12 Двумерные кулоновские плазмон-экситоны: релаксация возбуждений

© В.А. Кособукин

Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия E-mail: Vladimir.Kosobukin@mail.ioffe.ru

Поступила в Редакцию 7 апреля 2021 г. В окончательной редакции 7 апреля 2021 г. Принята к публикации 21 апреля 2021 г.

> Представлена теория релаксации двумерных нерадиационных (кулоновских) плазмон-экситонов в близко расположенных тонких слоях металла и полупроводника. В рамках классической электродинамики сформулированы уравнения движения для волн поляризации нерадиационных плазмонов и экситонов при наличии их кулоновской связи и внешнего ближнеполевого источника поляризации. В модели связанных гармонических осцилляторов, представленных полями поляризации возбуждений, решена задача о затухании кулоновских плазмонов, экситонов и плазмон-экситонов. Показано, что дисперсионные ветви нормальных плазмон-экситонных мод испытывают антипересечение (отталкиваются) при резонансе между плазмоном и экситоном. С учетом диссипативного затухания возбуждений и энергоообмена между ними исследован процесс релаксации плазмон-экситонов в зависимости от времени. Теория выявляет важные аналогии динамики плазмон-экситонов и других объектов линейной теории колебаний, таких как механические осцилляторы, резонансные электрические контуры и др.

> Ключевые слова: плазмоны, экситоны, кулоновская связь, плазмон-экситоны, волны поляризации, процессы релаксации.

DOI: 10.21883/FTT.2021.08.51171.078

1. Введение

Коллективные электронные возбуждения в конденсированных средах обусловлены дальнодействием кулоновских сил, которое обеспечивает коррелированное движение огромного числа заряженных частиц. С коллективными возбуждениями (колебаниями) электронов связаны волны диэлектрической поляризации, плазмонной в металлах и экситонной в полупроводниках (диэлектриках). В наноструктурах и метаматериалах металл-полупроводник плазмоны и экситоны могут сосуществовать и влиять друг на друга посредством кулоновских сил [1-5]. В низкоразмерных системах эффекты резонансного взаимодействия поляризационных возбуждений проявляются особенно ярко, поскольку при понижении размерности качественно меняются как квантовые состояния электронов, так и характер кулоновских сил [6,7]. По этой причине неизменно растет научный и практический интерес к низкоразмерным коллективным возбуждениям, а в последние годы и к их смешанным модам.

Для электронных возбуждений в твердых телах особое значение имеют смешанные моды резонансной поляризации и электромагнитного поля, известные как плазмонные и экситонные поляритоны. Поляритоны возбуждаются светом, что позволяет изучать радиационные плазмоны и экситоны оптическими методами [6,7]. Однако кроме поляритонных возбуждений чрезвычайно важны и интересны с физической точки зрения их нерадиационные (кулоновские) аналоги, для которых электромагнитное запаздывание оказывается несущественным [8,9]. Кулоновские возбуждения могут играть важную роль в безызлучательном переносе электронных возбуждений, в люминесценции и рассеянии света, в оптике ближнего поля и т.п. К тому же, доля нерадиационных мод в плотности электромагнитных состояний существенно больше, чем доля радиационных мод.

Концепция кулоновских плазмон-экситонов сравнительно проста для систем, включающих ансамбли слоистых субволновых частиц полупроводник-металл, дипольные моды которых безусловно оптически активны [2-4,9]. В планарных наноструктурах непосредственное взаимодействие со светом поляризационных возбуждений, даже поляритонных, сильно затруднено из-за наличия строгих законов сохранения энергии и импульса [7]. Во взаимодействии со светом кулоновские возбуждения могут проявиться в случаях, когда законы сохранения нарушены. В работе [10] кратко обсуждались некоторые особенности кулоновских плазмон-экситонов, в частности, применительно к планарным наноструктурам. К этому лишь добавим, что структуры, поддерживающие низкоразмерные плазмон-экситоны, многовариантны из-за разнообразия состава и геометрии их металлической и полупроводниковой компонент. Для большинства работ, посвященных плазмон-экситонам, характерна констатация общих положений, касающихся взаимодействия плазмонов и экситонов, образования связанных мод, расщепления Раби в их спектре и т.п. (например, [2-5,11-13]). При этом технологически обусловленное различие исследуемых структур, как правило, привносит в дискуссию детали. Значительно меньше внимания уделялось изучению процессов плазмонэкситонного энергопереноса и релаксации возбуждений (сравни с [14]), хотя эти явления имеют фундаментальное значение [15]. Исследованию релаксации связанных плазмонов и экситонов посвящена настоящая статья.

Цель этой работы — построение теории зависящих от времени процессов релаксации двумерных кулоновских плазмон-экситонов. Рассмотрение относится к модели близко расположенных тонких слоев металла и полупроводника, поддерживающих двумерные плазмоны и экситоны. С учетом бозонного характера возбуждений свойства плазмон-экситонов обсуждаются на основе представлений классической электродинамики, как делается в кристаллооптике [8]. Задача решается на основе уравнений движения гармонических осцилляторов, которые сформулированы для кулоновски связанных волн поляризации двумерных плазмонов и экситонов при наличии вынуждающей силы. Содержание работы заключается в следующем. Модель и постановка задачи представлены в разделе 2, общее решение задачи и анализ спектра даны в разделе 3. В разделе 4 для плазмон-экситонов обсуждаются процессы релаксации, результаты численно анализируются в разделе 5.

2. Модель и основные уравнения

В качестве структурной модели для изучения плазмон-экситонов рассматриваем расположенные рядом слои металла и полупроводника, поддерживающие двумерные (2D) плазмоны и экситоны соответственно. Такая модель может относиться к наноструктурам металл-полупроводник с узкими квантовыми ямами и к актуальным структурам с атомарно-тонкими слоями металла и полупроводника. Предметом нашего изучения служат процессы релаксации кулоновских 2D-плазмонэкситонов в зависимости от времени.

