01

Расчет $^{179}{\rm HfF^+}$ для поиска эффектов нарушения пространственной четности и временной инвариантности

© И.П. Курчавов¹, А.Н. Петров^{1,2}¶

¹ Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра "Курчатовский институт", 188300 Гатчина, Россия

² Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия

e-mail: kurchavovigor58@gmail.com, ¶petrov an@pnpi.nrcki.ru

Поступила в редакцию 04.03.2021 г. В окончательной редакции 18.03.2021 г. Принята к публикации 22.03.2021 г.

Для электронного состояния $^3\Delta_1$ иона $^{179}{\rm Hf^{19}F^+}$ проведены расчеты сдвигов энергий подуровней сверхтонкой структуры основного вращательного состояния вследствие взаимодействия электрического дипольного момента электрона ($e{\rm EDM}$) и магнитного квадрупольного момента (MKM) ядра $^{179}{\rm Hf}$ с внутренним электромагнитным полем катиона. Особенностью экспериментов по поиску $e{\rm EDM}$ и МКМ на $^{179}{\rm Hf^{19}F^+}$ является использование вращающихся внешних полей, что усложняет проведение расчетов и делает их более актуальными. Для заселения энергетических уровней нужно знать их структуру, а знание g-факторов уровней позволит подавлять ряд систематических ошибок в эксперименте, связанных с неполным контролем величины используемого магнитного поля. Поэтому соответствующие расчеты также были проведены. Наши расчеты могут быть использованы для планирования эксперимента с катионом $^{179}{\rm HfF^+}$ и интерпретации полученных данных.

Ключевые слова: сверхтонкая структура, g-фактор, магнитный квадрупольный момент, электрический дипольный момент электрона.

DOI: 10.21883/OS.2021.07.51072.1936-21

1. Введение

Для поиска физики за пределами Стандартной Модели особый интерес представляет изучение нарушающих пространственную четность (Р) и временную инвариантность (\mathscr{T}) эффектов, связанных с наличием перманентного электрического дипольного момента электрона (еЕОМ) и магнитных квадрупольных моментов (МКМ) ядер [1]. Недавно в эксперименте с захваченными катионами $^{180}{\rm HfF}^+$ с бесспиновым изотопом ¹⁸⁰Нf для ЭДМ электрона было получено ограничение $|d_e| < 1.3 \times 10^{-28} \, e$ cm (с вероятностью 90%) [2,3]. Измерения проводились на основном вращательном уровне J=1 в метастабильном электронном состоянии $H^3\Delta_1$. Учитывая большой потенциал для изучения эффектов нарушения \mathcal{T}, \mathcal{P} на ионах HfF^+ , в работе [4] было предложено использовать ионы $^{177}\mathrm{Hf^{19}F^{+}}$ и $^{179}\mathrm{Hf^{19}F^{+}}$ для измерения магнитного квадрупольного момента ядер ¹⁷⁷Hf и 179 Hf со спинами I = 7/2 и I = 9/2 соответственно.

 \mathcal{F} , \mathcal{F} -нечетные эффекты, возникающие в результате взаимодействия МКМ и электронного ЭДМ с внутренним электромагнитным полем молекулы в $^{177}\mathrm{Hf^{19}F^{+}}$ и $^{179}\mathrm{Hf^{19}F^{+}}$ были рассмотрены в работе [5]. Была исследована роль сверхтонкого взаимодействия, был рассчитан МКМ-сдвиг как функция внешнего статического электрического поля, и было показано, что МКМ-эффекты

можно отличить от электронного ЭДМ из-за явной зависимости МКМ-сдвига от сверхтонкого подуровня.

Важной характеристикой экспериментов на HfF⁺ является то, что для захвата ионов используются вращающиеся магнитные и электрические поля. В этом случае магнитное поле в отличие от экспериментов в статических полях должно обеспечивать ненулевой сдвиг энергии из-за возможных \mathcal{T} , \mathcal{P} -нечетных эффектов [3,6]. Для того чтобы полностью поляризовать молекулу и получить максимальный \mathcal{T} , \mathcal{P} -нечетный эффект, как вращающиеся электрические, так и магнитные поля должны быть достаточно большими. Величина насыщающего магнитного поля сильно зависит от используемого зеемановского подуровня иона, и ее значения необходимы для планирования эксперимента. Также для заселения требуемых уровней в экспериментах нужно знать структуру энергетических уровней, а знание д-факторов помогает контролировать и подавлять систематические эффекты от неучтенного магнитного поля [5,7].

