01

Расчет ¹⁷⁹HfF⁺ для поиска эффектов нарушения пространственной четности и временной инвариантности

© И.П. Курчавов¹, А.Н. Петров^{1,2}¶

 ¹ Петербургский институт ядерной физики им. Б.П. Константинова Национального исследовательского центра "Курчатовский институт", 188300 Гатчина, Россия
 ² Санкт-Петербургский государственный университет, 199034 Санкт-Петербург, Россия

e-mail: kurchavovigor58@gmail.com, [¶]petrov an@pnpi.nrcki.ru

Поступила в редакцию 04.03.2021 г. В окончательной редакции 18.03.2021 г. Принята к публикации 22.03.2021 г.

Для электронного состояния ${}^{3}\Delta_{1}$ иона 179 Hf¹⁹F⁺ проведены расчеты сдвигов энергий подуровней сверхтонкой структуры основного вращательного состояния вследствие взаимодействия электрического дипольного момента электрона (*e*EDM) и магнитного квадрупольного момента (MKM) ядра 179 Hf с внутренним электромагнитным полем катиона. Особенностью экспериментов по поиску *e*EDM и MKM на 179 Hf¹⁹F⁺ является использование вращающихся внешних полей, что усложняет проведение расчетов и делает их более актуальными. Для заселения энергетических уровней нужно знать их структуру, а знание *g*-факторов уровней позволит подавлять ряд систематических ошибок в эксперименте, связанных с неполным контролем величины используемого магнитного поля. Поэтому соответствующие расчеты также были проведены. Наши расчеты могут быть использованы для планирования эксперимента с катионом 179 HfF⁺ и интерпретации полученных данных.

Ключевые слова: сверхтонкая структура, *g*-фактор, магнитный квадрупольный момент, электрический дипольный момент электрона.

DOI: 10.21883/OS.2021.07.51072.1936-21

1. Введение

Для поиска физики за пределами Стандартной Модели особый интерес представляет изучение нарушающих пространственную четность (Э) и временную инвариантность (Г) эффектов, связанных с наличием перманентного электрического дипольного момента электрона (eEDM) и магнитных квадрупольных моментов (МКМ) ядер [1]. Недавно в эксперименте с захваченными катионами ¹⁸⁰HfF⁺ с бесспиновым изотопом ¹⁸⁰Нf для ЭДМ электрона было получено ограничение $|d_e| < 1.3 \times 10^{-28} \, e \mathrm{cm}$ (с вероятностью 90%) [2,3]. Измерения проводились на основном вращательном уровне J = 1 в метастабильном электронном состоянии $H^{3}\Delta_{1}$. Учитывая большой потенциал для изучения эффектов нарушения \mathcal{T}, \mathcal{P} на ионах HfF⁺, в работе [4] было предложено использовать ионы ¹⁷⁷Нf¹⁹F⁺ и ¹⁷⁹Нf¹⁹F⁺ для измерения магнитного квадрупольного момента ядер ¹⁷⁷Нf и ¹⁷⁹Нf со спинами I = 7/2 и I = 9/2 соответственно.

 \mathscr{T} , \mathscr{P} -нечетные эффекты, возникающие в результате взаимодействия МКМ и электронного ЭДМ с внутренним электромагнитным полем молекулы в $^{177}\mathrm{Hf^{19}F^{+}}$ и $^{179}\mathrm{Hf^{19}F^{+}}$ были рассмотрены в работе [5]. Была исследована роль сверхтонкого взаимодействия, был рассчитан МКМ-сдвиг как функция внешнего статического электрического поля, и было показано, что МКМ-эффекты можно отличить от электронного ЭДМ из-за явной зависимости МКМ-сдвига от сверхтонкого подуровня.

Важной характеристикой экспериментов на HfF⁺ является то, что для захвата ионов используются вращающиеся магнитные и электрические поля. В этом случае магнитное поле в отличие от экспериментов в статических полях должно обеспечивать ненулевой сдвиг энергии из-за возможных *I*, *P*-нечетных эффектов [3,6]. Для того чтобы полностью поляризовать молекулу и получить максимальный *T*, *P*-нечетный эффект, как вращающиеся электрические, так и магнитные поля должны быть достаточно большими. Величина насыщающего магнитного поля сильно зависит от используемого зеемановского подуровня иона, и ее значения необходимы для планирования эксперимента. Также для заселения требуемых уровней в экспериментах нужно знать структуру энергетических уровней, а знание g-факторов помогает контролировать и подавлять систематические эффекты от неучтенного магнитного поля [5,7].

