03

Влияние нелинейности закона намагничивания феррожидкости на неустойчивость Кельвина–Гельмгольца

© В.М. Коровин

Научно-исследовательский институт механики Московского государственного университета им. М.В. Ломоносова, 119192 Москва, Россия e-mail: verazhan@yandex.ru

Поступило в Редакцию 12 февраля 2021 г. В окончательной редакции 30 марта 2021 г. Принято к публикации 31 марта 2021 г.

> Изучена неустойчивость Кельвина–Гельмгольца, возникающая при движении однородного газового потока над горизонтальной поверхностью движущейся в том же направлении феррожидкости с заданными физическими свойствами при наличии приложенного однородного магнитного поля, параллельного векторам скоростей рассматриваемых сред. Диапазон напряженности поля включает значения, соответствующие интервалу выхода кривой намагничивания феррожидкости на величину намагниченности насыщения. В плоскости параметров напряженность поля–обезразмеренная относительная скорость сред построена область устойчивости.

> Ключевые слова: гидродинамическая устойчивость, феррожидкость, магнитное поле, кривая намагничивания.

DOI: 10.21883/JTF.2021.08.51091.33-21

Введение

Исследование устойчивости движения в поле тяжести находящихся один над другим однородных горизонтальных потоков идеальных несжимаемых жидкостей, имеющих различные скорости и плотности, является одной из классических задач гидродинамики [1,2]. В [1] этот вопрос рассматривается как задача о нахождении условия устойчивости тангенциального разрыва в поле тяжести с учетом поверхностного натяжения. Решение получено в рамках плоской задачи для периодических вдоль горизонтальной оси координат возмущений, наложенных на основное движение. В [2] на базе системы уравнений и граничных условий, описывающих поведение с ростом времени возмущений трех компонент скорости и давления, зависящих от трех пространственных переменных, исследовано развитие неустойчивости Кельвина-Гельмгольца. Приведенные в [1,2] результаты, естественно, одинаковы. Физический механизм, вызывающий неустойчивость Кельвина-Гельмгольца, описан в [3] в терминах динамики вихревых движений. Краткое изложение этого вопроса имеется в [4].

Исследование неустойчивости Кельвина–Гельмгольца при относительном движении находящихся в продольном однородном магнитном поле \mathbf{H}_0 однородных феррожидкостей с различающимися между собой магнитными восприимчивостями, занимающих нижнее и верхнее полупространства, проведено в [5]. Случай слоев заданной толщины рассмотрен в [6]. При этом в отличие от [5] изучено поведение с ростом времени возмущений, у которых волновые векторы имеют любой угол с направлением относительной скорости \mathbf{u}_0 слоев, а приложенное горизонтальное магнитное поле имеет продольную (параллельную \mathbf{u}_0) и поперечную компоненты.

В [5,6] предполагается, что магнитные восприимчивости являются константами. Ввиду этого использован линейный закон намагничивания. Такой подход оправдан лишь в случае слабых полей.

На практике кривые намагничивания, получаемые с использованием сильных полей, показывают нелинейную зависимость намагниченности феррожидкости от величины приложенного магнитного поля **H**₀.

В настоящей работе не накладывается ограничение на напряженность магнитного поля. С целью охвата максимально широкого диапазона величины H_0 применена аппроксимация экспериментальной кривой намагничивания феррожидкости функцией Ланжевена [7] от модифицированного аргумента [8], выраженного через H_0 и полученные из эксперимента начальную магнитную восприимчивость χ_t и намагниченность насыщения M_s рассматриваемой феррожидкости. Численные значения физических свойств феррожидкости взяты из экспериментальной работы [9] по исследованию турбулентности, вызываемой волнами на поверхности феррожидкости, граничащей с воздухом при наличии однородного горизонтального магнитного поля.

1. Постановка задачи

Анализ неустойчивости Кельвина–Гельмгольца, возникающей при движении слоев феррожидкостей с различающимися между собой магнитными свойствами [6], показывает, что стабилизирующее воздействие внешнего магнитного поля **H**₀ наиболее эффективно проявляется в случае, когда магнитные силовые линии параллельны векторам скоростей слоев. В такой ситуации наиболее быстро растущее возмущение магнитного поля, вызываемое изменением формы поверхности раздела ввиду наличия волн, дает максимальный вклад в динамическое условие на поверхности раздела.