Предполагаем, что в тонких слоях слоях металла и полупроводника могут возбуждаться двумерные плазмонная $\mathbf{P}^{(1)}$ и экситонная $\mathbf{P}^{(2)}$ поляризации, которые отмечаются далее верхними индексами 1 и 2 соответственно. Поля поляризации $\mathbf{P}^{(1)}$ и $\mathbf{P}^{(2)}$, имеющие резонансные частоты в оптическом диапазоне, взаимодействуют друг с другом по закону Кулона. Фоновая (при $\mathbf{P}^{(1)} = \mathbf{P}^{(2)} = \mathbf{0}$) диэлектрическая постоянная среды ε_b однородна и изотропна во всем пространстве. Уравнения колебаний кулоновски связанных гармонических осцилляторов, роль которых играют волны поляризации $\mathbf{P}^{(1)}$ и $\mathbf{P}^{(2)}$, формулируются далее в рамках классической электродинамики.

В плоской геометрии двумерное коллективное возбуждение с волновым вектором $\boldsymbol{\kappa} = (\kappa_x, \kappa_y)$ можно представить волной диэлектрической поляризации вида

$$\mathbf{P}(\mathbf{r},t) = \overline{\mathbf{P}}(\boldsymbol{\kappa},\omega)\delta(z)e^{i\boldsymbol{\kappa}\boldsymbol{\rho}-i\omega t}.$$
 (1)

Такая волна распространяется с вектором к в направлениях трансляционной симметрии с $\rho = (x, y)$

3 2.0 Excitation energy, eV 1.5 1.0 0.5 0 1.5 0.5 1.0 2.0 2.5 0 Wavenumber, nm⁻¹ **Рис. 1.** Законы дисперсии 2D-экситонов $\hbar\omega_0$ (1) и плазмонов

2.5

сравни с [10].

 $\hbar\omega_{2D}$ (2) в зависимости от волнового числа κ . Точка пересечения экситонной и плазмонной дисперсионных ветвей соответствует условию $\omega_0 = \omega_{2D}(\kappa)$ плазмон-экситонного резонанса. Вычислено с параметрами, соответствующими слою металла в среде с $\varepsilon_b = 12.5$ и слою полупроводника с $\hbar\omega_0 = 1.55$ eV. Кривая 3 изображает закон дисперсии квазипродольных плазмонов в тонкой (L = 0.7 nm) пленке Ag, находящейся в GaAs,

и локализована вблизи плоскости z = 0 в направлении ограничения движения z. Для волн вида (1) закон дисперсии предполагается изотропным по направлениям к в плоскости ху, при этом для кулоновских (квазистатических) мод $|\boldsymbol{\kappa}| \gg k_0 = \omega/c$, где ω — частота, c — скорость света. С поляризацией (1) связана волна плотности электрического заряда $-\rho(\mathbf{r}) = \operatorname{div} \mathbf{P}(\mathbf{r}) \sim \left[\overline{P}_{\kappa} i \kappa \delta(z) + \overline{P}_{z} \delta'(z) \right] e^{i \kappa \rho}$. Собственное электрическое поле $\mathbf{E}(z,\kappa)$ волны поляризации (1) с $\boldsymbol{\kappa} = \kappa \mathbf{e}_x$ имеет компоненты x и z, затухающие по закону $E(z,\kappa) \sim e^{-\kappa |z|}$ при увеличении расстояния |z|.

В двумерном электронном газе существуют продольные плазмоны с законом дисперсии $\omega_{2D}(\kappa) \sim \sqrt{\kappa}$ [16]. Дисперсионная ветвь $\omega_{2D}(\kappa)$, представленная кривой 1 на рис. 1, показывает, что 2D-плазмоны имеют бесщелевой спектр с нулевой частотой при $\kappa = 0$, а их дисперсия определяется кулоновскими силами во всем диапазоне собственных частот. Плазмонная ветвь не пересекается со световыми прямыми $c\kappa/\sqrt{\varepsilon_b} > \omega_{2D}(\kappa)$, т.е. 2D-плазмоны не возбуждаются светом непосред-

ственно. Однако двумерные плазмоны можно возбудить с помощью зонда, имеющего в плоскости xy широкий пространственный спектр с $|\kappa| \gg k_0$. Это может быть пучок заряженных частиц, в том числе и токовый, ближнеполевой зонд, атомные агрегаты, нанонеоднородности и т.п., но эффективность возбуждения плазмонов или/и экситонов разными способами может сильно различаться. Подчеркнем, что дальнейшее обсуждение относится к плазме металлов, а 2D-плазмоны полупроводниковых квантовых ям, имеющие инфракрасный спектр, из рассмотрения исключаются. В отличие от 2D-плазмонов, квази 2D-экситоны имеют спектр, который определяется частотой оптического перехода ω_0 при $\kappa = 0$.

Кулоновские экситоны с $\kappa \gg k_0$ могут образовать связанные состояния с 2D-плазмонами. Для этого законы дисперсии парциальных мод (плазмона и экситона) должны удовлетворять условию резонанса $\omega_{\text{plasmon}}(\kappa) = \omega_{\text{exciton}}(\kappa)$, которому на рис. 1 соответствует пересечение дисперсионных ветвей 1 и 2. В случае нерадиационных парциальных возбуждений смешанные плазмон-экситонные моды тоже являются кулоновскими, и для их возбуждения требуются упомянутые выше источники поля с широким пространственным спектром ($\kappa \gg k_0$).

