Оптические свойства пленок ITO, полученных высокочастотным магнетронным напылением с сопутствующей ионной обработкой

© П.Н. Крылов[¶], Р.М. Закирова, И.В. Федотова

Удмуртский государственный университет, 426034 Ижевск, Россия

(Получена 28 января 2013 г. Принята к печати 4 февраля 2013 г.)

Представлено изменение свойств пленок ITO (indium tin oxide), полученных методом реактивного высокочастотного напыления с одновременной ионной обработкой. Пленки ITO имеют в оптическом диапазоне 450-1100 нм пропускание 80%, ширину запрещенной зоны 3.50-3.60 эВ, показатель преломления 1.97-2.06. Все характеристики пленок зависят от тока ионной обработки. Ионная обработка в процессе напыления уменьшает удельное сопротивление пленок ITO, минимальное значение сопротивления составляет $2 \cdot 10^{-3}$ Ом · см. Обнаружена деградация пленок с высоким удельным сопротивлением при хранении на воздухе.

1. Введение

Тонкие пленки оксида индия, легированного оловом (indium tin oxide — ITO), широко используются в качестве прозрачных проводящих покрытий при изготовлении жидкокристаллических дисплеев, мониторов портативных компьютеров, электролюминесцентных ламп, электродов фотопроводящих элементов, топливных элементов (в том числе высокотемпературных) и т.п. [1]. Электропроводящие пленки на основе In_2O_3 , будучи нанесенными на автомобильные или авиационные стекла, способны нагревать их до 100°C при пропускании тока и тем самым предотвращать их обледенение и запотевание. Стекла с такими пленками способны пропускать до 85% падающего на них света. Для монокристалла оксида индия получено одно из максимальных значений эффективности преобразования солнечной энергии (12%). Известно множество применений оксида индия в качестве электропроводящего элемента. Также известно множество методов получения прозрачных проводящих пленок на основе оксида индия.

В последнее время стало актуальным получение прозрачных проводящих покрытий на термочувствительных подложках, т. е. при пониженных температурах синтеза.

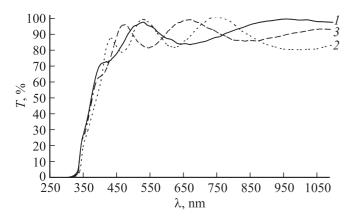
Цель данной работы — исследование оптических свойств пленок ITO, осажденных на стеклянные подложки методом реактивного высокочастотного (ВЧ) магнетронного напыления с сопутствующей ионной обработкой.

2. Методика эксперимента

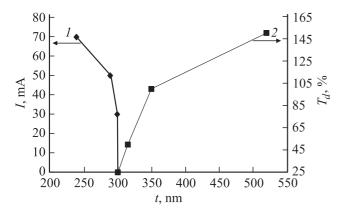
Осаждение тонких пленок ITO проводилось на стеклянные подложки в течение 2 ч методом BЧ магнетронного распыления мишени из сплава In—Sn (соотношение элементов 94%:6%) в кислородосодержащей газовой смеси $Ar:O_2$ (90%:10%) при давлении $2.5\cdot 10^{-1}$ Па и мощности BЧ магнетронного разряда 300 Вт. Во время

процесса осаждения подложки поочередно проходили области распыления мишени и области воздействия ионного источника "Радикал М-100", через который проводился напуск рабочей смеси газов [2]. Ионный источник использовался для очистки подложек перед осаждением пленок (давление рабочей смеси $10^{-1}\,\Pi$ а, напряжение ионного источника $1.5\,\mathrm{kB}$, ток разряда $100\,\mathrm{mA}$) и для дополнительного воздействия на растущие пленки (ток воздействующего разряда I=0, 30, 50, 70 мA). Температура подложек в процессе получения пленок составляла $T_d=25$, 50, 100, $150^\circ\mathrm{C}$.

Спектры пропускания пленок ITO в области длин волн 300-1100 нм исследовали на спектрофотометре СФ-26 и автоматизированном СФ-46 с использованием микросистемы управления оборудованием. Толщину пленок определяли с помощью интерференционного микроскопа МИИ-4 и по спектрам пропускания. Элементный состав пленок ITO определяли методом рентгеновской фотоэлектронной спектроскопии на спектрометре ЭС-2401 (Мg K_{α} -излучение). Поверхностное сопротивление полученных пленок измеряли стандартным четырехзондовым методом.