Соответствующие расчеты для системы $^{177}{\rm HfF^+}$ были выполнены в работе [8]. Основной целью данной работы является проведение аналогичных расчетов для $^{179}{\rm HfF^+}$. Были исследованы \mathcal{F} , \mathcal{P} -нечетные свойства сверхтонких подуровней основного вращательного уровня J=1 электронного состояния $^3\Delta_1$ катиона $^{179}{\rm HfF^+}$ во внешних вращающихся электрических и магнитных полях.

2. Методы

Следуя работе [8], для расчетов использовался гамильтониан молекулы

$$\hat{\mathbf{H}}_{\text{mol}} = \hat{\mathbf{H}}_{\text{el}} + \hat{\mathbf{H}}_{\text{rot}} + \hat{\mathbf{H}}_{\text{hfs}} + \hat{\mathbf{H}}_{\text{ext}}, \tag{1}$$

где

$$\hat{\mathbf{H}}_{el} = \sum_{i_{v}} \left[-\frac{1}{2} \bar{\nabla}^{2}(i_{v}) + V(i_{v}) + U^{Ef}(i_{v}) \right] + \sum_{i_{v} > j_{v}} \frac{1}{r_{i_{v}j_{v}}}.$$
(2)

 $U^{\rm Ef}$ — оператор обобщенного релятивистского потенциала остова (ОРЭПО), индексы i_v и j_v пробегают только по валентным и явно включенным в расчет с ОРЭПО внешним остовным электронам.

$$\hat{\mathbf{H}}_{\text{rot}} = B_{\text{rot}} \mathbf{J}^2 - 2B_{\text{rot}} (\mathbf{J} \cdot \mathbf{J}^{\mathbf{e}})$$
 (3)

описывает вращение молекулы, $B_{\rm rot}=0.2989\,{\rm cm}^{-1}$ [9] — вращательная постоянная, ${\bf J}$ — полный угловой момент молекулы за вычетом ядерных спинов, ${\bf J}^e$ — полный угловой момент электронной подсистемы.

 $\hat{\mathbf{H}}_{\mathrm{hfs}}$ — сверхтонкое взаимодействие, которое включает магнитное сверхтонкое взаимодействие электронов с обоими ядрами и взаимодействие с электрическим квадрупольным моментом $^{179}\mathrm{Hf},$

$$\hat{\mathbf{H}}_{hfs} = g_{F} \mu_{N} I^{2} \sum_{i} \left(\frac{\boldsymbol{\alpha}_{i} \times \mathbf{r}_{2i}}{r_{2i}^{3}} \right) + g_{Hf} \mu_{N} I^{1} \sum_{i} \left(\frac{\boldsymbol{\alpha}_{i} \times \mathbf{r}_{1i}}{r_{1i}^{3}} \right)$$

$$-e^2\sum_{q}(-1)^q\hat{Q}_q^2(I^1)\sum_{i}\sqrt{\frac{2\pi}{5}}\frac{Y_{2q}(\theta_{1i},\phi_{1i})}{r_{1i}^3},$$

 $g_F=5.25773$ и $g_{\rm Hf}=-0.1424$ — g-факторы ядер $^{19}{\rm F}$ и $^{179}{\rm Hf}$, μ_N — ядерный магнетон, $I^1=9/2$ — спин ядра $^{179}{\rm Hf}$ и $I^2=1/2$ — спин ядра $^{19}{\rm F}$, α — вектор матриц Дирака, ${\bf r}_{1i}$ (${\bf r}_{2i}$) — радиус-вектор для i-го электрона в координатной системе центрированной на ядре ${\rm Hf}({\rm F})$, $\hat{Q}_q^2(I^1)$ — оператор квадрупольного момента для ядра $^{179}{\rm Hf}$, в отличие от (2) суммирование осуществляется по всем электронам.