Рассмотрим вначале плазмоны в ультратонком слое металла с однородной двумерной плотностью n_{2D} электронного газа. В этой плазме для амплитуды волны поляризации $\mathbf{P}^{(1)}$ с вектором $\boldsymbol{\kappa}$ в плоскости z = 0 локальное уравнение линейного отклика на полное поле **Е** имеет вид (сравни с [10]):

$$-(\omega^2 + i\omega\Gamma_1)\mathbf{P}^{(1)}(z,\boldsymbol{\kappa},\omega) = \frac{\omega_p^2 L}{4\pi}\delta(z)\mathbf{E}(z,\boldsymbol{\kappa},\omega).$$
 (2)

Здесь $\omega_p^2 = 4\pi e^2 n_{\rm 3D}/m$ — плазменная частота электронов в металле, L — эффективная толщина слоя плазмы с $n_{2D} = n_{3D}L$, а e, m и Γ_1 обозначают абсолютный заряд, эффективную массу и обратное время релаксации электронов. Представление отклика вырожденного электронного газа в форме (2) с дельта-функцией в правой части для 2D-плазмонов известно в литературе [16,17]. Соотношение (2) можно получить при $\kappa L \ll 1$ в феноменологической теории отклика квазипродольных поверхностных плазмонов пленки металла толщиной L [10], их закон дисперсии 3 показан на рис. 1. Переход к 2D-плазмонам в пленке при уменьшении толщины L, составляющей небольшое число моноатомных слоев, обсуждался также в микроскопической теории [18]. Для кулоновских плазмонов модель должна удовлетворять следующим физическим ограничениям: $k_0 \ll \kappa \ll k_F$, где *k*_{*F*} — волновое число Ферми.

Для волны экситонной поляризации с вектором *к* в тонком слое полупроводника материальное соотношение представим в форме

$$(\omega_0^2 - \omega^2 - i\omega\Gamma_2)\mathbf{P}^{(2)}(z, \boldsymbol{\kappa}, \omega) = \Omega^2 l\delta(z-h)\mathbf{E}(z, \boldsymbol{\kappa}, \omega).$$
(3)

Здесь ω_0 — частота 2D-экситона, Γ_2 — параметр его нерадиационного затухания. Экситонный отклик (3) на полное электрическое поле определяется константой Ω^2 , а l — характерная толщина экситонного слоя с центральной плоскостью z = h, где h — расстояние между плазмонным и экситонным слоями. Такой подход применим для экситонов в квантоворазмерных структурах и в актуальных структурах с ультратонкими слоями металла и полупроводника. Чтобы применить теорию к квази 2D-экситонам Ванье в полупроводниках со структурой ZnS, можно положить $\Omega^2 = \omega_0 \omega_{LT} \varepsilon_b / (2\pi)$, где ω_0 частота экситона, а ω_{LT} выражается через межзонный матричный элемент оператора импульса [6,10].

Согласно (2) и (3) распределение 2D-поляризации парциальных возбуждений обоих типов по нормали к слою формально описывается дельта-функцией: $P^{(n)}(z) \sim \overline{L}_n \delta(z-z_n)$, где \overline{L}_n — характерная длина локализации возбуждения. Переход к дельта-функции в материальных уравнениях оправдан, если электрическое поле, связанное с поляризацией (2) или (3), рассматривается вне области реальной поляризации. Для квази 2D-экситонов переход к форме (3), аналогичной (2), является результатом отказа [19] от нелокального описания отклика **Р**⁽²⁾ [6,20] и замены $\psi(z) \rightarrow \sqrt{l} \,\delta(z)$ огибающей волновой функции 2D-экситона. Обоснованием такого подхода может служить, в частности, факт, что наблюдаемые оптические величины, например, коэффициент отражения, выражаются через интегралы от дипольной поляризации (от функции ψ) [6,10]. С теоретической точки зрения такой интеграл малочувствителен к деталям в распределении ψ поля поляризации, а на практике он входит в качестве константы в некоторый подгоночный параметр, определяемый из данных эксперимента (сравни с теорией [21]).

Сформулируем на основе соотношений (2) и (3) зависящие от времени уравнения движения для полей поляризации. Для этого в соотношениях сделаем замены $(-i\omega)^s \rightarrow d^s/dt^s$ (s = 1, 2), соответствующие преобразованию Фурье по времени функций $P_{\alpha}^{(n)}(z, \kappa, t)$. Далее учитываем, что поляризация $\mathbf{P}^{(n)}(z', \kappa, t)$ плазмонов (n = 1), экситонов (n = 2) или внешнего источника (n = 0) порождает в плоскости с координатой *z* фоновой среды электрическое поле [10]:

$$E_{\alpha}^{(n)}(z,\kappa,t) = \sum_{\beta} \int dz' g_{\alpha\beta}(z-z',\kappa) P_{\beta}^{(n)}(z',\kappa,t). \quad (4)$$

В формуле (4) $g_{\alpha\beta}(z - z', \kappa)$ — тензорные компоненты функции Грина в (z, κ) -представлении, вычисленные при $\mathbf{P}^{(n)} = \mathbf{0}$ в квазистатическом приближении (при неучете электромагнитного запаздывания) для однородной фоновой среды с проницаемостью ε_b [10]. Полное поле **E**, стоящее в правых частях соотношений (2) и (3), является суперпозицией полей $\mathbf{E}^{(n)}$ вида (4). С учетом формул (4) из уравнения (2) для поляризации плазмонов с волновым вектором $\boldsymbol{\kappa} = \kappa \mathbf{e}_x$ находим

$$\left(\frac{d^2}{dt^2} + \Gamma_1 \frac{d}{dt} + \omega_{11}^2(\kappa)\right) P_{\alpha}^{(1)}(z,t) = \frac{\omega_P^2 L}{4\pi} \delta(z)$$
$$\times \sum_{n=0,2} \sum_{\beta} \int dz' g_{\alpha\beta}(z-z') P_{\beta}^{(n)}(z',t).$$
(5)

Частота ω_{11} — это закон дисперсии продольных 2D-плазмонов

$$\omega_{\rm 2D}(\kappa) = \left(\frac{2\pi e^2 n_{\rm 2D}}{m\varepsilon_b}\kappa\right)^{1/2},\tag{6}$$

полученный при учете по формуле (4) собственного продольного электрического поля плазмонов в слое электронного газа с 2D-плотностью n_{2D} . Слагаемые с n = 0 и 2 в правой части (5) выражают электрические поля внешнего источника и экситонов, действующие на плазмон.