Принимая во внимание это обстоятельство, исследование неустойчивости Кельвина–Гельмгольца при относительном движении газа и феррожидкости будем проводить в рамках плоской задачи, как и в [1] при исследовании устойчивости тангенциального разрыва. Предполагается, что скорости сред имеют одинаковое направление, а скорость газа больше скорости феррожидкости.

Введем подвижную прямоугольную систему координат x, z, связанную с однородным потоком феррожидкости. Ось x направим параллельно относительной скорости газа \mathbf{u}_0 , ось z вертикальна, а начало координат находится на плоской в момент t = 0 поверхности раздела между феррожидкостью и газом. Будем отмечать индексами j = 1, 2 магнитное и гидродинамическое поля, а также физические свойства соответственно феррожидкости (j = 1) и газа (j = 2). При записи характеристик феррожидкости, связанных с эффектом намагничивания, индекс j = 1 опускаем.

При плоской поверхности раздела векторы магнитной индукции и намагниченности феррожидкости обозначим $\mathbf{B}_{01} = \mu_0(1 + \chi)\mathbf{H}_0$, $\mathbf{M}_0 = \chi\mathbf{H}_0$, где $\mu_0 = 4\pi \cdot 10^{-7}$ H/m — магнитная постоянная, а $\chi = \chi(H_0)$ — магнитная восприимчивость. Как и в гидростатике, давление p_{0j} выражается линейной функцией от z.

Вследствие развития начальных бесконечно малых возмущений плоская при t = 0 поверхность раздела z = 0 с ростом времени деформируется. При наличии на поверхности раздела волн используем следующие обозначения: $\mathbf{H}_{i}(x, z, t) = (H_{ix}, H_{iz})$ — магнитные поля, $\mathbf{B}_1(x, z, t) = \mu_0(\mathbf{M} + \mathbf{H}_1), \mathbf{B}_2(x, z, t) = \mu_0\mathbf{H}_2$ векторы магнитной индукции, $\mathbf{M}(x, z, t) = \chi(H_1)\mathbf{H}_1$ вектор намагниченности. Учитывается зависимость магнитной восприимчивости χ от $H_1 = \sqrt{H_{1z}^2 + H_{1z}^2}$. Используются также дифференциальная проницаемость $\mu_t(H_1) = dB_1/dH_1$ и дифференциальная магнитная восприимчивость $\chi_t(H_1) = dM/dH_1$, причем $\mu_t(H_1) = \mu_0[1 + \chi_t(H_1)]$. Реализующаяся в экспериментах кривая намагничивания $M = \chi(H_1)H_1$ любой феррожидкости является выпуклой кверху, ввиду чего $\chi_t(H_1) < \chi(H_1).$

Поскольку в рассматриваемых средах электрические токи отсутствуют, существует потенциал магнитного поля $\Psi_j(x, z, t)$. Имеем

$$\mathbf{H}_j = \nabla \Psi_j, \ \mathbf{B}_1 = \mu \nabla \Psi_1, \ \mathbf{B}_2 = \mu_0 \nabla \Psi_2, \ \mathbf{M} = \chi \nabla \Psi_1, \ (1)$$

где $\mu(H_1) = \mu_0[1 + \chi(H_1)]$ — магнитная проницаемость феррожидкости.

В.М. Коровин

С учетом (1) условие соленоидальности вектора магнитной индукции приводит к следующим уравнениям:

$$\mu \Delta \Psi_1 + \frac{\mu_t - \mu}{|\nabla \Psi_1|} \nabla |\nabla \Psi_1| \cdot \nabla \Psi_1 = 0, \ \Delta \Psi_2 = 0.$$
 (2)

Положим $\Psi_j(x, z, t) = H_0 x + f_j(x, z, t)$. Считая $|\nabla f_j| \ll H_0$, после линеаризации первого уравнения и преобразования второго уравнения (2) получаем

 $\sigma^{2}(H_{0})\frac{\partial^{2}f_{1}}{\partial x^{2}} + \frac{\partial^{2}f_{1}}{\partial z^{2}} = 0, \ \Delta f_{2} = 0,$ (3)