Последнее слагаемое в $\ddot{\mathbf{H}}_{mol}$ описывает взаимодействие со внешними полями:

$$\hat{\mathbf{H}}_{\text{ext}} = \mu_B \left(\mathbf{L}^e - g_s \mathbf{S}^e \right) \cdot \mathbf{B}$$

$$- g_F \frac{\mu_N}{\mu_B} \mathbf{I}^2 \cdot \mathbf{B} - \mathbf{D} \cdot \mathbf{E} - g_{\text{Hf}} \frac{\mu_N}{\mu_B} \mathbf{I}^1 \cdot \mathbf{B}, \tag{5}$$

 $g_S = -2.0023$ — g-фактор для свободного электрона, \mathbf{D} — оператор дипольного момента, μ_B — магнетон Бора. В данной работе рассматривались постоянные поля ($\mathbf{E} = \mathbf{E}_{\text{static}}$, $\mathbf{B} = \mathbf{B}_{\text{static}}$) и вращающиеся против часовой стрелки вокруг оси \hat{z} [6]:

$$\mathbf{E}(\mathbf{t}) = E_{\text{rot}}(\hat{x}\cos(\omega_{\text{rot}}t) + \hat{y}\sin(\omega_{\text{rot}}t)),$$

$$\mathbf{B}(t) = \mathcal{B}_{\text{rot}}(\hat{x}\cos(\omega_{\text{rot}}t) + \hat{y}\sin(\omega_{\text{rot}}t)). \tag{6}$$

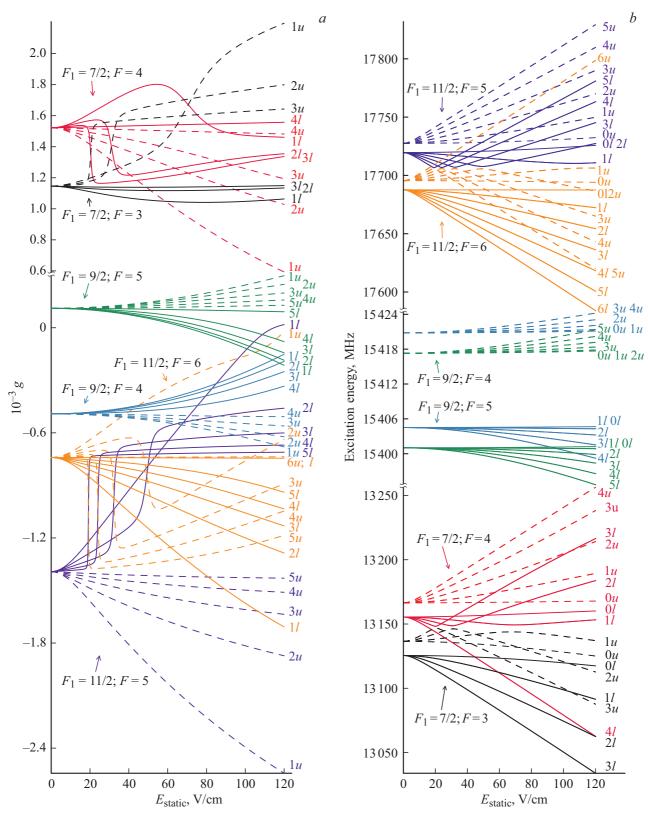
В случае вращающихся полей расчеты проводились для частот $\omega_{\rm rot}/2\pi=150,\ 250\ {\rm kHz},$ которые соответствуют использовавшимся значениям в эксперименте на катионе $^{180}{\rm Hf^{19}F^{+}[3]}.$

Для нахождения собственных значений $\hat{\mathbf{H}}_{mol}$ использовался базисный набор электронно-вращательных со спиновыми функциями ядер волновых функций

$$\Psi_{2S+1}{}_{\Lambda_{\mathcal{O}}}\theta^{J}_{M,\Omega}(\alpha,\beta)U^{\mathrm{H}f}_{I^{1}}M^{1}U^{\mathrm{F}}_{I^{2}M^{2}}.\tag{7}$$

Здесь $\Psi_{^{2S+1}\Lambda_\Omega}$ — электронная волновая функция, $\theta^{J}_{M,\Omega}(\alpha,\beta)=\sqrt{(2J+1)/4\pi}D^{J}_{M,\Omega}(\alpha,\beta,\gamma=0)$ вращательная волновая функция, α,β,γ углы Эйлера, $U^{Hf}_{I^1M^1}$ и $U^F_{I^2M^2}$ это ядерные спиновые волновые функции гафния и фтора соответственно, $M(\Omega)$ — проекция молекулярного углового момента молекулы на лабораторную ось \hat{z} (межьядерную $\hat{\xi}$) и $M^{1,2}$ — проекция ядерных угловых моментов на ту же ось, Λ — проекция орбитального момента электронов на межьядерную ось, S — спин электронов. Отметим, что квантовые числа S и Λ являются приближенными и используются только для обозначения нерелятивистского терма с наибольшим весом в разложении релятивистской волновой функции.