Соответствующие расчеты для системы ¹⁷⁷ HfF⁺ были выполнены в работе [8]. Основной целью данной работы является проведение аналогичных расчетов для ¹⁷⁹ HfF⁺. Были исследованы \mathcal{T} , \mathcal{P} -нечетные свойства сверхтонких подуровней основного вращательного уровня J = 1 электронного состояния ³ Δ_1 катиона ¹⁷⁹ HfF⁺ во внешних вращающихся электрических и магнитных полях.

2. Методы

Следуя работе [8], для расчетов использовался гамильтониан молекулы

$$\mathbf{H}_{\text{mol}} = \mathbf{H}_{\text{el}} + \mathbf{H}_{\text{rot}} + \mathbf{H}_{\text{hfs}} + \mathbf{H}_{\text{ext}}, \qquad (1)$$

где

$$\hat{\mathbf{H}}_{\rm el} = \sum_{i_{\nu}} \left[-\frac{1}{2} \bar{\nabla}^2(i_{\nu}) + V(i_{\nu}) + U^{\rm Ef}(i_{\nu}) \right] + \sum_{i_{\nu} > j_{\nu}} \frac{1}{r_{i_{\nu}j_{\nu}}}.$$
(2)

 $U^{\rm Ef}$ — оператор обобщенного релятивистского потенциала остова (ОРЭПО), индексы i_v и j_v пробегают только по валентным и явно включенным в расчет с ОРЭПО внешним остовным электронам.

$$\hat{\mathbf{H}}_{\rm rot} = B_{\rm rot} \mathbf{J}^2 - 2B_{\rm rot} (\mathbf{J} \cdot \mathbf{J}^{\mathbf{e}})$$
(3)

описывает вращение молекулы, $B_{\rm rot} = 0.2989 \,{\rm cm}^{-1}$ [9] — вращательная постоянная, **J** — полный угловой момент молекулы за вычетом ядерных спинов, **J**^e — полный угловой момент электронной подсистемы.

 $\hat{\mathbf{H}}_{\rm hfs}$ — сверхтонкое взаимодействие, которое включает магнитное сверхтонкое взаимодействие электронов с обоими ядрами и взаимодействие с электрическим квадрупольным моментом ¹⁷⁹Hf,

$$\hat{\mathbf{H}}_{\rm hfs} = g_{\rm F} \mu_N I^2 \sum_{i} \left(\frac{\boldsymbol{a}_i \times \mathbf{r}_{2i}}{r_{2i}^3} \right) + g_{\rm Hf} \mu_N I^1 \sum_{i} \left(\frac{\boldsymbol{a}_i \times \mathbf{r}_{1i}}{r_{1i}^3} \right) - e^2 \sum_{q} (-1)^q \hat{Q}_q^2 (I^1) \sum_{i} \sqrt{\frac{2\pi}{5}} \frac{Y_{2q}(\theta_{1i}, \phi_{1i})}{r_{1i}^3},$$
(4)

 $g_F = 5.25773$ и $g_{\rm Hf} = -0.1424 - g$ -факторы ядер ¹⁹ F и ¹⁷⁹ Hf, μ_N — ядерный магнетон, $I^1 = 9/2$ — спин ядра ¹⁷⁹ Hf и $I^2 = 1/2$ — спин ядра ¹⁹ F, \boldsymbol{a} — вектор матриц Дирака, \mathbf{r}_{1i} (\mathbf{r}_{2i}) — радиус-вектор для *i*-го электрона в координатной системе центрированной на ядре Hf(F), $\hat{Q}_q^2(I^1)$ — оператор квадрупольного момента для ядра ¹⁷⁹ Hf, в отличие от (2) суммирование осуществляется по всем электронам.

