Lambert F. // Phys. Rev. A. 1976. V. 13. N 3. P. 1140.
- [22] Wells W.E., Monchicourt P., Deloche R., Berlande J. // Phys. Rev. A. 1973. V. 8. N 1. P. 381.
- [23] Trunec D., Španěl P., Smith D. // Contrib. Plasma Phys. 1994.
   V. 34. N 1. P. 69.
- [24] Kolokolov N.B., Kudrjavtsev A.A., Dlagoev N. A. // Phys. Scr. 1994. V. 50. P. 371.
- [25] Biondi M.A. // Phys. Rev. 1954. V. 93. N 6. P. 1136.
- [26] Smith D., Dean A.G., Adams N.G. // Z. Physik. 1972. V. 253.
   P. 191.
- [27] Bhattacharya A.K., Ingold J.H. // J. Appl. Phys. 1972. V. 43.
   N 4. P. 1535. doi org/10.1063/1.1661357
- [28] Robson R.E. // Phys. Rev. A. 1976. V. 13. N 4. P. 1536.
- [29] Robson R.E. // Phys. Rev. E. 2000. V. 61. N 1. P. 848.
- [30] Arslanbekov R.R., Kudryavtsev A.A., Tsendin L.D. // Phys. Rev. E. 2001. V. 64. P. 016401.

- [31] Голант В.Е., Жилинский А.П., Сахаров И.Е. Основы физики плазмы. М.: Атомиздат, 1977. 384 с.
- [32] Baghel S.S., Gupta S., Gangwar R.K., Srivastava R. // Plasma Sources Sci. Technol. 2019. V. 28. P. 115010. doi org/10.1088/1361-6595/ab4684
- [33] Oskam H.J. // Phillips Research Reports. 1958. V. 13. P. 352.
- [34] Thompson J.B. // Proc. Phys. Soc. 1959. V. 73. P. 818. doi org/10.1088/0370-1328/73/5/416
- [35] Maccallum C.J. // Plasma Physics. 1970. V. 12 P. 143. doi org/10.1088/0032-1028/12/3/001
- [36] Rogoff G.L. // J. Phys. D. 1985. V. 18. P. 1533. doi org/10.1088/0022-3727/18/8/018
- [37] Lichtenberg A.J., Vahedi V., Lieberman M.A., Rognlien T. // J. Appl. Phys. 1994. V. 75. N 5. P. 2339. doi org/10.1063/1.356252
- [38] Ivanov V.A. // J. Phys. B. 1998. V. 31. P. 1765.
- [39] Bethe H.A., Salpeter E.E. Quantum Mechanism of One- and Two-Electron Atoms. N.Y.: Academic Press, 1957. 375 p.
- [40] Dielis J.W.H., de Hoog F.J., Schram D.C. // J. Appl. Phys. 1980. V. 51. P. 5708. doi org/10.1063/1.327578
- [41] Johnsen R., Biondi M.A. // Phys. Rev. A. 1978. V. 18. N 3. P. 989.
- [42] Courville G.E., Biondi M.A. // J. Chem. Phys. 1962. V. 37. N 3. P. 616.
- [43] Биберман Л.М., Воробьев В.С., Якубов И.Т. Кинетика неравновесной низкотемпературной плазмы. М.: Наука, 1982. 378 с.
- [44] Frommhold L., Biondi M.A., Mehr F.J. // Phys. Rev. 1968.
   V. 165. N 1. P. 44.