Следуя работе [8], в расчет были включены электронные состояния $\Psi_{^{2S+1}\Lambda_\Omega}={}^3\Delta_1,\,{}^3\Delta_2,\,{}^3\Pi_{0^+}$ и ${}^3\Pi_{0^-}.$ Основной интерес представляет состояние ${}^3\Delta_1,\,$ поэтому сверхтонкое взаимодействие учитывалось только для этого состояния [5]. Основное состояние ${}^1\Sigma^+$ было исключено из расчетов, так как оно не дает заметного вклада по сравнению с другими электронными состояниями, усложняет структуру и увеличивает время вычислений. Необходимые для расчета электронные матричные элементы были взяты из работы [10].


3. Результаты

Сверхтонкая структура основного вращательного уровня $^{179}{\rm HfF^+}$ хорошо описываются схемой связи

$$\mathbf{F}_1 = \mathbf{J} + \mathbf{I}^1,$$

$$\mathbf{F} = \mathbf{F}_1 + \mathbf{I}^2.$$
(8)

Электронно-вращательный момент молекулы **J** сначала складывается со спином ядра гафния \mathbf{I}^1 в промежуточный момент \mathbf{F}_1 . Для J=1, $^3\Delta_1$ имеем $F_1=7/2$, $F_1=9/2$, $F_1=11/2$. Сверхтонкое взаимодействие с ядром гафния расщепляет уровни с различным значениями F_1 на величину порядка 2250 MHz. Далее момент \mathbf{F}_1 складывается со спином ядра фтора \mathbf{I}^2 в полный момент \mathbf{F} . Сверхтонкое взаимодействие с ядром фтора дает расщепление уровней с полным моментом $F=F_1\pm 1/2$ порядка 40 MHz. Из-за небольшой величины сверхтонкого взаимодействия с ядром фтора F_1 является хоть и не точным, но хорошим квантовым числом. Тот факт, что

Рис. 1. g-факторы (a) и уровни энергии (b) для различных проекций как функции электрического поля. Сплошной и штриховой линиями показаны уровни с противоположной четностью. Равенство g-факторов может уменьшить систематические ошибки в экспериментах.

Таблица	1.	Значения	g-факторов	для	уровня	$^{3}\Delta_{1}$,	J=1,
полученны	e p	азными под	дходами при	отсут	гствии по	олей	

F_1	F	g^a	g^b	$\delta g,\%$	g^c
7/2	3	0.00101	0.00116	15	0.00115
	4	0.00142	0.00153	8	0.00152
9/2	5	$5.403 \cdot 10^{-6}$	0.0000914	1592	0.00011
	4	-0.00063	-0.000515	18	-0.000493
11/2	6	-0.0008	-0.000771	4	-0.000740
	5	-0.00147	-0.00143	3	-0.00139

Примечание. a Уравнение [9]. b Численный расчет. c Численный расчет, неадиабатическим взаимодействием между различными электронными состояниями пренебрежено.

схема связи [8] работает хорошо, виден из сравнения g-факторов, рассчитанных численно и по схеме связи [8] (см. ниже).

Учет кориолисова взаимодействия и электрического квадрупольного сверхтонкого взаимодействия, которые связывают электронные уровни $^3\Delta_1$ с противоположными значениями Ω , дополнительно приводит к расщеплению между уровнями Ω -дублетов, обладающих противоположной четностью.