где

$$\sigma(H_0) = \sqrt{\frac{1+\chi_t(H_0)}{1+\chi(H_0)}}.$$

Для вычисления σ требуются полученные из эксперимента параметры $\chi(H_0), \chi_t(H_0).$

На поверхности раздела феррожидкость-газ граничные условия магнитостатики в линейном приближении записываются следующим образом:

$$z = 0: f_1 = f_2, \ \mu(H_0) \frac{\partial f_1}{\partial z} - \mu_0 \frac{\partial f_2}{\partial z} = \mu_0 M_0 \frac{\partial \xi}{\partial x}, \ (4)$$

где $\xi(x, t)$ — отклонение поверхности раздела от плоскости z = 0. Вдали от поверхности раздела $z = \xi(x, t)$ возмущение магнитного поля исчезает.

Аппроксимируем экспериментальную кривую намагничивания функцией Ланжевена [7] $L_{\infty}(a) = \operatorname{cth} a - 1/a$ от модифицированного аргумента $a = 3\chi_{\iota}H_0/M_s$, где $\chi_{\iota} = \chi$ при $H_0 \to 0$ и $M_s = M$ при $H_0 \to \infty$ [8]. В результате получаем

$$M(H_0) = M_s L_{\infty}(3\chi_t H_0/M_s),$$

$$\chi(H_0) = \frac{M_s}{H_0} L_{\infty}(3\chi_t H_0/M_s),$$

$$\chi_t(H_0) = \frac{1}{3\chi_t H_0^2} \left\{ M_s^2 - \left[3\chi_t H_0 \csc \left(\frac{3\chi_t H_0}{M_s} \right) \right]^2 \right\}.$$
 (5)

Используя разложение функции Ланжевена при малых значениях аргумента

$$L_{\infty}(a) = \frac{a}{3} - \frac{a^3}{45} + O(a^5), \ ll1,$$

в случае слабых полей имеем

$$M(H_0) = \chi_l H_0 [1 - 0.6 (\chi_l H_0 / M_s)^2]$$
 при $H_0 \ll M_s / (3\chi_l).$

Опуская в этом выражении малую величину, приходим к линейному закону намагничивания.

При слабых полях $\sigma = 1$, поскольку физические параметры $\chi(H_0)$, $\chi_t(H_0)$ отличаются друг от друга величинами четвертого порядка малости.

Линеаризованные уравнения гидродинамики записываются следующим образом:

div**u**_{*i*} = 0,
$$j = 1, 2,$$

$$\rho_1 \frac{\partial \mathbf{u}_1}{\partial t} = -\nabla p_1 + \rho_1 \mathbf{g} + \mu_0 M_0 \nabla \frac{\partial f_1}{\partial x},$$

$$\rho_2 \left(\frac{\partial \mathbf{u}_2}{\partial t} + u_0 \frac{\partial \mathbf{u}_2}{\partial x} \right) = -\nabla p_2 + \rho_2 \mathbf{g}.$$
 (6)

Здесь ρ_j — плотность, $p_j = p_j(x, z, t)$ — возмущение давления, $\mathbf{u}_1 = \mathbf{u}_1(x, z, t) = (u_{1x}, u_{1z})$ — скорость феррожидкости, $\mathbf{u}_2 = \mathbf{u}_2(x, z, t) = (u_{2x}, u_{2z})$ — возмущение скорости газа, $\mathbf{g} = (0, -g)$ — ускорение свободного падения.

В рассматриваемом приближении кинематические и динамическое условия на поверхности раздела записываются следующим образом:

$$z = 0: \quad \frac{\partial \xi}{\partial t} = u_{1z}, \quad \frac{\partial \xi}{\partial t} + u_0 \frac{\partial \xi}{\partial x} = u_{2z}, \quad p_2 - p_1 = \alpha \frac{\partial^2 \xi}{\partial x^2},$$
(7)

где α — коэффициент поверхностного натяжения. Вдали от поверхности раздела $\mathbf{u}_1 \to 0$, $\mathbf{u}_2 \to 0$.

Рис. 1. Законы намагничивания феррожидкости. Сплошная линия — кривая намагничивания рассматриваемой феррожидкости, находящейся в магнитном поле с напряженностью *H*₀; штриховая прямая — линейный закон намагничивания.