Аналогично из соотношения (3) с учетом (4) для экситонной поляризации с $\kappa = \kappa \mathbf{e}_x$ находим

$$\left(\frac{d^2}{dt^2} + \Gamma_2 \frac{d}{dt} + \omega_{22}^2(\kappa)\right) P_{\alpha}^{(2)}(z,t) = \Omega^2 l \,\delta(z-h)$$
$$\times \sum_{n=0,1} \sum_{\beta} \int dz' g_{\alpha\beta}(z-z') P_{\beta}^{(n)}(z',t). \tag{7}$$

Здесь частота $\omega_{22} \approx \omega_0$ в дополнение к ω_0 из (3) учитывает эффект собственного электрического поля (4) экситона [10].

Перенесем в левую часть уравнения (5) члены, связанные с поляризацией $\mathbf{P}^{(2)}$, а в левую часть уравнения (7) — члены, связанные с поляризацией $\mathbf{P}^{(1)}$. При наличии поляризации $\mathbf{P}^{(0)}$ внешнего источника это дает систему двух неоднородных интегральных по *z* и дифференциальных по *t* уравнений движения для взаимодействующих мод поляризации 2D кулоновских плазмонов и экситонов.

В качестве иллюстрации внешней поляризации напишем выражение $\mathbf{P}^{(0)}(\mathbf{r}, t) = \boldsymbol{\mu}(t)\delta(\boldsymbol{\rho})\delta(z-z_0)$ [10], которое соответствует источнику ближнего поля с дипольным моментом $\boldsymbol{\mu}(t)$, расположенным в точке $\mathbf{r}_0 = (0, 0, z_0)$. Чтобы учесть действие диполя на плазмоны и экситоны, следует подставить в правые части уравнений (5) и (7) Фурье-компоненту

$$\mathbf{P}^{(0)}(z,\kappa,t) = \boldsymbol{\mu}(t)\delta(z-z_0),\tag{8}$$

которая в случае квазиточечного диполя от к не зависит.

3. Общее решение задачи

3.1. Уравнения движения. Найдем решение полученной выше системы уравнений с неизвестными $\mathbf{P}^{(1)}$ и $\mathbf{P}^{(2)}$ в левой части и с поляризацией $\mathbf{P}^{(0)}$ — в правой. Для

2D-плазмонов и экситонов рассматриваем продольные волны поляризации $P_{\alpha}^{(n)}(z, \kappa) = \delta_{\alpha x} P_{x}^{(n)}(z, \kappa)$ с n = 1и 2 в направлении распространения $\kappa = \kappa \mathbf{e}_{x}$, при этом $P_{z}^{(n)}(z, \kappa) = 0$. Преобразуем интегральные по *z* уравнения (5) и (7), полагая

$$P_x^{(1)}(z,t) = w_1(t)L\delta(z),$$

$$P_x^{(2)}(z,t) = w_2(t)l\xi\,\delta(z-h),$$
(9)

где h > 0, а безразмерный множитель ξ определим ниже. В результате получаем систему дифференциальных по t уравнений

$$\left(\frac{d^2}{dt^2} + \Gamma_1 \frac{d}{dt} + \omega_{11}^2 \right) w_1(t) + \omega_{12}^2 \xi \, w_2(t) = f_1(t),$$

$$\omega_{21}^2 w_1(t) + \left(\frac{d^2}{dt^2} + \Gamma_2 \frac{d}{dt} + \omega_{22}^2 \right) \xi \, w_2(t) = f_2(t)$$

$$(10)$$

для неизвестных амплитуд $w_1(t)$ плазмонов и $w_2(t)$ экситонов с заданным κ . В левую часть системы уравнений (10) входят частоты

$$\omega_{11}^{2}(\kappa) = \frac{2\pi e^{2} n_{2D}}{m \varepsilon_{b}} \kappa = \omega_{2D}^{2}, \ \omega_{12}^{2}(\kappa) = \omega_{2D}^{2} \frac{l}{L} e^{-\kappa h},$$

$$\omega_{21}^{2}(\kappa) = \frac{2\pi}{\varepsilon_{b}} \Omega^{2} \kappa L e^{-\kappa h}, \ \omega_{22}^{2}(\kappa) = \omega_{0}^{2} + \frac{2\pi}{\varepsilon_{b}} \Omega^{2} \kappa l.$$
 (11)

Функции $f_n(t)$ в правой части уравнений (10) выражают действие внешнего источника поляризации (8) на плазмон и экситон соответственно.

Для решения системы уравнений движения (10) используем операционный метод [22], основанный на преобразовании Лапласа

$$W_n(p) = \int_0^\infty dt \, e^{-pt} \, w_n(t), \tag{12}$$

которое для функции-оригинала $w_n(t)$ дает изображение $W_n(p)$ с комплексным p. Преобразование Лапласа уравнений (10) дает систему алгебраических уравнений

$$\left(p^{2} + p\Gamma_{1} + \omega_{11}^{2}(\kappa) \right) W_{1}(p) + \Delta \omega^{2}(\kappa) W_{2}(p) = M_{1}(p) + F_{1}(p), \\ \Delta \omega^{2}(\kappa) W_{1}(p) + \left(p^{2} + p\Gamma_{2} + \omega_{22}^{2}(\kappa) \right) W_{2}(p) = M_{2}(p) + F_{2}(p) \right)$$

$$(13)$$

для изображений $W_n(p)$. В правую часть системы (13) входят выражения

$$M_n(p) = (p + \Gamma_n)w_n^0 + \dot{w}_n^0, \qquad (14)$$

которые определяются начальными (при t = +0) значениями $w_n^0 \equiv w_n(0)$ и $w_n^0 \equiv w_n(0)$ функций-оригиналов $w_n(t)$ из (9); точкой сверху отмечаются производные по t. Функциям-оригиналам $f_n(t)$ из (10) для внешней поляризации (8) при t > 0 в формулах (13) соответствуют изображения $F_n(p)$. Если $F_n(p) = 0$, то

уравнения (13) определяют вклады $W_n(p)$ плазмонов и экситонов в собственные плазмон-экситонные моды, а при $F_n(p) \neq 0$ уравнения (13) описывают вынужденные колебания.