Последнее слагаемое в $\hat{\mathbf{H}}_{mol}$ описывает взаимодействие со внешними полями:

$$\hat{\mathbf{H}}_{\text{ext}} = \mu_B \left(\mathbf{L}^e - g_s \mathbf{S}^e \right) \cdot \mathbf{B} - g_F \frac{\mu_N}{\mu_B} I^2 \cdot \mathbf{B} - \mathbf{D} \cdot \mathbf{E} - g_{\text{Hf}} \frac{\mu_N}{\mu_B} I^1 \cdot \mathbf{B},$$
(5)

 $g_{S} = -2.0023 - g$ -фактор для свободного электрона, **D** — оператор дипольного момента, μ_{B} – магнетон Бора. В данной работе рассматривались постоянные поля (**E** = **E**_{static}, **B** = **B**_{static}) и вращающиеся против часовой стрелки вокруг оси \hat{z} [6]:

$$\mathbf{E}(\mathbf{t}) = E_{\rm rot}(\hat{x}\cos(\omega_{\rm rot}t) + \hat{y}\sin(\omega_{\rm rot}t)),$$

$$\mathbf{B}(t) = \mathscr{B}_{rot}(\hat{x}\cos(\omega_{rot}t) + \hat{y}\sin(\omega_{rot}t)). \tag{6}$$

В случае вращающихся полей расчеты проводились для частот $\omega_{\rm rot}/2\pi = 150$, 250 kHz, которые соответствуют использовавшимся значениям в эксперименте на катионе $^{180}{\rm Hf^{19}F^{+}[3]}$.

Для нахождения собственных значений \mathbf{H}_{mol} использовался базисный набор электронно-вращательных со спиновыми функциями ядер волновых функций

$$\Psi_{^{2S+1}\Lambda_{\Omega}}\theta^{J}_{M,\Omega}(\alpha,\beta)U^{\mathrm{H}f}_{I^{1}}M^{1}U^{\mathrm{F}}_{I^{2}M^{2}}.$$
(7)

Здесь $\Psi_{^{25+1}\Lambda_{\Omega}}$ — электронная волновая функция, $\theta^{J}_{M,\Omega}(\alpha,\beta) = \sqrt{(2J+1)/4\pi} D^{J}_{M,\Omega}(\alpha,\beta,\gamma=0)$ вращательная волновая функция, α,β,γ углы Эйлера, $U^{Hf}_{I^{1}M^{1}}$ и $U^{F}_{I^{2}M^{2}}$ это ядерные спиновые волновые функции гафния и фтора соответственно, $M(\Omega)$ — проекция молекулярного углового момента молекулы на лабораторную ось \hat{z} (межьядерную ξ) и $M^{1,2}$ — проекция ядерных угловых моментов на ту же ось, Λ — проекция орбитального момента электронов на межьядерную ось, S — спин электронов. Отметим, что квантовые числа S и Λ являются приближенными и используются только для обозначения нерелятивистского терма с наибольшим весом в разложении релятивистской волновой функции.

Следуя работе [8], в расчет были включены электронные состояния $\Psi_{2^{S+1}\Lambda_{\Omega}} = {}^{3}\Delta_{1}, {}^{3}\Delta_{2}, {}^{3}\Pi_{0^{+}}$ и ${}^{3}\Pi_{0^{-}}$. Основной интерес представляет состояние ${}^{3}\Delta_{1}$, поэтому сверхтонкое взаимодействие учитывалось только для этого состояния [5]. Основное состояние ${}^{1}\Sigma^{+}$ было исключено из расчетов, так как оно не дает заметного вклада по сравнению с другими электронными состояниями, усложняет структуру и увеличивает время вычислений. Необходимые для расчета электронные матричные элементы были взяты из работы [10].

3. Результаты

Сверхтонкая структура основного вращательного уровня $^{179}{\rm HfF^+}$ хорошо описываются схемой связи

$$\mathbf{F}_1 = \mathbf{J} + \mathbf{I}^1,$$

$$\mathbf{F} = \mathbf{F}_1 + \mathbf{I}^2.$$
 (8)

Электронно-вращательный момент молекулы J сначала складывается со спином ядра гафния I¹ в промежуточный момент F₁. Для J = 1, ${}^{3}\Delta_{1}$ имеем $F_{1} = 7/2$, $F_{1} = 9/2$, $F_{1} = 11/2$. Сверхтонкое взаимодействие с ядром гафния расщепляет уровни с различным значениями F_{1} на величину порядка 2250 MHz. Далее момент F₁ складывается со спином ядра фтора I² в полный момент F. Сверхтонкое взаимодействие с ядром фтора дает расщепление уровней с полным моментом $F = F_{1} \pm 1/2$ порядка 40 MHz. Из-за небольшой величины сверхтонкого взаимодействия с ядром фтора F_{1} является хоть и не точным, но хорошим квантовым числом. Тот факт, что

Рис. 1. *g*-факторы (*a*) и уровни энергии (*b*) для различных проекций как функции электрического поля. Сплошной и штриховой линиями показаны уровни с противоположной четностью. Равенство *g*-факторов может уменьшить систематические ошибки в экспериментах.