В отсутствие внешних полей согласно схеме связи [8] g-фактор сверхтонких подуровней может быть рассчитан по формуле:

$$g = g^{1} \frac{F(F+1) + F_{1}(F_{1}+1) - I^{2}(I^{2}+1)}{2F_{1}(F_{1}+1)J(J+1)} + g_{F} \frac{\mu_{N}}{\mu_{B}} \frac{F(F+1) - F_{1}(F_{1}+1) + I^{2}(I^{2}+1)}{2F(F+1)},$$
(9)

где

$$g^{1} = -G_{\parallel} \frac{F_{1}(F_{1}+1) + J(J+1) - I^{1}(I^{1}+1)}{2F_{1}(F_{1}+1)J(J+1)} + g_{Hf} \frac{\mu_{N}}{\mu_{B}} \frac{F_{1}(F_{1}+1) - J(J+1) + I^{1}(I^{1}+1)}{2F_{1}(F_{1}+1)}, \quad (10)$$

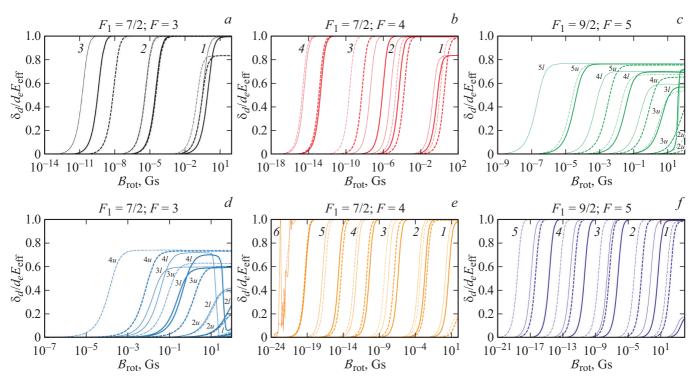
где $G_{\parallel} = 0.011768$ [5].

В табл. 1 приводятся g-факторы, полученные по формулам (9), (10), и результаты численных расчетов, которые учитывают неадиабатическое взаимодействие между электронными состояниями и сверхтонкое взаимодействие между различными вращательными уровнями. Численные расчеты дают результаты, отличающиеся от полученных по выражениям (9), (10) на 3-18%; для $F_1=9/2$, F=5 различие много больше изза частичного сокращения различных вкладов. Такой же эффект наблюдался в предыдущем расчете изотопа 177 Hf для $F_1=7/2$, F=4 [8]. В последнем столбце табл. 1 приведены результаты, где неадиабатическим взаимодействием пренебрежено.

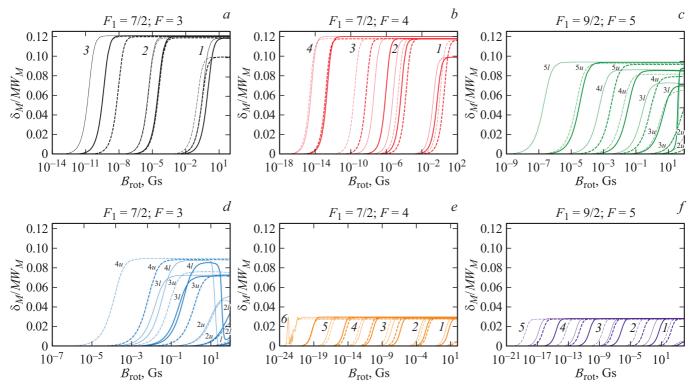
На рис. 1, a изображены g-факторы для различных проекций полного момента F как функции постоянного

электрического поля. Резкое изменение в значениях g-факторов для уровней $F_1=7/2,\,F=4$ и $F_1=7/2,\,F=5$ при $m_F=1,\,2,\,3;\,\,F_1=11/2,\,\,F=5$ и $F_1=11/2,\,\,F=4$ при $m_F=1,\,2,\,3,\,4,\,5$ возникает вследствие псевдопересечений уровней энергии с одинаковой проекцией полного момента (m_F) при соответствующих значения электрического поля (рис. 1,b). Уровни с различными проекциями m_F не взаимодействуют и могут пересекаться. g-факторы для верхнего и нижнего Ω -дублетов становятся равными при $E_{\rm static}=2-12\,{\rm V/cm}$ для $F_1=11/2,\,F=5;\,F_1=9/2,\,F=5;\,F_1=7/2,\,F=3.$

Результаты вычисления сдвигов энергии различных зеемановских подуровней из-за \mathcal{T} , \mathcal{P} -нечетного электромагнитного взаимодействия как функций вращающегося магнитного поля при значении вращающегося электрического поля $\varepsilon_{\rm rot}=110\,{\rm V/cm}$ представлены на рис. 2, 3. Результаты представлены в единицах $d_e E_{\rm eff}$ для электронного ЭДМ и MW_M для сдвигов МКМ. Здесь $E_{\rm eff}$ это эффективное электрическое поле,


$$E_{\text{eff}} = \left\langle \Psi_{^{3}\Delta_{1}} \middle| \sum_{i} \begin{pmatrix} 0 & 0 \\ 0 & 2\sigma_{i}E_{i} \end{pmatrix} \middle| \Psi_{^{3}\Delta_{1}} \right\rangle, \tag{11}$$