Заметим, что уравнения (13) получены в результате перехода к симметрической матрице в переменных W_1 и W_2 при использовании в формулах (10) коэффициента $\xi = \omega_{21}/\omega_{12}$, равного $\xi = (\Omega/\omega_{2D})\sqrt{2\pi\kappa l/\varepsilon_b}(L/l)$. При этом для недиагональных матричных элементов $\Delta\omega^2 = \omega_{12}\omega_{21}$ в (13) имеем

$$\Delta \omega^2(\kappa) = \omega_{2D}(\kappa) \Omega \sqrt{\frac{2\pi}{\varepsilon_b} \kappa l} e^{-\kappa h}.$$
 (15)

Величина (15) является немонотонной функцией κ с максимумом, положение которого зависит от геометрических параметров модели.

В общем случае решение системы уравнений (13) с $N_n = M_n + F_n$ в правой части имеет вид

$$W_{1}(p) = \frac{1}{D(p)} \{ (p^{2} + p\Gamma_{2} + \omega_{22}^{2})N_{1}(p) - \Delta\omega^{2}N_{2}(p) \},$$
(16)
$$W_{2}(p) = \frac{1}{D(p)} \{ -\Delta\omega^{2}N_{1}(p) + (p^{2} + p\Gamma_{1} + \omega_{11}^{2})N_{2}(p) \}.$$
(17)

Знаменатель

$$D(p) = \left(p^2 + p\Gamma_1 + \omega_{11}^2(\kappa)\right) \cdot \left(p^2 + p\Gamma_2 + \omega_{22}^2(\kappa)\right) - \Delta\omega^4$$
(18)

определяет спектр связанных мод, которые образуются при взаимодействии между плазмонами и экситонами. Это взаимодействие определяется значением константы связи $\Delta \omega$ из (15).

Вклады плазмонов $w_1(t)$ и экситонов $w_2(t)$ в плазмонэкситоны получаются в результате обратного преобразования Лапласа $W_n(p) \rightarrow w_n(t)$ изображений (16) и (17) с учетом (18). При обращении преобразования Лапласа учитывается полюсная структура функций $W_n(p)$ комплексного переменного p. Функции $W_n(p)$ из (16)-(18) имеют простые полюса $p_k = p'_k + i p''_k$ с номерами k = 1-4, которые являются корнями уравнения D(p) = 0 для полинома (18). Поскольку коэффициенты полинома D(p) положительны, имеются две пары комплексно сопряженных корней

$$p_1 = -g_I - iu_I = p_2^*, \quad p_3 = -g_{II} - iu_{II} = p_4^*,$$
 (19)

которые являются полюсами функции $D^{-1}(p) = \prod_{k=1}^{4} (p-p_k)^{-1}$, входящей в (16) и (17). Оригиналы функций (16) и (17) при t > 0 получаются в результате

обратного преобразования Лапласа $W_n(p) \to w_n(t)$, которое при использовани теории вычетов дает [22]:

$$w_n(t) = 2 \operatorname{Re} \sum_{p_k} \lim_{p \to p_k} e^{pt} (p - p_k) W_n(p).$$
 (20)

Здесь предполагается суммирование по тем полюсам $p_k = p'_k + i p''_k$ функции $W_n(p)$, которые имеют отрицательные мнимые части, а именно по p_1, p_3 из (19). Найденные в результате вычисления (20) функции $w_n(t)$ определяют согласно (9) зависящие от времени вклады плазмонной и экситонной поляризации в смешанные плазмон-экситонные моды. Заметим, что при учете возбуждения плазмон-экситонов внешним источником функции $F_n(p)$ привносят в (16) и (17) дополнительные к (19) полюса, связанные с частотами колебаний внешней поляризации (8).

3.2. Спектр плазмон-экситонов. В отсутствие внешнего источника поляризации ($F_n = 0$) собственный спектр плазмон-экситонов определяется корнями уравнения $D(-i\omega) = 0$ для полинома (18). Найдем из этого уравнения явные выражения для входящих в (19) частот u_{ν} и параметров затухания g_{ν} смешанных плазмон-экситонных мод, которые нумеруем римскими цифрами $\nu = I$, II. Предполагаем, что парциальные плазмоны и экситоны затухают слабо, т. е. $\Gamma_n/\omega_{nn} \ll 1$ в (18). В нулевом приближении ($\Gamma_n = 0$) для двух нормальных мод плазмон-экситонов получаем законы дисперсии

$$u_{\rm I,II}^2(\kappa) = \frac{\omega_{11}^2 + \omega_{22}^2}{2} \mp \sqrt{\frac{(\omega_{11}^2 - \omega_{22}^2)^2}{4} + \Delta\omega^4}.$$
 (21)

Затем в низшем приближении по малым Γ_n находим параметры затухания

$$g_{\nu}(\kappa) = \frac{\Gamma_1(\omega_{22}^2 - u_{\nu}^2) + \Gamma_2(\omega_{11}^2 - u_{\nu}^2)}{2(\omega_{11}^2 + \omega_{22}^2 - 2u_{\nu}^2)}$$
(22)

для плазмон-экситонов с частотами u_{ν} . В результате формулах (19) имеем $u_{\nu} > 0$ из (21) и $g_{\nu} > 0$ из (22).

Выражения (21) и (22) приводят к следующим общим выводам о спектре плазмон-экситонов. Вблизи резонанса $\omega_{11} = \omega_{22}$ ($\omega_{2D} = \omega_0$ на рис. 1) поведение частот $u_{I,II}(\kappa)$ и параметров затухания $g_{I,II}(\kappa)$ определяется константой связи (15). При $\omega_{11} = \omega_{22}$ дисперсионные ветви $u_{I,II}(\kappa)$ из (21) в зависимости от κ демонстрируют антипересечение (отталкивание) частот $u_{II} - u_I = \Delta \omega^2 / \omega_{11}$, при этом $u_I < \omega_{11}, \omega_{22} < u_{II}$ [10]. В области антипересечения параметры затухания (22) плазмон-экситонов с $\nu = I$ и II сближаются, так что $g_I = g_{II} = (\Gamma_1 + \Gamma_2)/4$ для мод с частотами u_I и u_{II} при условии $\omega_{11} = \omega_{22}$.