F_1	F	g^{a}	g^b	$\delta g, \%$	g ^c
7/2	3	0.00101	0.00116	15	0.00115
	4	0.00142	0.00153	8	0.00152
9/2	5	$5.403\cdot 10^{-6}$	0.0000914	1592	0.00011
	4	-0.00063	-0.000515	18	-0.000493
11/2	6	-0.0008	-0.000771	4	-0.000740
	5	-0.00147	-0.00143	3	-0.00139

Таблица 1. Значения *g*-факторов для уровня ${}^{3}\Delta_{1}$, J = 1, полученные разными подходами при отсутствии полей

Примечание. ^а Уравнение [9]. ^b Численный расчет. ^с Численный расчет, неадиабатическим взаимодействием между различными электронными состояниями пренебрежено.

схема связи [8] работает хорошо, виден из сравнения *g*факторов, рассчитанных численно и по схеме связи [8] (см. ниже).

Учет кориолисова взаимодействия и электрического квадрупольного сверхтонкого взаимодействия, которые связывают электронные уровни ${}^{3}\Delta_{1}$ с противоположными значениями Ω , дополнительно приводит к расщеплению между уровнями Ω -дублетов, обладающих противоположной четностью.

В отсутствие внешних полей согласно схеме связи [8] *g*-фактор сверхтонких подуровней может быть рассчитан по формуле:

$$g = g^{1} \frac{F(F+1) + F_{1}(F_{1}+1) - I^{2}(I^{2}+1)}{2F_{1}(F_{1}+1)J(J+1)} + g_{F} \frac{\mu_{N}}{\mu_{B}} \frac{F(F+1) - F_{1}(F_{1}+1) + I^{2}(I^{2}+1)}{2F(F+1)}, \qquad (9)$$

где

$$g^{1} = -G_{\parallel} \frac{F_{1}(F_{1}+1) + J(J+1) - I^{1}(I^{1}+1)}{2F_{1}(F_{1}+1)J(J+1)} + g_{\rm Hf} \frac{\mu_{\rm N}}{\mu_{\rm B}} \frac{F_{1}(F_{1}+1) - J(J+1) + I^{1}(I^{1}+1)}{2F_{1}(F_{1}+1)}, \quad (10)$$

где $G_{\parallel} = 0.011768$ [5].

В табл. 1 приводятся *g*-факторы, полученные по формулам (9), (10), и результаты численных расчетов, которые учитывают неадиабатическое взаимодействие между электронными состояниями и сверхтонкое взаимодействие между различными вращательными уровнями. Численные расчеты дают результаты, отличающиеся от полученных по выражениям (9), (10) на 3-18%; для $F_1 = 9/2$, F = 5 различие много больше изза частичного сокращения различных вкладов. Такой же эффект наблюдался в предыдущем расчете изотопа 1^{77} Нf для $F_1 = 7/2$, F = 4 [8]. В последнем столбце табл. 1 приведены результаты, где неадиабатическим взаимодействием пренебрежено.

На рис. 1, а изображены *g*-факторы для различных проекций полного момента *F* как функции постоянного

электрического поля. Резкое изменение в значениях gфакторов для уровней $F_1 = 7/2$, F = 4 и $F_1 = 7/2$, F = 5при $m_F = 1, 2, 3$; $F_1 = 11/2$, F = 5 и $F_1 = 11/2$, F = 4при $m_F = 1, 2, 3, 4, 5$ возникает вследствие псевдопересечений уровней энергии с одинаковой проекцией полного момента (m_F) при соответствующих значения электрического поля (рис. 1, b). Уровни с различными проекциями m_F не взаимодействуют и могут пересекаться. g-факторы для верхнего и нижнего Ω -дублетов становятся равными при $E_{\text{static}} = 2-12$ V/cm для $F_1 = 11/2$, F = 5; $F_1 = 9/2$, F = 5; $F_1 = 7/2$, F = 3.