3. Экспериментальные результаты и их обсуждение

На рис. 1 представлены типичные спектры пропускания (T) свежеприготовленных пленок ITO, полученных при разных режимах.


Оптическое пропускание в интервале длин волн $\lambda=450-1100\,\mathrm{hm}$ в среднем > 80%. Спектры пропускания имеют осциллирующий характер, обусловленный интерференционными явлениями в системе пленка—подложка. По экстремумам в спектрах пропускания была определена толщина пленок ITO [3]. Результаты расчетов в пределах погрешности совпали с результатами определения толщины с помощью МИИ-4.

В работе [4] показано, что ионная обработка в процессе осаждения пленок ITO влияет на скорость осаждения и значение показателя преломления *n*. При комнатной

[¶] E-mail: ftt@uni.udm.ru

Рис. 1. Спектры пропускания T свежеприготовленных пленок ITO при токе ионной обработки $70\,\mathrm{mA}$ для температуры осаждения T_d , °C: I — 20, 2 — 50, 3 — 100.

Рис. 2. Влияние тока ионной обработки I и температуры осаждения T_d на толщину t пленок ITO: I — комнатная температура и разные токи ионной обработки; 2 — без ионной обработки, разные температуры осаждения.

температуре происходит частичное распыление растущего слоя, и средняя скорость роста пленок (толщина t) с увеличением тока ионной обработки уменьшается (рис. 2). С другой стороны, повышение температуры конденсации может стимулировать протекание химической реакции между кислородом и металлом: толщина пленок t увеличивается (рис. 2). Дальнейшее повышение тока ионной обработки приводит к более сложному влиянию на структуру и среднюю скорость роста пленок (табл. 1).

Ионная обработка приводит к изменению удельного сопротивления пленок ITO: удельное сопротивление ρ уменьшается с увеличением тока ионного источника и температуры подложек. Минимальное значение удельного сопротивления составляет $2\cdot 10^{-3}~\rm OM\cdot cm.~B$ работе [1] пленки ITO, полученные окислением исходных пленок состава $\rm In+In_2O_3$ путем нагревания подложек до $250^{\circ}\rm C$, имеют пропускание более 85% и удельное электрическое сопротивление $1.8\cdot 10^{-2}~\rm OM\cdot cm.~Uзменение$ удельного сопротивления связывают с различ-

ными факторами, например, с перестройкой и перемещением дефектов [5], с изменением кристалличности пленок [6]. В нашем случае изменения удельного сопротивления в свежеприготовленных пленках зависят от температуры конденсации и тока ионной обработки.

Показатель преломления пленок определялся по методике [5,7]. Среднее значение показателя преломления пленок ІТО, осажденных без ионной обработки, в пределах погрешности не зависит от температуры конденсации: $n = (2.05 \pm 0.02)$. Это коррелирует с результатами работы [8], согласно которым показатель преломления пленок ITO толщиной 200 нм не зависит от температуры подложки и составляет 2.05. Ионная обработка приводит к незначительному изменению показателя преломления полученных пленок ITO. При комнатной температуре конденсации происходит уменьшение показателя преломления до n = 1.97. Для пленок ITO, полученных при температуре конденсации $T_d = 50^{\circ}\mathrm{C}$ и токе ионной обработки $I = 50 \,\mathrm{mA}$, показатель преломления уменьшается до значения n = 1.99. Для пленок ITO, полученных при температуре конденсации $T_d=100^{\circ}\mathrm{C}$, с ростом тока ионного источника показатель преломления уменьшается до значения n = 1.97. Изменение показателя преломления может быть связано с изменением концентрации носителей заряда [9]. Кроме того, на значение показателя преломления пленок ITO влияют степень кристалличности и содержание кислорода. Уменьшение концентрации границ в пленках с кристаллитами больших размеров приводит вследствие повышения плотности вещества к увеличению показателя преломления [10].