Далее мы рассмотрим зависящие от времени процессы релаксации плазмон-экситонов, обусловленные диссипативным затуханием парциальных возбуждений.

4. Релаксация плазмон-экситонов

Обсудим теперь применение представленной выше теории к изучению релаксации нерадиационных плазмон-экситонов вследствие затухания плазмонов и экситонов. В уравнениях (16) и (17) полагаем $F_n = 0$, тогда величины $N_n = M_n$ определяются начальными амплитудами плазмонов и экситонов согласно (14). Зависимость от времени амплитуд (20) в плазмон-экситоне определяется полюсами (19) функции $D^{-1}(p)$, а функции $M_n(p)$ из (14) полюсов не имеют. При этих условиях выражение (20) дает

$$w_{n}(t) = 2 \operatorname{Re} \sum_{k=1,3} e^{p_{k}t} \Phi_{n}(p_{k}) \prod_{\substack{k'=1\\(k'\neq k)}}^{4} \frac{1}{p_{k} - p_{k'}}$$
$$= \sum_{\nu = I,II} e^{-g_{\nu}t} \operatorname{Re} \left[e^{-iu_{\nu}t} U_{n}(p_{\nu}) \right]$$
(23)

для плазмонной (n = 1) и экситонной (n = 2) амплитуд в смешанных модах. Суммирование проводится по парам комплексно сопряженных полюсов из (19), т.е. берется $p_{\rm I} = p_1$ для моды с $v = {\rm I}$ и $p_{\rm II} = p_3$ для моды с $v = {\rm II}$. В формуле (23)

$$U_n(p_\nu) = 2\Phi_n(p_\nu)H_\nu \equiv U_{n\nu}, \qquad (24)$$

$$\Phi_{1}(p) = (p^{2} + p\Gamma_{2} + \omega_{22}^{2})M_{1}(p) - \Delta\omega^{2}M_{2}(p),$$

$$\Phi_{2}(p) = -\Delta\omega^{2}M_{1}(p) + (p^{2} + p\Gamma_{1} + \omega_{11}^{2})M_{2}(p).$$

$$(25)$$

С учетом выражений (21) и (22) находим

$$H_{\nu} = \frac{1}{p_{\nu} - p_{\nu}^{*}} \frac{1}{(p_{\nu} - p_{\nu'})(p_{\nu} - p_{\nu'}^{*})} \bigg|_{\substack{\nu' = \text{I,II} \\ \nu' \neq \nu}}$$
$$= \frac{is_{\nu}}{2u_{\nu}} \frac{1}{u_{\text{II}}^{2} - u_{\text{I}}^{2} - 2iu_{\nu}(g_{\text{II}} - g_{\text{I}})}.$$
(26)

Здесь $s_{\rm I} = 1$, $s_{\rm II} = -1$ и

$$g_{\rm II} - g_{\rm I} = \frac{\Gamma_2 - \Gamma_1}{2} \frac{\omega_{22}^2 - \omega_{11}^2}{\sqrt{(\omega_{22}^2 - \omega_{11}^2)^2 + 4\Delta\omega^4}}.$$
 (27)

Из формулы (27) очевиден следующий результат: $g_{\rm II} = g_{\rm I}$ при $\Gamma_2 = \Gamma_1$ или $\omega_{22} = \omega_{11}$.

Формула (23) для функций релаксации плазмонов и экситонов, входящих в плазмон-экситонные моды v = I и II, принимает вид

$$w_{n}(t) = \sum_{\nu = \mathbf{I},\mathbf{II}} w_{n}^{(\nu)}(t)$$
$$= \sum_{\nu = \mathbf{I},\mathbf{II}} |U_{n\nu}|e^{-g_{\nu}t}\cos(u_{\nu}t - \phi_{n\nu}), \qquad (28)$$

где $\phi_{n\nu} = \arctan[\operatorname{Im} U_{n\nu} / \operatorname{Re} U_{n\nu}]$. Таким образом, слагаемые $w_n^{(\nu)}$ с $\nu = I$ или II в сумме (28) выражают вклад плазмонов (n = 1) и экситонов (n = 2) в ν -ю смешанную моду, которая имеет частоту u_{ν} и время релаксации по энергии $1/(2g_{\nu})$.

Заметим, что если $\Delta \omega = 0$ в уравнениях (13), то (28) переходит в выражения $\tilde{w}(t)$ для невзаимодействующих плазмонов (n = 1) и экситонов (n = 2). Для них имеем

$$\widetilde{w}_{n}(t) = e^{-\Gamma_{n}t/2} \left[\widetilde{w}_{n}^{0} \cos(\omega_{nn}t) + \left(\widetilde{w}_{n}^{0} \frac{\Gamma_{n}}{2} + \widetilde{w}_{n}^{0} \right) \frac{\sin(\omega_{nn}t)}{\omega_{nn}} \right].$$
(29)

Формула (29) выражает общее решение задачи о затухающих колебаниях осциллятора с частотой ω_{nn} и параметром затухания Γ_n при начальных условиях $\tilde{w}_n(0) = \tilde{w}_n^0$ и $\tilde{w}_n(0) = \tilde{w}_n^0$.

5. Обсуждение результатов

Проанализируем численно решение задачи о релаксации плазмонной и экситонной компонент, образующих смешанные плазмон-экситонные моды с v = I и II. При вычислении зависимостей (28) от времени используем комплексные частоты мод $u_v - ig_v$ из (21) и (22) и величины U_{nv} из (24)–(27), которые учитывают плазмон-экситонное взаимодействие с помощью константы (15). Параметры 2D-плазмон-экситонов принимаем близкими к тем, что использовались в [10] для квази 2D-возбуждений. Для 2D-плазмонов в слое наномеровой толщины L считаем, что $n_{2D} \approx n_{3D}L$, где n_{3D} — плотность 3D электронного газа металла.