 σ — матрицы Паули, E_i — внутреннее молекулярное электрическое поле, действующее на i-й электрон,


$$W_{\rm M} = \frac{3}{2} \frac{1}{\Omega} \left\langle \Psi_{^{3}\Delta_{1}} \left| \sum_{i} \left(\frac{\alpha_{i} \times \mathbf{r}_{i}}{r_{i}^{5}} \right)_{\xi} r_{\xi} \right| \Psi_{^{3}\Delta_{1}} \right\rangle, \quad (12)$$

M — магнитный квадрупольный момент ядра ¹⁷⁹ Hf, $E_{\rm eff}=24$ GV/cm [11,12], 22.5 GV/cm [13], 22.7 GV/cm [14], $W_M=0.494\cdot 10^{33}$ Hz/e cm²) [15].

Электрическое поле выбиралось таким образом, чтобы полученный сдвиг зеемановских подуровней, возникающий вследствие \mathcal{T} , \mathcal{P} -нечетных эффектов, был близок к максимальному, а также чтобы расстояние между различными компонентами Зеемана было достаточно большим. Если последнее не выполняется, то взаимодействие между уровнями (во вращающихся полях могут взаимодействовать уровни с различными m_F) искажает структуру Ω —дублетов, используемую для подавления систематических эффектов, и приводит к немонотонной зависимости энергетических сдвигов от вращающегося магнитного поля. Для выбранного значения электрического поля такой эффект наблюдается для небольшого числа уровней $F_1 = 9/2$, F = 4 и проявляется в уменьшении чувствительности при увеличении магнитного поля. Вращающееся электрическое поле связывает зеемановские подуровни m_F и $-m_F$ и превращает вырождение между ними (в случае статичного электрического поля) в расщепление между новыми собственными состояниями, которые представляют из себя когерентную суперпозицию m_F и $-m_F$ с одинаковыми весами. Значения для описанных выше расщеплений для верхнего ΔE_u и нижнего ΔE_l Ω -дублетов даны в табл. 2. $\Delta E_{u,l}$ изменяется в широком интервале. Чем больше m_F , тем меньше расщепление [16], и меньшее

Рис. 2. Сдвиг энергии, индуцированный ЭДМ электрона [6], как функция индукции (в ед. Gs) вращающихся магнитных полей для разных проекций m_F (числа на графике). В вычислениях $E_{\rm rot}=110\,{\rm V/cm}$. Тонкая линия для $\omega=150\,{\rm kHz}$ и толстая для $\omega=250\,{\rm kHz}$. Сплошной и штриховой линиями показаны уровни с противоположной четностью.

Рис. 3. Сдвиг энергии, индуцированный МКМ [6], как функция индукции (в ед. Gs) вращающихся магнитных полей для разных проекций m_F (числа на графике). В вычислениях $E_{\rm rot}=110\,{\rm V/cm}$. Тонкая линия для $\omega=150\,{\rm kHz}$ и толстая для $\omega=250\,{\rm kHz}$. Сплошной и штриховой линиями показаны уровни с противоположной четностью.

Таблица 2. Значения ΔE_u и ΔE_l . В вычислениях $E_{\mathrm{rot}} = 110\,\mathrm{V/cm}$