Рис. 2. Графики зависимости безразмерных параметров σ , χ , χ от напряженности приложенного магнитного поля.

6 Журнал технической физики, 2021, том 91, вып. 8

Следует отметить, что известный в феррогидродинамике магнитный скачок давления [10] в динамическом условии — последнее равенство (7) — опущен ввиду малости.

На рис. 1 сплошная линия представляет кривую намагничивания — первое равенство (5) — рассматриваемой феррожидкости, находящейся в магнитном поле с напряженностью H_0 . Штриховой прямой показан линейный закон намагничивания.

На рис. 2 показаны графики функций $\sigma = \sigma(H_0)$, $\chi = \chi(H_0)$ и $\chi_t = \chi_t(H_0)$.

При построении графиков на рис. 1, 2 рассматривается использовавшаяся в экспериментах [9] феррожидкость. У этой феррожидкости $\chi_t = 0.69$, $M_s = 16.9$ kA/m.

С использованием потенциала скорости $\mathbf{u}_{j} = \nabla \varphi_{j}$ задача (6), (7) записывается следующим образом:

$$\Delta \varphi_j = 0, \quad j = 1, 2, \tag{8}$$

$$z = 0: \ \frac{\partial \xi}{\partial t} = \frac{\partial \varphi_1}{\partial z}, \ \frac{\partial \xi}{\partial t} + u_0 \frac{\partial \xi}{\partial x} = \frac{\partial \varphi_2}{\partial z}, \tag{9}$$

$$\rho_1 \frac{\partial \varphi_1}{\partial t} - \rho_2 \left(\frac{\partial \varphi_2}{\partial t} + u_0 \frac{\partial \varphi_2}{\partial x} \right) + g\xi (\rho_1 - \rho_2)$$
$$- \mu_0 M_0 \frac{\partial f_1}{\partial x} - \alpha \frac{\partial^2 \xi}{\partial x^2} = 0.$$

Далее рассматривается задача феррогидродинамики (3), (4), (8), (9).

2. Исследование неустойчивости

Пусть плоская в начальный момент времени поверхность раздела испытывает малое возмущение, при котором координаты точек самой поверхности и все искомые величины, фигурирующие в уравнениях (3), (8), являются периодическими функциями, пропорциональными $\exp\{i[kx - \omega(k)t]\}$:

$$(\xi(x,t), f_j(x,z,t), \varphi_j(x,z,t)) = (Z(k), F_j(z), \Phi_j(z))$$
$$\times \exp\{i[kx - \omega(k)t]\}.$$
(10)

Здесь Z — константа, i — мнимая единица, k > 0 — действительный параметр (волновое число), а частота $\omega(k)$ является искомой функцией.

Подставив выражения (10) в уравнения Лапласа (3), (8), получаем

$$\frac{d^2 F_1}{dz^2} - (\sigma k)^2 F_1 = 0, \quad \frac{d^2 F_2}{dz^2} - k^2 F_2 = 0,$$
$$\frac{d^2 \Phi_j}{dz^2} - k^2 \Phi_j = 0, \quad j = 1, 2.$$
(11)

С учетом (10) граничные условия (4), (9) записываются следующим образом:

$$z = 0: F_1 = F_2, (1 + \chi) \frac{dF_1}{dz} - \frac{dF_2}{dz} = ikM_0Z,$$
 (12)

$$i\omega Z + \frac{d\Phi_1}{dz} = 0, \quad i(u_0k - \omega)Z = \frac{d\Phi_2}{dz},$$
$$i\rho_1\Phi_1\omega - i\rho_2\Phi_2(\omega - u_0k) - Z[\alpha k^2 + g(\rho_1 - \rho_2)]$$
$$+ ik\mu_0M_0F_1 = 0.$$