Результаты вычисления сдвигов энергии различных зеемановских подуровней из-за \mathcal{T} , \mathcal{P} -нечетного электромагнитного взаимодействия как функций вращающегося магнитного поля при значении вращающегося электрического поля $\varepsilon_{\rm rot} = 110$ V/ст представлены на рис. 2, 3. Результаты представлены в единицах $d_e E_{\rm eff}$ для электронного ЭДМ и MW_M для сдвигов МКМ. Здесь $E_{\rm eff}$ это эффективное электрическое поле,

$$E_{\text{eff}} = \left\langle \Psi_{^{3}\Delta_{1}} | \sum_{i} \begin{pmatrix} 0 & 0 \\ 0 & 2\sigma_{i}E_{i} \end{pmatrix} | \Psi_{^{3}\Delta_{1}} \right\rangle, \qquad (11)$$

 σ — матрицы Паули, E_i — внутреннее молекулярное электрическое поле, действующее на *i*-й электрон,

$$W_{\rm M} = \frac{3}{2} \frac{1}{\Omega} \left\langle \Psi_{^{3}\Delta_{1}} \left| \sum_{i} \left(\frac{\alpha_{i} \times \mathbf{r}_{i}}{r_{i}^{5}} \right)_{\xi} r_{\xi} \right| \Psi_{^{3}\Delta_{1}} \right\rangle, \quad (12)$$

M — магнитный квадрупольный момент ядра ¹⁷⁹Hf, $E_{\rm eff} = 24$ GV/cm [11,12], 22.5 GV/cm [13], 22.7 GV/cm [14], $W_M = 0.494 \cdot 10^{33}$ Hz/e cm²) [15].

Электрическое поле выбиралось таким образом, чтобы полученный сдвиг зеемановских подуровней, возникающий вследствие Г, Р-нечетных эффектов, был близок к максимальному, а также чтобы расстояние между различными компонентами Зеемана было достаточно большим. Если последнее не выполняется, то взаимодействие между уровнями (во вращающихся полях могут взаимодействовать уровни с различными m_F) искажает структуру Ω -дублетов, используемую для подавления систематических эффектов, и приводит к немонотонной зависимости энергетических сдвигов от вращающегося магнитного поля. Для выбранного значения электрического поля такой эффект наблюдается для небольшого числа уровней $F_1 = 9/2$, F = 4 и проявляется в уменьшении чувствительности при увеличении магнитного поля. Вращающееся электрическое поле связывает зеемановские подуровни m_F и -m_F и превращает вырождение между ними (в случае статичного электрического поля) в расщепление между новыми собственными состояниями, которые представляют из себя когерентную суперпозицию m_F и -m_F с одинаковыми весами. Значения для описанных выше расщеплений для верхнего ΔE_u и нижнего ΔE_l Ω -дублетов даны в табл. 2. $\Delta E_{u,l}$ изменяется в широком интервале. Чем больше m_F , тем меньше расщепление [16], и меньшее

Рис. 2. Сдвиг энергии, индуцированный ЭДМ электрона [6], как функция индукции (в ед. Gs) вращающихся магнитных полей для разных проекций m_F (числа на графике). В вычислениях $E_{\rm rot} = 110$ V/cm. Тонкая линия для $\omega = 150$ kHz и толстая для $\omega = 250$ kHz. Сплошной и штриховой линиями показаны уровни с противоположной четностью.

Рис. 3. Сдвиг энергии, индуцированный МКМ [6], как функция индукции (в ед. Gs) вращающихся магнитных полей для разных проекций m_F (числа на графике). В вычислениях $E_{\rm rot} = 110$ V/cm. Тонкая линия для $\omega = 150$ kHz и толстая для $\omega = 250$ kHz. Сплошной и штриховой линиями показаны уровни с противоположной четностью.