Показатель преломления высокоомных образцов больше показателя преломления низкоомных. Такая тенденция взаимосвязи показателя преломления с сопротивлением наблюдается для образцов, напыленных при температурах осаждения $T_d=150,\ 100\$ и 25° С. Исключением является образец, полученный при температуре осаждения $T_d=50^{\circ}$ С и токе ионной обработки $I=70\$ мА,

Таблица 1. Значения показателя преломления n, ширины запрещенной зоны E_g и удельного сопротивления ρ свежеприготовленных пленок ITO

Nº	Режим получения T_d , °C/ I , мА	n	E_g , $\ni \mathbf{B}$	ρ , 10^{-3} Om · cm
1	100/0	2.06	3.56	28.0
2	100/30	2.01	3.57	3.4
3	100/50	2.02	3.60	3.1
4	100/70	1.97	3.57	2.2
5	50/0	2.06	3.58	1323.0
6	50/30	2.04	3.55	11.2
7	50/50	1.99	3.52	5.4
8	50/70	2.06	3.50	1.8
9	25/0	2.04	3.55	96.0
10	25/30	2.03	3.57	9.9
11	25/50	1.97	3.58	5.8
12	25/70	1.98	3.59	5.3

он имеет максимальное значение показателя преломления: n=2.06. Уменьшение показателя преломления пленок ITO, осажденных при температурах 100 и 150° С, можно объяснить уменьшением размеров зерен с ростом тока ионной обработки [11]. В случае комнатной температуры и осаждения при $T_d=50^{\circ}$ С без ионной обработки получены аморфные пленки ITO, ионная обработка вызывает рост поликристаллических пленок ITO. Известно, что показатель преломления аморфных материалов больше, чем кристаллических [12].

Коэффициент поглощения $\alpha(\lambda)$ исследуемых пленок рассчитывался по уравнению [7,13,14] $\alpha=-\lg(1/T)/t$, где T — пропускание, t — толщина пленки.

Оптическая ширина запрещенной зоны определялась по методу Тауца из спектральной зависимости коэффициента поглощения линейной экстраполяцией зависимости $\alpha(h\nu)^{1/2}$ от энергии фотона $h\nu$ к значению $\alpha=0$ [15]. Полученные значения ширины запрещенной зоны в диапазоне $E_g=3.50-3.60$ эВ коррелируют с литературными данными [7]. Ионная обработка неоднозначно влияет на изменение ширины запрещенной зоны (табл. 1): при комнатной температуре осаждения и 100° С ширина запрещенной зоны увеличивается с ростом тока ионной обработки, а при температуре осаждения 50° ширина запрещенной зоны с ростом тока ионной обработки незначительно уменьшается.

Изменение ширины запрещенной зоны может быть связано с изменением концентрации носителей заряда, так как удельное сопротивление пленок ІТО также меняется. Согласно [9], ширина запрещенной зоны увеличивается с ростом температуры осаждения, и авторы предполагают, что увеличение происходит из-за изменения концентрации носителей заряда (сдвиг Бурштейна-Мосса). Также в работе показано, что одновременно с увеличением ширины запрещенной зоны уменьшаются показатель преломления и удельное сопротивление. Изменение концентрации носителей заряда авторы объясняют тем, что с ростом температуры осаждения увеличивается диффузия атомов Sn из межузельных положений и границ зерен в положения катионов In. Так как атом Sn имеет валентность 4, а In 3-валентен, атомы Sn действуют как доноры в пленках ITO. Уменьшение сопротивления с ростом температуры подложек можно также объяснить тем, что размер кристаллитов увеличивается значительно с ростом температуры осаждения, таким образом уменьшая рассеяние на границах зерен и увеличивая проводимость.

Повторные измерения образцов после хранения на воздухе более 3 месяцев выявили изменения свойств данных пленок (табл. 2), т.е. с течением времени меняются ширина запрещенной зоны, сопротивление пленок, незначительно уменьшается значение показателя преломления.