На рис. 2, *а* и 2, *b* представлены вычисленные по формулам (21) и (22) законы дисперсии $u_{\nu}(\kappa)$ и параметры затухания $g_{\nu}(\kappa)$ плазмон-экситонов с $\nu = I$ и II. Интерес представляет поведение этих зависимостей для мод, имеющих волновые числа вблизи значения κ , которое соответствует резонансу $\omega_{11}(\kappa) = \omega_{22}(\kappa)$ между плазмонами и экситонами. Вблизи резонанса в отсутствие затухания рис. 2, *а* показывает эффект антипересечения дисперсионных ветвей $u_{I}(\kappa)$ и $u_{II}(\kappa)$ для нормальных мод плазмон-экситонов. Из рис. 2, *b* видно, что величины параметров затухания g_{ν} плазмон-экситонов в области антипересечения перераспределяются между плазмоноподобной и экситоноподобной компонентами, причем при резонансе выполняется условие $g_{I} = g_{II}$ в согласии с формулой (27).

Вдали от резонанса ($\Gamma_n \ll |\omega_{22} - \omega_{11}|$) временны́е зависимости процессов релаксации невзаимодействующих плазмонов (n = 1) или экситонов (n = 2) приближенно описываются элементарной формулой (29). В случае экситонов большого радиуса параметры затухания обычно удовлетворяют условию $\Gamma_2 \ll \Gamma_1$, т.е. экситоны релаксируют за время $1/\Gamma_2$ существенно медленнее, чем плазмоны за время $1/\Gamma_1$.

Вблизи резонанса $\omega_{11} = \omega_{22}$ возбуждения и процессы их релаксации модифицируются из-за плазмон-экситонного взаимодействия. Согласно (24)–(27) величины $U_{n\nu}$ зависят от характера начального возбуждения смешанных мод с $\nu = I$ или II, каждая из которых является линейной комбинацией плазмона и экситона. Поэтому следует иметь в виду, что возбуждение любой из парциальных компонент $w_n^{(\nu)}$ с n = 1 и 2 на самом деле означает возбуждение ν -й смешанной моды как целого. Различие между компонентами $w_n^{(\nu)}(t)$ определяется величинами $U_{n\nu}$, которые отражают особенности плазмон-экситонного энергообмена в смешанной моде. Формула (28) показывает, что амплитуды $w_n^{(\nu)}(t)$ плазмона (n = 1) и экситона (n = 2) в смешанной моде с

Рис. 2. (*a*) Законы дисперсии $\hbar u_1$ (I) и $\hbar u_{II}$ (II) нормальных волн 2D-плазмон-экситонов с волновыми числами κ при $\Gamma_1 = \Gamma_2 = 0$. Пунктиром показаны энергии парциальных 2D-плазмонов $\hbar \omega_{2D}$ (*I*) и экситонов $\hbar \omega_0$ (*2*). (*b*) Параметры затухания $\hbar g_1$ (I) и $\hbar g_{II}$ (II) 2D-плазмон-экситонов с энергиями $\hbar u_1$ и $\hbar u_{II}$ соответственно. Вычислено с $\hbar \Gamma_1 = 20$ meV, $\hbar \Gamma_2 = 1$ meV, $\hbar \Omega = 30$ meV, L = 0.7 nm, l = h = 1 nm и теми же другими параметрами, что на рис. 1.

номером v и частотой u_v экспоненциально затухают за время $1/g_v$.

Для примера рассмотрим релаксацию мод поляризации плазмон-экситонов, предполагая, что при t = 0возбуждена волна экситонной поляризации из (9) с вектором κ и амплитудой $w_2^0 \neq 0$. Полагаем также, что $w_1^0 = \dot{w}_1^0 = \dot{w}_2^0 = 0$ при t = 0, тогда $M_1(p) = 0$, $M_2(p) = (p + \Gamma_2)w_2^0$ в формулах (14) и (25). Отметим, что по возбуждению 2D-экситонов имеются эксперименты, например [23], где используется ближнеполевое возбуждение с участием плазмонных поляритонов.

Зависимости от κ величин $|U_{n\nu}|$, вычисленных по формулам (24)–(27) и нормированных на w_2^0 , показаны на рис. 3 для смешанных мод v = I и II, спектры которых представлены на рис. 2. Из рис. 3 видно, что если при t = 0 возбужден экситон $(w_2^0 \neq 0)$, то в модах с κ вдали от резонанса $w_{11}(\kappa) = \omega_{22}(\kappa)$ существенны экситонные компоненты $|U_{2\nu}|$, а плазмонные $|U_{1\nu}|$ подавлены. В непосредственной близости к резонансу величины $|U_{2\nu}|$ перераспределяются между модами $\nu = I$ и II, а величины |U_{1v}| для плазмонных составляющих этих мод значительно возрастают. При заданном *n* функции $|U_{n\nu}|$ от κ для мод с разными ν имеют характерную симметрию относительно значения к, соответствующего плазмон-экситонному резонансу $\omega_{11}(\kappa) = \omega_{22}(\kappa)$. Возрастание плазмонных составляющих $|U_{1\nu}|$ в области резонанса (антипересечения) означает ускорение релак-

Физика твердого тела, 2021, том 63, вып. 8

сации плазмон-экситонов через относительно быстро затухающую плазмонную компоненту.

Проявление этих особенностей во временной зависимости релаксации плазмон-экситонов иллюстрирует рис. 4. На нем изображены затухающие при *t* > 0

Рис. 3. Зависимости от волнового числа амплитуд $|U_{n\nu}|/w_2^0$ плазмонов (n = 1) и экситонов (n = 2) в плазмон-экситонных модах с $\nu = I$ и II. Функции $|U_{2,II}|$ (1), $|U_{2,I}|$ (2), $|U_{1,I}|$ и $|U_{1,II}|$ (3, умножено на 5) нормированы на амплитуду экситона w_2^0 , возбужденного при t = 0. Вычислено с теми же параметрами, что на рис. 2.

Рис. 4. Зависимость от времени $\omega_0 t$ затухающих амплитуд $w_1^{(I)}$ (жирная линия) и $w_1^{(II)}$ (тонкая линия) плазмонной поляризации в плазмон-экситонных модах с v = I и II соответственно. Вычислено с теми же параметрами, что на рис. 2, в предположении, что при t = 0 был возбужден экситон с $w_2^0 \neq 0$ и $\kappa = 0.95$ nm⁻¹.