Легко указать обращающиеся в нуль при $z \to +\infty$ решения уравнений (11)

$$\Phi_1 = A_1 \exp(kz), \quad \Phi_2 = A_2 \exp(-kz),$$
 (13)

$$F_1 = D_1 \exp(\sigma kz), \quad F_2 = D_2 \exp(-kz),$$

где A_1, A_2, D_1, D_2 — произвольные константы. При подстановке решений (13) в граничные условия (12) получаем систему линейных однородных уравнений относительно A_1, A_2, D_1, D_2, Z :

$$D_{1} - D_{2} = 0, \quad (1 + \chi)\sigma kD_{1} + kD_{2} - ikM_{0}Z = 0, \quad (14)$$
$$kA_{1} + i\omega Z = 0, \quad kA_{2} + i(\omega - u_{0}k)Z = 0,$$
$$i\rho_{1}\omega A_{1} - i\rho_{2}(\omega - u_{0}k)A_{2} + ik\mu_{0}M_{0}D_{1}$$
$$- [\alpha k^{2} + g(\rho_{1} - \rho_{2})]Z = 0.$$

Система (14) тогда и только тогда обладает решениями, отличными от нулевого, когда ее определитель равен нулю. Вычислив определитель и приравняв его нулю, получаем дисперсионное уравнение

$$\omega^{2} - 2 \frac{\rho_{2} u_{0} k}{\rho_{1} + \rho_{2}} \omega - \frac{k}{\rho_{1} + \rho_{2}} \bigg\{ \alpha k^{2} + \bigg\{ \frac{\mu_{0} M_{0}^{2}}{1 + \sigma(H_{0})[1 + \chi(H_{0})]} - \rho_{2} u_{0}^{2} \bigg\} k + g(\rho_{1} - \rho_{2}) \bigg\} = 0.$$
(15)

Из (15) находим

$$\omega(k) = \frac{\rho_2 u_0 k}{\rho_1 + \rho_2} \pm \frac{k}{\sqrt{\rho_1 + \rho_2}} \bigg\{ \alpha k + \frac{\mu_0 M_0^2}{1 + \sigma(H_0) [1 + \chi(H_0)]} - \frac{\rho_1 \rho_2 u_0^2}{\rho_1 + \rho_2} - \frac{g(\rho_1 - \rho_2)}{k} \bigg\}^{1/2}.$$
(16)

Положим

$$\beta(k) = \alpha k + \frac{\mu_0 M_0^2}{1 + \sigma(H_0)[1 + \chi(H_0)]} - \frac{\rho_1 \rho_2 u_0^2}{\rho_1 + \rho_2} - \frac{g(\rho_1 - \rho_2)}{k}.$$

При $\beta(k) \ge 0$ функция $\omega(k)$ вещественна. Ввиду этого в случае, когда

$$u_0^2 \le \frac{\rho_1 + \rho_2}{\rho_1 \rho_2} \, q(k), \tag{17}$$

$$q(k) = lpha k + rac{\mu_0 M_0^2}{1 + \sigma(H_0)[1 + \chi(H_0)]} + rac{g(
ho_1 -
ho_2)}{k}, \ k > 0,$$

относительное движение сред, имеющих плоскую поверхность раздела, устойчиво. Стационарная точка $k_c = \sqrt{g(\rho_1 - \rho_2)/\alpha}$ функции q(k) является точкой минимума. Подставив в (17) $k = \sqrt{g(\rho_1 - \rho_2)/\alpha}$, находим условие устойчивости

$$u_0^2 \le \frac{\rho_1 + \rho_2}{\rho_1 \rho_2} \bigg\{ 2\sqrt{\alpha g(\rho_1 - \rho_2)} + \frac{\mu_0 M^2(H_0)}{1 + \sigma(H_0)[1 + \chi(H_0)]} \bigg\}.$$
(18)

Неравенство (18) является обобщением на случай феррогидродинамики условия устойчивости тангенциального разрыва в гидродинамике [1]. Если же

$$u_0^2 > \frac{\rho_1 + \rho_2}{\rho_1 \rho_2} \left\{ 2\sqrt{\alpha g(\rho_1 - \rho_2)} + \frac{\mu_0 M^2(H_0)}{1 + \sigma(H_0)[1 + \chi(H_0)]} \right\},$$

то движение неустойчиво. Ввиду этого в плоскости параметров (H_0, u_0) уравнение кривой нейтральной устойчивости имеет вид

$$u_0(H_0) = \left\{ \frac{\rho_1 + \rho_2}{\rho_1 \rho_2} \left\{ 2\sqrt{\alpha g(\rho_1 - \rho_2)} + \frac{\mu_0 M^2(H_0)}{1 + \sigma(H_0)[1 + \chi(H_0)]} \right\} \right\}^{1/2},$$