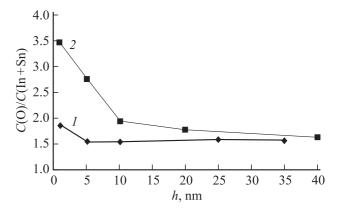

Следует выделить изменения удельного сопротивления пленок ITO: оно значительно (в разы) увеличивается для высокоомных образцов и незначительно для низкоомных образцов (табл. 1, 2). Аналогичные изменения

Таблица 2. Значения показателя преломления n, толщины t, ширины запрещенной зоны E_g и удельного сопротивления ρ пленок ITO после хранения на воздухе

No	Режим получения T_d , °C/ I , мА	n	t, HM	E_g , эВ	ρ , 10^{-3} Om · cm
1	150/0	1.99	520	3.53	46.8
2	150/30	1.92	620	3.56	5.5
3	150/50	2.00	900	3.52	2.0
4	150/70	1.93	390	3.53	1.5
5	100/0	2.02	350	3.51	260.0
6	100/30	1.97	500	3.52	3.5
7	100/50	1.98	240	3.50	3.3
8	100/70	1.92	350	3.50	2.6
9	50/0	1.99	315	3.51	3969.0
10	50/30	2.00	320	3.52	18.5
11	50/50	1.97	255	3.50	19.3
12	50/70	2.06	360	3.50	1.8
13	25/0	1.99	300	3.43	598.2
14	25/30	1.97	300	3.49	15.3
15	25/50	1.92	290	3.49	9.6
16	25/70	1.95	240	3.50	7.9

наблюдали в работе [16] при исследовании пленок ITO, осаждаемых методом ультразвукового спрей-пиролиза на кремний и стекло. Деградацию сопротивления ITO на воздухе связывают с диффузией кислорода в пленку по границам зерен. Считается, что кислород адсорбируется на поверхности, захватывает электрон и формирует отрицательный поверхностный заряд, из-за чего уменьшается подвижность носителей. Скорость диффузии кислорода по границам зерен и предположительно вероятность его адсорбции зависят от структуры и дефектности зерен [16].

В работе [4] показано, что при распылении мишени In—Sn (94%:6%) в среде кислорода с аргоном (10%:90%) наблюдается незначительный избыток кислорода и незначительный дефицит индия в пленках ITO

Рис. 3. Изменение отношения концентраций кислорода $C(\mathrm{O})$ к концентрации металлов $C(\mathrm{In}+\mathrm{Sn})$: I — температура осаждения 50°C, без ионной обработки; 2 — температура осаждения 100°C, ток ионной обработки 70 мА.

по отношению к стехиометрии. Относительное количество олова и индия уменьшается при увеличении интенсивности ионной обработки. На рис. 3 представлено изменение отношения концентрации кислорода к суммарной концентрации индия и олова для высокоомной $(3969.0 \cdot 10^{-3} \ \mathrm{Om} \cdot \mathrm{cm})$ и низкоомной $(2.6 \cdot 10^{-3} \ \mathrm{Om} \cdot \mathrm{cm})$ пленок ITO по глубине h.

В высокоомном образце отношение концентрации кислорода $C(\mathrm{O})$ к концентрации металлов $C(\mathrm{In}+\mathrm{Sn})$ ниже, чем в низкоомном. Кроме того, в низкоомном образце распределение кислорода по толщине пленки более неравномерное. Согласно [17], пленки ІТО, имеющие высокую концентрацию кислородных вакансий, обладают более высоким удельным сопротивлением, так как на кислородных вакансиях происходит рассеяние носителей заряда.

С течением времени удельное сопротивление увеличивается, ширина запрещенной зоны и показатель преломления уменьшаются. Можно предположить, что это связано с адсорбцией кислорода в пленке.

4. Заключение

Исследованы оптические свойства пленок ITO, полученных методом реактивного ВЧ магнетронного напыления с сопутствующей ионной обработкой. Пленки ITO имеют в оптическом диапазоне $450-1100\,\mathrm{hm}$ пропускание > 80%, ширину запрещенной зоны $3.50-3.60\,\mathrm{3B}$, показатель преломления 1.97-2.06. Все характеристики пленок зависят от тока ионной обработки. Существенное влияние ионная обработка оказывает на удельное сопротивление: оно уменьшается с увеличением тока ионной обработки, минимальное значение сопротивления составляет $2 \cdot 10^{-3}\,\mathrm{Om} \cdot \mathrm{cm}$. Обнаружено, что пленки с высоким удельным сопротивлением по сравнению с низкоомными пленками при хранении на воздухе деградируют значительнее.