плазмонные компоненты $w_1^{(\nu)} \sim \exp(-g_\nu t)$ в смешанных модах $\nu = I, II$ при условии, что первоначально был возбужден экситон ($w_2^0 \neq 0$) с $\kappa = 0.95 \,\mathrm{nm^{-1}}$. Видно, что амплитуда $w_1^{(I)} \sim \exp(-g_{I}t)$ моды с $\nu = I$, которая является плазмоноподобной согласно рис. 2, *a*, затухает значительно быстрее, чем амплитуда $w_1^{(II)} \sim \exp(-g_{II}t)$ экситонооподобной моды с $\nu = II$. Этот вывод находится в согласии с рис. 2, *b*, из которого следует, что $g_I \gg g_{II}$ при $\kappa = 0.95 \,\mathrm{nm^{-1}}$.

6. Заключение

Выше представлена теория двумерных плазмонэкситонов и процессов их релаксации в зависимости от времени. Сформулированы уравнения, описывающие возбуждение и затухание плазмон-экситонных мод в классической модели связанных осцилляторов, роль которых играют волны поляризации двумерных плазмонов и экситонов. Для этих поляризационных возбуждений найдена константа взаимодействия (кулоновской связи), которая обеспечивает образование смешанных плазмонэкситонных мод. Поведение частот нормальных мод плазмон-экситонов при прохождении резонанса между плазмоном и экситоном имеет характерные признаки антипересечения частот. При учете затухания парциальных плазмонов и экситонов предполагалось, что вдали от их резонанса спектр состоит из узкого экситонного и широкого плазмонного уровней энергии. Показано, что при резонансе они трансформируются в два плазмонэкситонных уровня одинаковой ширины, симметричных относительно частоты резонанса.

Представленная теория плазмон-экситонов в модели связанных гармонических осцилляторов делает прозрачной их аналогию с возбуждениями других систем линейной теории колебаний (механические осцилляторы, элекрические контуры и др. [24]). В частности, это важно для обобщения теории низкоразмерных плазмонов, экситонов и плазмон-экситонов на периодические и неупорядоченные структуры металл-полупроводник.

Конфликт интересов

У автора отсутствует конфликт интересов.

Список литературы

- A.A. Toropov, T.V. Shubina. Plasmonic Effects in Metal-Semiconductor Nanostructures. Oxford Univ. Press (2015). 371 p.
- [2] M. Achermann. J. Phys. Chem. Lett. 1, 2837 (2010).
- [3] B.G. DeLacy, O.D. Miller, C.W. Hsu, Z. Zander, S. Lacey, R. Yagloski, A.W. Fountain, E. Valdes, E. Anquillare, M. Soljacic, S.G. Johnson, J.D. Joannopoulos. Nano Lett. 15, 2588 (2015).
- [4] A.O. Govorov, G.W. Bryant, W. Zhang, T. Skeini, J. Lee, N.A. Kotov, J.V. Slocik, R.R. Naik. Nano Lett. 6, 5, 984 (2006).
- [5] V.A. Kosobukin. Solid State Commun. 228, 43 (2016).
- [6] E.L. Ivchenko. Optical spectroscopy of semiconductor nanostructures. Alpha Science International Ltd. (2005). 427 p.
- [7] Поверхностные поляритоны. Электромагнитные волны на поверхностях и границах раздела сред. / Под ред. В.М. Аграновича и Д.Л. Миллса. Наука, М. (1985). 525 с.
- [8] В.М. Агранович, В.Л. Гинзбург. Кристаллооптика с учетом пространственной дисперсии и теория экситонов. Наука, М. (1979). 432 с.
- [9] U. Kreibig, M. Vollmer. Optical properties of metal clusters. Springer (1995). 532 p.
- [10] В.А. Кособукин. ФТТ 63, 4, 527 (2021).
- [11] J. Bellessa, C. Bonnand, J.C. Plenet, J. Mugnier. Phys. Rev. Lett. 93, 3, 036404 (2004).
- [12] S. Balci. Opt. Lett. **38**, *21*, 4498 (2013).
- [13] B.J. Lawrie, K.-W. Kim, D.P. Norton, R.F. Haglund Jr. Nano Lett. 12, 6152 (2012).
- [14] М.Г. Кучеренко, Т.М. Чмерева. Оптика и спектроскопия 125, 2, 165 (2018).
- [15] В.М. Агранович, М.Д. Галанин. Перенос энергии электронного возбуждения в конденсированных средах. Наука, М. (1978). 383 с.
- [16] Т. Андо, Ф. Фаулер, Ф. Стерн. Электронные свойства двумерных систем. Мир, М. (1985). 415 с.
- [17] В.А. Кособукин. ФТТ 28, 11, 3516 (1986).
- [18] W.G. Teich, G. Mahler. Phys. Status Solidi B 138, 2, 607 (1986).
- [19] В.А. Кособукин, А.Н. Поддубный. ФТТ 49, 10, 1883 (2007).
- [20] Е.Л. Ивченко. ФТТ 33, 8, 2388 (1991).
- [21] E.S. Khramtsov, P.A. Belov, P.S. Grigoryev, I.V. Ignatiev, S.Yu. Verbin, Yu.P. Efimov, S.A. Eliseev, V.A. Lovtcius, V.V. Petrov, S.L. Yakovlev. J. Appl. Phys. **119**, *18*, 184301 (2016).
- [22] М.А. Лаврентьев, Б.В. Шабат. Методы теории функций комплексного переменного. Наука, М. (1987). 688 с.
- [23] Y. Zhou, G. Scuri, D.S. Wild, A.A. High, A. Dibos, L.A. Jauregui, C. Shu, K. De Greve, K. Pistunova, A.Y. Joe, T. Taniguchi, K. Watanabe, P. Kim, M.D. Lukin, H. Park. Nat. Nanotechnol. 12, 856 (2017).
- [24] С.П. Стрелков. Введение в теорию колебаний. Наука, М. (1964). 437 с.

Редактор Ю.Э. Китаев