07

Особенности оптического усиления в сильнолегированных Al_xGa_{1-x}N:Si-структурах

© П.А. Бохан¹, К.С. Журавлёв¹, Д.Э. Закревский^{1,3,¶}, Т.В. Малин¹, И.В. Осинных^{1,2}, Н.В. Фатеев^{1,2}

¹ Институт физики полупроводников им. А.В. Ржанова СО РАН, Новосибирск, Россия

² Новосибирский государственный университет, Новосибирск, Россия

³ Новосибирский государственный технический университет, Новосибирск, Россия

[¶] E-mail: zakrdm@isp.nsc.ru

Поступило в Редакцию 24 марта 2021 г.

В окончательной редакции 21 апреля 2021 г.

Принято к публикации 22 апреля 2021 г.

Экспериментально исследовано временное поведение интенсивностей люминесценции и стимулированного излучения в сильнолегированных структурах Al_{0.65}Ga_{0.35}N и Al_{0.74}Ga_{0.26}N при импульсном оптическом возбуждении. Результаты продемонстрировали, что временное затухание интенсивностей люминесценции и стимулированного излучения для различных длин волн излучаемого спектра и мощностей оптической накачки состоит по крайней мере из двух компонент: быстрой и медленной. Быстрые компоненты с экспоненциальным временным затуханием связаны с излучательной рекомбинацией неравновесных электронов на глубоких акцепторах, а медленные — с рекомбинацией донорно-акцепторных пар.

Ключевые слова: сильнолегированные структуры $Al_x Ga_{1-x} N$, люминесценция, стимулированная эмиссия, оптическое усиление.

DOI: 10.21883/PJTF.2021.14.51186.18782

Широкозонные (3.4-6.2 eV) структуры Al_xGa_{1-x}N являются перспективными материалами для создания источников света и лазерных диодов в видимой и УФ-областях спектра [1–3]. В структурах Al_xGa_{1-x}N, легированных кремнием с концентрацией $n_{\rm Si} > 10^{19} \, {\rm cm}^{-3}$, присутствуют люминесцирующие дефекты, которые приводят к появлению внутризонных (внутри запрещенной зоны) излучательных переходов. Излучательные характеристики сильнолегированных структур $Al_xGa_{1-x}N$:Si ранее были исследованы при возбуждении оптическим излучением [4]. Исследования продемонстрировали, что люминесценция структур $Al_xGa_{1-x}N$ с $n_{Si} > 10^{20} \text{ cm}^{-3}$ при x > 0.5 имеет доминирующий широкополосный спектр 1.72-2.7 eV (400-720 nm). При оптической накачке квантовая эффективность люминесценции структур $Al_xGa_{1-x}N$:Si с x = 0.65 и 0.74 достигает 0.5 и 0.8 соответственно [4]. В работах [5,6] были измерены коэффициенты оптического усиления, превышающие $10^3 \, {\rm cm}^{-1}$, и продемонстрирована перестраиваемая лазерная генерация в структуре Al_{0.74}Ga_{0.26}N при оптической накачке. Эти особенности делают сильнолегированные структуры Al_xGa_{1-x}N перспективными активными средами для получения лазерной генерации в видимом спектральном диапазоне, в том числе с большой перестройкой частоты излучения с единичного излучающего элемента, а также в качестве широкополосных светоизлучающих структур.

При возбуждении неравновесных носителей заряда в структурах $Al_x Ga_{1-x} N$: Si происходит одновременно несколько процессов, приводящих к излучательной релаксации энергии возбуждения. Целью настоящей работы является определение механизмов, ответственных за оптическое усиление.

Исследовались две структуры Al_xGa_{1-x}N:Si толщиной $1.2\,\mu m$ с x = 0.65 и 0.74 с буферным слоем AlN, выращенные методом молекулярно-лучевой эпитаксии на (0001) сапфировых подложках толщиной 0.43 mm. Масс-спектрометрия вторичных ионов в выращенных образцах показала, что в качестве основных примесей присутствует кремний с $n_{\rm Si} \approx 1.5 \cdot 10^{20} \, {\rm cm}^{-3}$, а также углерод и кислород, концентрации которых не превышают $\sim 5 \cdot 10^{18}$ и $\sim 10^{19}$ cm⁻³ соответственно. В качестве излучения накачки использовалась четвертая гармоника Nd: YAG-лазера с длиной волны $\lambda = 266 \, \text{nm}$, длительностью импульса на полувысоте 8 ns и частотой следования 10 Hz. Стимулированное излучение формировалось в результате усиления непрерывного пробного излучения в возбужденной области структуры. В качестве пробного выступало излучение от лампы накаливания, ограниченное спектральным фильтром в диапазоне $\lambda = 350 - 700 \,\mathrm{nm}$ и распространявшееся под углом 15° к нормали структуры. Для измерения временного поведения излучение регистрировалось фотоумножителем в области 200-900 nm с временным разрешением 3 ns через спектральный фильтр — призменный монохроматор с полосой пропускания 10 nm. Все эксперименты проводились при комнатной температуре. Подробное описание методики экспериментов представлено в [4,5].