829

F F_1 ω , kHz ΔE_l , MHz ΔE_u , MHz m_F 3 $1.52435 \cdot 10^{-3}$ $9.10813 \cdot 10^{-4}$ 7/21 150 $2.53381 \cdot 10^{-3}$ 250 $4.23292 \cdot 10^{-3}$ $4.19037 \cdot 10^{-8}$ 2 150 $7.16493 \cdot 10^{-8}$ $3.23260 \cdot 10^{-7}$ $5.58474 \cdot 10^{-7}$ 250 $8.09841{\cdot}10^{-12}$ $2.85993{\cdot}10^{-13}$ 3 150 $6.12577{\cdot}10^{-12}$ $1.73697{\cdot}10^{-10}$ 250 $3.31598 \cdot 10^{-3}$ $1.14757 \cdot 10^{-3}$ 4 150 1 $9.20568{\cdot}10^{-3}$ $3.19356 \cdot 10^{-3}$ 250 $7.26199 \cdot 10^{-8}$ 2 150 $2.05909 \cdot 10^{-7}$ $1.57858{\cdot}10^{-6}$ 250 $5.60754 \cdot 10^{-7}$ $4.23600{\cdot}10^{-12}$ $7.28720{\cdot}10^{-10}$ 3 150 $9.07810{\cdot}10^{-11}$ 250 $1.53121 \cdot 10^{-8}$ 4 150 $< 10^{-16}$ $< 10^{-16}$ $7 \cdot 10^{-15}$ $4 \cdot 10^{-15}$ 250 $4.02072{\cdot}10^{-1}$ 9/2 5 150 $4.33720 \cdot 10^{-1}$ 1 $5.62085{\cdot}10^{-1}$ 250 $6.84972 \cdot 10^{-1}$ 2 150 $4.90057 \cdot 10^{-2}$ $1.62072 \cdot 10^{-1}$ 250 $8.24468 \cdot 10^{-2}$ $3.87435 \cdot 10^{-1}$ 3 150 $3.62162 \cdot 10^{-4}$ $6.46314 \cdot 10^{-3}$ 250 $6.86457 \cdot 10^{-3}$ $8.17419 \cdot 10^{-2}$ 4 150 $5.88375 \cdot 10^{-7}$ $3.32795 \cdot 10^{-5}$ $1.62921 \cdot 10^{-3}$ 250 $3.30570 \cdot 10^{-5}$ $3.21503 \cdot 10^{-10}$ $4.66679{\cdot}10^{-8}$ 5 150 250 $5.04842 \cdot 10^{-8}$ $1.99454 \cdot 10^{-2}$ 4 $3.42884 \cdot 10^{-1}$ $3.53225 \cdot 10^{-1}$ 1 150 250 $5.96811 \cdot 10^{-1}$ $5.21412 \cdot 10^{-1}$ 2 150 $1.86316 \cdot 10^{-2}$ $5.19938 \cdot 10^{-2}$ $1.07725 \cdot 10^{-1}$ $2.13099 \cdot 10^{-1}$ 250 $5.63714 \cdot 10^{-4}$ 3 $5.59741 \cdot 10^{-5}$ 150 $2.66309 \cdot 10^{-1}$ $9.98631 \cdot 10^{-3}$ 250 4 $2.26506 \cdot 10^{-4}$ $1.18049 \cdot 10^{-6}$ 150 $1.44111 \cdot 10^{-1}$ $6.17998 \cdot 10^{-5}$ 250 11/26 $1.14311 \cdot 10^{-2}$ $5.88727 \cdot 10^{-3}$ 1 150 $3.16758 \cdot 10^{-2}$ $1.62838 \cdot 10^{-2}$ 250 $3.09579 \cdot 10^{-6}$ $3.41715 \cdot 10^{-6}$ 2 150 250 $2.38561 \cdot 10^{-5}$ $2.64318 \cdot 10^{-5}$ $7.09640{\cdot}10^{-11}$ $2.99169{\cdot}10^{-10}$ 3 150 250 $6.40552 \cdot 10^{-9}$ $1.52162 \cdot 10^{-9}$ $1.3 \cdot 10^{-14}$ $6 \cdot 10^{-15}$ 4 150 $7.85 \cdot 10^{-13}$ $3.69 \cdot 10^{-13}$ 250 $< 10^{-16}$ $< 10^{-16}$ 5 150 $< 10^{-16}$ $< 10^{-16}$ 250 $< 10^{-16}$ $< 10^{-16}$ 6 150 $< 10^{-16}$ $< 10^{-16}$ 250 5 $2.18336 \cdot 10^{-3}$ $6.48993 \cdot 10^{-3}$ 1 150 $1.80017 \cdot 10^{-2}$ $6.04301 \cdot 10^{-3}$ 250 2 150 $2.80221 \cdot 10^{-5}$ $1.01232 \cdot 10^{-6}$ $7.80459{\cdot}10^{-6}$ 250 $2.10234 \cdot 10^{-4}$ 3 150 $2.47411 \cdot 10^{-10}$ $5.5335 \cdot 10^{-11}$ 250 $5.30283 \cdot 10^{-9}$ $1.1852 \cdot 10^{-9}$ 4 150 $1.1 \cdot 10^{-14}$ $2 \cdot 10^{-15}$ $6.35 \cdot 10^{-13}$ $7.4 \cdot 10^{-14}$ 250 $< 10^{-16}$ $< 10^{-16}$ 5 150 $< 10^{-16}$ $< 10^{-16}$ 250