Если электромагнит, создающий поле, выключен, то движение феррожидкости описывается уравнениями гидродинамики. В этом случае наибольшая относительная скорость сред, при которой капиллярные силы подавляют рост волновых возмущений плоской поверхности раздела, равна

$$U = \left\{ \frac{4\alpha g (\rho_1 - \rho_2)(\rho_1 + \rho_2)^2}{\rho_1^2 \rho_2^2} \right\}^{1/4} = 6.78 \text{ m/s}.$$

В плоскости параметров $(H_0, (u_0(H_0)/U)$ уравнение кривой нейтральной устойчивости можно записать следующим образом:

$$\begin{aligned} &\frac{\mu_0(H_0)}{U} = \\ &= \left\{ 1 + \frac{\mu_0 M^2(H_0)}{2\sqrt{\alpha g(\rho_1 - \rho_2)} \{1 + \sigma(H_0)[1 + \chi(H_0)]\}} \right\}^{1/2}. \end{aligned}$$

На рис. 3 изображен график этой функции. Область, лежащая ниже кривой, является областью устойчивости.

При построении графика на рис. 3 рассмотрена использовавшаяся в экспериментах [9] феррожидкость, имеющая границу с воздухом. У этой феррожидкости $\rho_1 = 1324 \text{ kg/m}^3$, $\alpha = 0.059 \text{ N/m}$. Плотность воздуха $\rho_2 = 1.205 \text{ kg/m}^3$ [3].

По сравнению со случаем слабых полей, когда выполняется линейный закон намагничивания (рис. 1), при сильных полях за счет нелинейности закона намагничивания стабилизирующее воздействие магнитных сил существенно возрастает и область устойчивости (рис. 3) расширяется. При этом подавление неустойчивости Кельвина–Гельмгольца происходит при значительно бо́льшей относительной скорости потоков газа и феррожидкости.

Журнал технической физики, 2021, том 91, вып. 8

Рис. З. Кривая нейтральной устойчивости.

При сильном магнитном поле на кривой нейтральной устойчивости появляется точка перегиба. После прохождения точки перегиба при дальнейшем увеличении напряженности магнитного поля кривая нейтральной устойчивости выходит на плато.

Заключение

Изучена неустойчивость Кельвина–Гельмгольца при относительном движении потоков воздуха и феррожидкости с заданными физическими свойствами при наличии продольного магнитного поля любой технически достижимой в экспериментах напряженности.

Нелинейность закона намагничивания обеспечивает подавление неустойчивости Кельвина–Гельмгольца при существенно бо́льшей относительной скорости потоков газа и феррожидкости, чем в случае линейного намагничивания феррожидкости.

Получено уравнение кривой нейтральной устойчивости в плоскости параметров напряженность магнитного поля — обезразмеренная относительная скорость сред. Показано, что эта кривая выходит на плато с ростом напряженности поля.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] Л.Д. Ландау, Е.М. Лифшиц. Гидродинамика (Наука, М., 1988)
- [2] S. Chandrasekhar. *Hydrodynamic and Hydromagnetic Stability* (Oxford University Press: Clarendon Press, 1961)
- [3] Дж. Бэтчелор. Введение в динамику жидкости (Мир, М., 1973)

- [4] Ф. Дразин. Введение в теорию гидродинамической устойчивости (Физматлит, М., 2005)
- [5] Р. Розенцвейг. Феррогидродинамика (Мир, М., 1989)
- [6] В.Г. Баштовой. ПМТФ, 1, 81 (1978).
- [7] Д.В. Сивухин. Электричество (Наука, М., 1983)
- [8] B. Abou, G. Néron de Surgy, J.E. Wesfreid. J. Phys. II France, 7 (8), 1159 (1997).
- [9] S. Dorbolo, E. Falcon. Phys. Rev. E, 83 (4), 046303 (2011).
 DOI: 10.1103/ PhysRevE.83.046303
- [10] Б.М. Берковский, В.Ф. Медведев, М.С. Краков. Магнитные жидкости (Химия, М., 1989)