На рис. 1 представлены экспериментальные временны́е зависимости затухания интенсивности люминесценции $I_L(t)$ структуры $Al_{0.74}Ga_{0.26}N$ на различных длинах волн излучения. Поведение этих кривых демонстрирует быструю (с экспоненциальным спадом за несколько

Рис. 1. Временны́е зависимости затухания интенсивностей люминесценции I_L : $\lambda = 370$ (*I*), 380 (*2*), 420 (*3*), 480 (*4*), 520 (*5*), 610 (*6*) и 650 nm (*7*). $P_p = 230 \text{ kW/cm}^2$. На вставке штриховой линией показана граница, разделяющая быструю и медленную компоненты излучения.

десятков наносекунд) и медленную (время затухания десятки микросекунд) компоненты. Штриховой линией на вставке к рис. 1 показана граница, находящаяся в точке перегиба кривых затухания, разделяющая быструю и медленную компоненты. Это подтверждают результаты аппроксимации экспериментальных данных суммой экспоненциальной и гиперболической функций. Быстрая компонента обусловлена электрон-акцепторной (*e*-*A*) рекомбинацией, а медленная связана с рекомбинацией донорно-акцепторных пар (ДАП) [4,7]. В качестве донора выступает Si, а в качестве акцептора может выступать катионная вакансия Ga и Al ($V_{\rm III}$) [8,9]. Интенсивность стимулированного излучения $I_S(t)$ определялась исходя из экспериментальных данных по формуле

$$I_S(t) = I_L^*(t) - I_L(t),$$

где $I_L^*(t)$ — интенсивность люминесценции в присутствии пробного излучения с интенсивностью I_{pr} . Поскольку $I_S(t)$ прямо пропорциональна интенсивности I_{pr} , ее величина находилась из отношения $G_S(t) = I_S(t)/I_{pr}$, которое представляет собой оптическое усиление в возбужденной структуре. Полные интенсивности люминесценции S_{L0} и стимулированного излучения S_{S0} определялись как площади под кривыми $I_L(t)$ и $G_S(t)$ соответственно. Эти величины рассчитывались из экспериментальных данных по формулам

$$S_{L0} = \sum_{k=0}^{k=m} I_L(t_k) \Delta t, \quad S_{S0} = \sum_{k=0}^{k=m} G_S(t_k) \Delta t$$

Диапазон времени вычисления от 0 до $t_m \approx 10-25\,\mu s$ устанавливался по моменту, когда убывающие по времени величины $I_L(t_m)$ и $G_S(t_m)$ становятся сравнимыми с шумами, а $\Delta t = t_{k+1} - t_k = 1$ пs — интервал между

измеряемыми точками. По тем же формулам определялись интенсивности излучения для быстрых компонент люминесценции S_{LF} и стимулированного излучения S_{SF} . В этом случае t_m устанавливается по точкам перегиба на кривых $I_L(t)$ и $G_S(t)$ (вставка на рис. 1).

На рис. 2, *а* представлены спектры интенсивности S_{LF} , которые демонстрируют широкую полосу излучения $\Delta E \approx 1.6 \text{ eV}$, возникающую за счет процесса *e*-*A*-рекомбинации с максимумами, сдвинутыми в длинноволновую область. Отношение интенсивности быстрой компоненты к полной интенсивности S_{LF}/S_{L0} имеет минимум в максимуме спектра излучения и возрастает на его краях. Спад интенсивности S_{L0} в длинноволновой части спектра связан с уменьшением вероятности рекомбинации ДАП, которая экспоненциально уменьшается с возрастанием расстояния *R* между донором и акцептором. Рекомбинация ДАП в коротковолновой области обрывается, когда *R* достигает минимального значения, равного периоду решетки.

Рис. 2, *b* демонстрирует спектральные характеристики люминесценции и стимулированного излучения для

Рис. 2. Спектральные зависимости параметров. a — структуры Al_{0.65}Ga_{0.35}N (*I*-3) и Al_{0.74}Ga_{0.26}N (*4*-6): *I*, *4* — *S*_{L0}, 2, 5 — *S*_{LF}, 3, 6 — *S*_{LF}/*S*_{L0}. *P*_p = 52 kW/cm². *b* — структура Al_{0.74}Ga_{0.26}N: *I* — *S*_{L0} (с разрешением 0.5 nm), 2 — *S*_{S0}, 3 — *S*_{LF}/*S*_{L0}, *4* — *S*_{SF}/*S*_{S0}. *P*_p = 230 kW/cm².

Рис. З. Зависимости $S_{LF}/S_{L0}(P_p)$ (1,3) и $S_{SF}/S_{S0}(P_p)$ (2,4) для Al_{0.65}Ga_{0.35}N (1,2) и Al_{0.74}Ga_{0.26}N (3,4).