 \mathscr{B}_{rot} нужно для насыщения. Результаты, также как и с другим изотопом, показывают, что насыщение не достигается для некоторых уровней с $m_F = 1, 2$ даже при $\mathscr{B}_{rot} = 100$ Gs.

4. Заключение

Были рассчитаны уровни энергии и *g*-факторы как функции электрического поля для основного вращательного уровня J = 1 электронного состояния ${}^{3}\Delta_{1}$ катиона ${}^{179}\text{Hf}^{19}\text{F}^{+}$ с учетом сверхтонкого и неадиабатических взаимодействий. Найдены значения электрических полей, где *g*-факторы штарковских дублетов становятся равны. Наблюдались резкие изменения *g*-факторов в точках псевдопересечения энергий уровней сверхтонкой структуры.

Была рассчитана зависимость сдвигов зеемановских подуровней вследствие взаимодействия с ЭДМ электрона и МКМ ядра ¹⁷⁹Нf от значений вращающегося электрического и магнитного полей. Сдвиг для некоторых подуровней с проекцией $m_F = 1,2$ не достигает насыщения вплоть до магнитного поля в 100 Gs. Тогда как уровни с большими проекциями достигают предельного насыщения при очень малых магнитных полях $\sim 10^{-10}-10^{-7}$ Gs.

Финансирование работы

Работа выполнена при поддержке РНФ (проект № 18-12-00227).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] *Khriplovich I.B.*. Parity non-conservation in atomic phenomena. NY: Gordon and Breach, 1991.
- [2] Loh H., Cossel K.C., Grau M.C. et al. // Science. 2013.
 Vol. 342. N 6163. P. 1220–1222.
 doi 10.1126/science.1243683
- [3] Cairncross William B., Gresh Daniel N., Grau Matt, et al. // Phys. Rev. Lett. 2017. V. 119. P. 153001.
- [4] Flambaum V.V., DeMille D., Kozlov M.G. // Phys. Rev. Lett. 2014. Sep. Vol.113. P. 103003.
- [5] Petrov A.N., Skripnikov L.V., Titov A.V. // Phys. Rev. A. 2017.
 V. 96. P. 022508.
- [6] Petrov A. N. // Phys. Rev. A. 2018. V. 97. P. 052504.
- [7] Petrov A.N., Skripnikov L.V., Titov A.V. et al. // Phys. Rev. A. 2014. V. 89. P. 062505.
- [8] Kurchavov I. P., Petrov A. N. // Phys. Rev. A. 2020. Sep. Vol. 102. P. 032805.
- [9] Kevin C. Cossel, Daniel N. Gresh, Laura C. Sinclair et al. // Chem. Phys. Lett. 2012. V. 546. N 0. P. 1–11.
- [10] Petrov A.N., Skripnikov L.V., Titov A.V., Flambaum V.V. // Phys. Rev. A. 2018. V. 98. P. 042502.

830

- [11] Petrov A.N., Mosyagin N.S., Isaev T.A., Titov A.V. // Phys. Rev. A. 2007. V. 76. P. 030501(R).
- [12] Petrov A.N., Mosyagin N.S., Titov A.V. // Phys. Rev. A. 2009.
 V. 79. P. 012505.
- [13] Skripnikov L. V. // J. Comp. Phys. 2017. V. 147. N 2. P. 021101.
- [14] Fleig Timo // Phys. Rev. A. 2017. V. 96. P. 040502.
- [15] Skripnikov L.V., Titov A.V., Flambaum V.V. // Phys. Rev. A 2017. V. 95. P. 022512.
- [16] Leanhardt A.E., Bohn J.L., Loh H. et al. // J. of Molecular Spectroscopy. 2011. V. 270. N 1. P. 1–25.