F_1	F	m_F	ω , kHz	ΔE_l , MHz	ΔE_u , MHz
7/2	3	1	150	$1.52435 \cdot 10^{-3}$	$9.10813 \cdot 10^{-4}$
			250	$4.23292 \cdot 10^{-3}$	$2.53381 \cdot 10^{-3}$
		2	150	$4.19037 \cdot 10^{-8}$	$7.16493 \cdot 10^{-8}$
			250	$3.23260 \cdot 10^{-7}$	$5.58474 \cdot 10^{-7}$
		3	150	$2.85993 \cdot 10^{-13}$	$8.09841 \cdot 10^{-12}$
			250	$6.12577 \cdot 10^{-12}$	$1.73697 \cdot 10^{-10}$
	4	1	150	$1.14757 \cdot 10^{-3}$	$3.31598 \cdot 10^{-3}$
			250	$3.19356 \cdot 10^{-3}$	$9.20568 \cdot 10^{-3}$
		2	150	$7.26199 \cdot 10^{-8}$	$2.05909 \cdot 10^{-7}$
			250	$5.60754 \cdot 10^{-7}$	$1.57858 \cdot 10^{-6}$
		3	150	$7.28720 \cdot 10^{-10}$	$4.23600 \cdot 10^{-12}$
			250	$1.53121 \cdot 10^{-8}$	$9.07810 \cdot 10^{-11}$
		4	150	$< 10^{-16}$	$< 10^{-16}$
			250	$7 \cdot 10^{-15}$	4.10^{-15}
9/2	5	1	150	$4.33720 \cdot 10^{-1}$	$4.02072 \cdot 10^{-1}$
			250	$6.84972 \cdot 10^{-1}$	$5.62085 \cdot 10^{-1}$
		2	150	$4.90057 \cdot 10^{-2}$	$1.62072 \cdot 10^{-1}$
			250	$8.24468 \cdot 10^{-2}$	$3.87435 \cdot 10^{-1}$
		3	150	$3.62162 \cdot 10^{-4}$	$6.46314 \cdot 10^{-3}$
			250	$6.86457 \cdot 10^{-3}$	$8.17419 \cdot 10^{-2}$
		4	150	$5.88375 \cdot 10^{-7}$	$3.32795 \cdot 10^{-5}$
		_	250	$3.30570 \cdot 10^{-5}$	$1.62921 \cdot 10^{-3}$
		5	150	$3.21503 \cdot 10^{-10}$	$4.66679 \cdot 10^{-8}$
			250	$5.04842 \cdot 10^{-8}$	$1.99454 \cdot 10^{-2}$
	4	1	150	$3.42884 \cdot 10^{-1}$	$3.53225 \cdot 10^{-1}$
		2	250	$5.96811 \cdot 10^{-1}$ $1.86316 \cdot 10^{-2}$	$5.21412 \cdot 10^{-1}$ $5.19938 \cdot 10^{-2}$
		2	150	$1.07725 \cdot 10^{-1}$	$2.13099 \cdot 10^{-1}$
		3	250 150	$5.59741 \cdot 10^{-5}$	$5.63714 \cdot 10^{-4}$
		3	250	$2.66309 \cdot 10^{-1}$	$9.98631 \cdot 10^{-3}$
		4	150	$2.26506 \cdot 10^{-4}$	$1.18049 \cdot 10^{-6}$
		7	250	$1.44111 \cdot 10^{-1}$	$6.17998 \cdot 10^{-5}$
11/2	6	1	150	$1.14311 \cdot 10^{-2}$	$5.88727 \cdot 10^{-3}$
11,2		•	250	$3.16758 \cdot 10^{-2}$	$1.62838 \cdot 10^{-2}$
		2	150	$3.09579 \cdot 10^{-6}$	$3.41715 \cdot 10^{-6}$
			250	$2.38561 \cdot 10^{-5}$	$2.64318 \cdot 10^{-5}$
		3	150	$2.99169 \cdot 10^{-10}$	$7.09640 \cdot 10^{-11}$
			250	$6.40552 \cdot 10^{-9}$	$1.52162 \cdot 10^{-9}$
		4	150	$1.3 \cdot 10^{-14}$	6.10^{-15}
			250	$7.85 \cdot 10^{-13}$	$3.69 \cdot 10^{-13}$
		5	150	$< 10^{-16}$	$< 10^{-16}$
			250	$< 10^{-16}$	$< 10^{-16}$
		6	150	$< 10^{-16}$	$< 10^{-16}$
			250	$< 10^{-16}$	$< 10^{-16}$
	5	1	150	$2.18336 \cdot 10^{-3}$	$6.48993 \cdot 10^{-3}$
			250	$6.04301 \cdot 10^{-3}$	$1.80017 \cdot 10^{-2}$
		2	150	$2.80221 \cdot 10^{-5}$	$1.01232 \cdot 10^{-6}$
		2	250	$2.10234 \cdot 10^{-4}$	$7.80459 \cdot 10^{-6}$
		3	150	$2.47411 \cdot 10^{-10} 5.30283 \cdot 10^{-9}$	$5.5335 \cdot 10^{-11}$ $1.1852 \cdot 10^{-9}$
		4	250	$5.30283 \cdot 10^{-14}$	$1.1852 \cdot 10^{-15}$ $2 \cdot 10^{-15}$
		4	150 250	$6.35 \cdot 10^{-13}$	$7.4 \cdot 10^{-14}$
		5	150	$< 10^{-16}$	$< 10^{-16}$
			250	$< 10^{-16}$	$< 10^{-16}$
	İ	l l	250	` '	1 - 10