структуры Al_{0.74}Ga_{0.26}N:Si. Спектральная зависимость для интенсивности стимулированной эмиссии S_{S0} достаточно хорошо совпадает со спектром люминесценции. Спектральные зависимости отношений для люминесценции S_{LF}/S_{L0} и стимулированной эмиссии S_{SF}/S_{S0} показывают значительный рост доли интенсивности быстрой компоненты люминесценции и стимулированного излучения на краях спектров излучения. Доля интенсивности S_{SF} в центре контура излучения почти в 2 раза больше этой величины для люминесценции.

Экспериментальные результаты показывают, что интенсивности люминесценции S_{L0} и усиленного излучения S_{S0} при увеличении мощности накачки растут до $P_p \approx 100 \text{ kW/cm}^2$, а затем испытывают насыщение. Подобная картина поведения наблюдается и для интенсивностей быстрых компонент люминесценции S_{LF} и стимулированной эмиссии S_{SF} .

Рис. З демонстрирует поведение отношений интенсивностей быстрых компонент люминесценции S_{LF}/S_{L0} и стимулированной эмиссии S_{SF}/S_{S0} к их полной интенсивности на длине волны, соответствующей центру люминесценции, в зависимости от плотности мощности накачки P_p . Доля быстрой компоненты люминесценции максимальна при малых уровнях накачки, затем уменьшается с насыщением при увеличении P_p . В то же время отношение S_{SF}/S_{S0} для интенсивности стимулированного излучения монотонно увеличивается с ростом P_p , а затем испытывает насыщение. Для Al_{0.74}Ga_{0.26}N доля быстрой компоненты стимулированного излучения в центре контура излучения достигает 10%.

Длительности импульсов быстрых компонент стимулированной эмиссии меньше в 1.3 раза относительно люминесценции и не зависят от мощности накачки. Для структуры Al_{0.65}Ga_{0.35}N измеренная на полувысоте величина длительности импульса быстрой компоненты люминесценции равна ~ 38 ns, для Al_{0.74}Ga_{0.26}N ~ 29 ns. Усиление не зависит от ширины спектра пробного излучения. Широкий спектр излучения обеспечивает неоднородный характер уширения обоих процессов, ответственных за излучательную рекомбинацию. Рекомбинация ДАП содержит много перекрывающихся пиков, связанных с разными расстояниями ДАП. Ширина спектра для *e*-*A*-рекомбинации определяется широкой акцепторной полосой вследствие сильного легирования структур (см., например, [4,5]).

Представленные экспериментальные результаты демонстрируют свойства двух протекающих вместе процессов излучательной рекомбинации неравновесных носителей зарядов при импульсном оптическом возбуждении. Наибольший вклад в люминесценцию и стимулированную эмиссию в центре контура излучения вносит донорно-акцепторная рекомбинация с характерными временами релаксации до нескольких десятков микросекунд. Другой процесс — *е-А*-рекомбинация с временным затуханием длительностью несколько десятков наносекунд имеет долю интенсивности излучения до 10%.

Исследования особенностей процессов генерации излучения и оптического усиления в сильнолегированных структурах Al_xGa_{1-x}N:Si могут привести к реализации новых элементов фотоники — активных сред с уникальными характеристиками.

Финансирование работы

Работа выполнена в рамках государственного задания ИФП СО РАН.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Li, K. Jiang, X. Sun, C. Guo, Adv. Opt. Photon., 10 (1), 43 (2018). DOI: 10.1364/AOP.10.000043
- K.A. Jones, T.P. Chow, T.P. Wraback, M. Shatalov, Z. Sitar, F. Shahedipour, K. Udwary, G.S. Tompa, J. Mater. Sci., 50 (9), 3267 (2015). DOI: 10.1007/s10853-015-8878-3
- [3] Y. Nagasawa, A. Hirano, Appl. Sci., 8 (8), 1264 (2018).
 DOI: 10.3390/app8081264
- [4] P.A. Bokhan, N.V. Fateev, T.V. Malin, I.V. Osinnykh, Dm.E. Zakrevsky, K.S. Zhuravlev, J. Lumin., 203, 127 (2018). DOI: 10.1016/j.jlumin.2018.06.034
- [5] П.А. Бохан, К.С. Журавлёв, Дм.Э. Закревский, Т.В. Малин, И.В. Осинных, Н.В. Фатеев, Письма в ЖТФ, 45 (18), 48 (2019). DOI: 10.21883/PJTF.2019.18.48239.17894
- [6] P.A. Bokhan, N.V. Fateev, T.V. Malin, I.V. Osinnykh, Dm.E. Zakrevsky, K.S. Zhuravlev, Opt. Mater., 105, 109879 (2020). DOI: 10.1016/j.optmat.2020.109879

- [7] P.Y. Yu, M. Cardona, *Fundamentals of semiconductors* (Springer-Verlag, Berlin-Heidelberg, 2010), p. 345-426.
- [8] Y. Taniyasu, M. Kasu, N. Kobayashi, Appl. Phys. Lett., 81 (7), 1255 (2002). DOI: 10.1063/1.1499738
- [9] Q. Yan, A. Janotti, M. Scheffler, C.G. Van de Walle, Appl. Phys. Lett., 105 (1), 111104 (2014). DOI: 10.1063/1.4895786