Работа выполнена при частичной поддержке Российского фонда фундаментальных исследований (проект N_2 12-07-00562).

Список литературы

- [1] И.А. Тамбасов, В.Г. Мягков, А.А. Иваненко, И.В. Немцев, Л.Е. Быкова, Г.Н. Бондаренко, Ю.Л. Михлин, И.А. Максимов, В.В. Иванов, С.В. Балашов, Д.С. Карпенко. ФТП, **47** (4), 546 (2013).
- [2] В.М. Ветошкин, Р.М. Закирова, П.Н. Крылов, И.А. Суворов. ВТТ, **21** (1), 57 (2011).
- [3] С.В. Зайцев, Ю.В. Герасименко, С.Н. Салтыков, Д.А. Ховив, А.М. Ховив. Неорг. матер., **47** (4), 468 (2011).
- [4] Е.А. Зайцева, Р.М. Закирова, П.Н. Крылов, К.С. Лебедев, И.В. Федотова. Вестн. Удмуртского ун-та. Сер. Физика, химия, **2**, 26 (2012).
- [5] M. Nisha. Ph.D thesis in the field of material science (Kerala, India, 2006).

- [6] M.K.M. Ali, K. Ibrahim, Osama S. Hamad, M.H. Eisa, M.G. Faraj, F. Azhari. Rom. J. Phys., 56 (5–6), 730 (2011).
- [7] L. Kerkache, A. Layadi, E. Dogheche, D. Remiens J. Phys. D: Appl. Phys., 39, 184 (2006).
- [8] W. Wohlmuth, I. Adesida. Thin Sol. Films, 479, 223 (2005).
- [9] H. Kim, G.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey. J. Appl.Phys., 86 (11), 6451 (1999).
- [10] *Распыление твердых тел ионной бомбардировкой*, под ред. Р. Бериша. (М., Мир, 1986) вып. II.
- [11] Физика тонких пленок, под ред. Г. Хасса, М. Франкомба и Р. Гофмана (М., Мир, 1978) т. 8, с. 320.
- [12] А.В. Ершов, А.И. Машин, А.Ф. Хохлов, Д.Е. Касьянов, А.В. Нежданов, Н.И. Машин, И.А. Карабанов. *Тр. 1-го совещания по проекту НАТО StP-973799 Semiconductors* (Н. Новгород, 2001) с. 124.
- [13] N. Manavizadeh, A. Khodayari, E. Asl Soleimani, Sh. Bagherzadeh, M.H. Maleki Iran. J. Chem. Chem. Eng., **28** (2), 57 (2009).
- [14] A. Hassanzadeh, M.H. Habibi, A. Zeini-Isfahani. Acta. Chim. Slov., 51, 507 (2004).
- [15] В.К. Гончаров, Д.Р. Исмаилов, О.Р. Людчик, С.А. Петров, М.В. Пузырев. Журн. прикл. спектроскопии, 74 (5), 637 (2007).
- [16] Г.Г. Унтила, Т.Н. Кост, А.Б. Чеботарева, М.А. Тимофеев. ФТП, **46** (7), 984 (2012).
- [17] Д.А. Зуев, А.А. Лотин, О.А. Новодворский, Ф.В. Лебедев, О.Д. Храмова, И.А. Петухов, Ф.Н. Путилин, А.Н. Шатохин, М.Н. Румянцева, А.М. Гаськов. ФТП, **46** (3), 425 (2012).

Редактор Л.В. Шаронова

The optical properties of the ITO films, obtained by RF magnetron sputtering with assisted ion treatment

P.N. Krylov, R.M. Zakirova, I.V. Fedotova

Udmurt State University, 426034 Izhevsk, Russia

Abstract The paper shows the change in the properties of ITO films prepared by reactive RF magnetron sputtering with simultaneous ion treatment. ITO films have in the optical range $450-1100\,\mathrm{nm}$ transmittance > 80%, the band gap of $3.50-3.60\,\mathrm{eV}$, the refractive index of 1.97-2.06. All properties of the films depend on the current ion treatment. Ion treatment during deposition reduces the resistivity of ITO films, the minimum resistivity value is $2\cdot10^{-3}\,\Omega\cdot\mathrm{cm}$. It was detected degradation of films with high resistivity when stored in air.