 $\mathscr{B}_{\rm rot}$ нужно для насыщения. Результаты, также как и с другим изотопом, показывают, что насыщение не достигается для некоторых уровней с $m_F=1,2$ даже при $\mathscr{B}_{\rm rot}=100\,{
m Gs}.$

4. Заключение

Были рассчитаны уровни энергии и g-факторы как функции электрического поля для основного вращательного уровня J=1 электронного состояния $^3\Delta_1$ катиона $^{179}{\rm Hf}^{19}{\rm F}^+$ с учетом сверхтонкого и неадиабатических взаимодействий. Найдены значения электрических полей, где g-факторы штарковских дублетов становятся равны. Наблюдались резкие изменения g-факторов в точках псевдопересечения энергий уровней сверхтонкой структуры.

Была рассчитана зависимость сдвигов зеемановских подуровней вследствие взаимодействия с ЭДМ электрона и МКМ ядра 179 Hf от значений вращающегося электрического и магнитного полей. Сдвиг для некоторых подуровней с проекцией $m_F=1,2$ не достигает насыщения вплоть до магнитного поля в 100 Gs. Тогда как уровни с большими проекциями достигают предельного насыщения при очень малых магнитных полях $\sim 10^{-10} - 10^{-7}$ Gs.

Финансирование работы

Работа выполнена при поддержке РНФ (проект № 18-12-00227).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] *Khriplovich I.B.*. Parity non-conservation in atomic phenomena. NY:: Gordon and Breach, 1991.
- [2] Loh H., Cossel K.C., Grau M.C. et al. // Science. 2013.
 Vol. 342. N 6163. P. 1220-1222.
 doi 10.1126/science.1243683
- [3] Cairncross William B., Gresh Daniel N., Grau Matt, et al. // Phys. Rev. Lett. 2017. V. 119. P. 153001.
- [4] Flambaum V.V., DeMille D., Kozlov M.G. // Phys. Rev. Lett. 2014. Sep. Vol.113. P. 103003.
- [5] Petrov A.N., Skripnikov L.V., Titov A.V. // Phys. Rev. A. 2017.V. 96. P. 022508.
- [6] Petrov A. N. // Phys. Rev. A. 2018. V. 97. P. 052504.
- [7] Petrov A.N., Skripnikov L.V., Titov A.V. et al. // Phys. Rev. A. 2014. V. 89. P. 062505.
- [8] Kurchavov I. P., Petrov A. N. // Phys. Rev. A. 2020. Sep. Vol. 102. P. 032805.
- [9] Kevin C. Cossel, Daniel N. Gresh, Laura C. Sinclair et al. // Chem. Phys. Lett. 2012. V. 546. N 0. P. 1–11.
- [10] Petrov A.N., Skripnikov L.V., Titov A.V., Flambaum V.V. // Phys. Rev. A. 2018. V. 98. P. 042502.

- [11] Petrov A.N., Mosyagin N.S., Isaev T.A., Titov A.V. // Phys. Rev. A. 2007. V. 76. P. 030501(R).
- [12] Petrov A.N., Mosyagin N.S., Titov A.V. // Phys. Rev. A. 2009. V. 79. P. 012505.
- [13] Skripnikov L. V. // J. Comp. Phys. 2017. V. 147. N 2. P. 021101.
- [14] Fleig Timo // Phys. Rev. A. 2017. V. 96. P. 040502.
- [15] Skripnikov L.V., Titov A.V., Flambaum V.V. // Phys. Rev. A 2017. V. 95. P. 022512.
- [16] *Leanhardt A.E., Bohn J.L., Loh H. et al.* // J. of Molecular Spectroscopy. 2011. V. 270. N 1. P. 1–25.