09,04

ВаYb_{2-x} Er_x Ge₃O₁₀ и BaY_{2-10y}Yb_{9y} Er_y Ge₃O₁₀: люминесцентные свойства, перспективы использования для бесконтактного определения температуры

© О.А. Липина, Л.Л. Сурат, А.А. Меленцова, Я.В. Бакланова, А.Ю. Чуфаров, А.П. Тютюнник, В.Г. Зубков

Институт химии твердого тела УрО РАН, Екатеринбург, Россия E-mail: LipinaOlgaA@yandex.ru

Поступила в Редакцию 9 марта 2021 г. В окончательной редакции 9 марта 2021 г. Принята к публикации 14 марта 2021 г.

> Триортогерманаты BaYb_{2-x}Er_xGe₃O₁₀ (x = 0.1-0.3) и BaY_{2-10y}Yb_{9y}Er_yGe₃O₁₀ (y = 0.015-0.15) синтезированы твердофазным методом. Согласно данным порошковой рентгеновской дифракции, соединения кристаллизуются в моноклинной сингонии, пр. гр. $P2_1/m$, Z = 2. Изучены концентрационные и мощностные зависимости апконверсионной люминесценции, возникающей в области 510–720 nm при возбуждении излучением с длиной волны 980 nm. Предложен механизм переноса энергии между оптическими центрами и определен оптимальный состав люминофора. Исследована температурная зависимость соотношения интенсивностей полос люминесценции с максимумами при 521 nm и 552 nm (${}^{2}H_{11/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ переходы в Er³⁺), сделаны выводы о возможности применения триортогерманатов в качестве материалов для флуоресцентных датчиков температуры.

Ключевые слова: апконверсионная люминесценция, германаты, эрбий, датчик температуры, люминофоры.

DOI: 10.21883/FTT.2021.07.51046.050

1. Введение

Неорганические соединения, активированные ионами Er³⁺, являются привлекательными для целого ряда применений. На их основе могут быть созданы активные среды твердотельных лазеров, генерирующих излучение с $\lambda_{\mathrm{ex}} = 1.5\,\mu\mathrm{m}$ либо $2.7\,\mu\mathrm{m}~(^4I_{13/2}
ightarrow ^4I_{15/2}$ и ${}^{4}I_{11/2} \rightarrow {}^{4}I_{13/2}$ переходы в Er³⁺) [1–3], а также апконверсионные материалы, позволяющие преобразовывать инфракрасное (ИК) излучение в излучение видимого диапазона длин волн [4-8]. Для повышения эффективности апконверсионных люминофоров в решетку соединений дополнительно вводят сенсибилизирующие ионы (например, Yb^{3+}), способные более эффективно поглощать энергию инфракрасного излучения коммерческих светодиодов и передавать ее ионам Er^{3+} . Возможность апконверсионного преобразования возбуждающего излучения широко используется в солнечных фотоэлементах и фотовольтаических устройствах [9–12], в дисплеях [5,6], а также при проведении микроскопических исследований биологических объектов [13,14].

На основе соединений, активированных Er^{3+} , может быть создан оптический флуоресцентный датчик температуры. Работа такого датчика основана на измерении отношения интенсивностей двух люминесцентных полос (FIR), обусловленных переходами с двух близкорасположенных уровней ${}^{2}H_{11/2}$ и ${}^{4}S_{3/2}$ на основное ${}^{4}I_{15/2}$ состояние в Er^{3+} ($\Delta E_{21} \sim 710$ cm⁻¹). В условиях термодинамического равновесия отношение населенностей

данных уровней (N₂/N₁) определяется распределением Больцмана

$$N_2/N_1 = (g_2/g_1) \times \exp(\Delta E_{21}/k_{\rm B}T),$$
 (1)

где ΔE_{21} — энергетический зазор между двумя уровнями, eV; $k_{\rm B}$ — константа Больцмана; T — температура; g_2 и g_1 — степени или кратности вырождения уровней ${}^2H_{11/2}$ и ${}^4S_{3/2}$ соответственно.

Таким образом при увеличении температуры происходит рост населенности вышележащего ²*H*_{11/2} состояния за счет переходов с ${}^{4}S_{3/2}$ уровня, что отражается на относительных интенсивностях соответствующих полос и приводит к изменению FIR. Впервые данный метод определения температуры был реализован Н. Berthou и С.К. Jorgensen в 1990 г. [15]. На сегодняшний день он является одним из наиболее часто используемых бесконтактных методов, основанных на применении флюоресцентных зондов. Основные преимущества данного способа измерения — высокая чувствительность и простая схемотехника детектирующей электроники, независимость измеряемой величины от флуктуаций интенсивности и энергии возбуждающего излучения, возможность осуществлять точные измерения в закрытых системах и при неблагоприятных условиях (например в химически агрессивных средах) [16,17].

В 2020 г. М. Suta и А. Meijerink рассмотрели термодинамические и кинетические аспекты FIR-термометрии и дали рекомендации по подбору оптической матрицы и иона-допанта для создания оптического материала, обладающего наибольшей чувствительностью в заданном температурном интервале [18]. Согласно представленным теоретическим расчетам люминофоры, содержащие Er^{3+} , по праву считаются наиболее подходящими для измерения температур близких к комнатной: при $T_0 = 300$ К и $\Delta E_{21} = 710$ сm⁻¹ величина относительной чувствительности, S_r , составляет 1.1% K⁻¹. Кроме того авторами был сделан вывод о том, что оптическая матрица должна обладать фононной энергией ($\hbar\omega$) близкой к ΔE_{21} , либо равной (1/2) ΔE_{21} . В этом случае электрон-фононные процессы, позволяющие преодолеть существующий энергетический зазор, являются наиболее вероятными, так как происходят за счет поглощения энергии минимального количества фононов (одного или двух).

В настоящей работе были впервые изучены характеристики апконверсионные твердых растворов $BaYb_{2-x}Er_xGe_3O_{10}$ (x = 0.1 - 0.3)И $BaY_{2-10y}Yb_{9y}Er_yGe_3O_{10}$ (y = 0.015-0.15). Выбор в качестве объектов исследования германатов, указанного состава неслучаен: по результатам проведенных ранее исследований семейства $BaRe_2Ge_3O_{10}$ (Re = Y, Sc, Gd-Lu) [19] было установлено, что данные соединения обладают высокой химической и термической устойчивостью, являются широкозонными полупроводниками $(E_g = 3.0 - 3.4 \,\mathrm{eV})$, а величина фононной энергии $(\hbar \omega_{\rm max})$ составляет 836-857 сm⁻¹. Вышеперечисленное позволяет говорить о возможности создания на их основе перспективных люминесцентных материалов, в том числе для различных апконверсионных приложений.

2. Методика эксперимента

Твердые растворы $BaYb_{2-x}Er_xGe_3O_{10}$ (x = 0.10, 0.15, 0.20, 0.25, 0.30) и ВаУ₂₋₁₀у Уb₉у Ег_у Ge₃O₁₀ (y = 0.015, 0.025, 0.05, 0.1, 0.15) синтезированы по стандартной керамической технологии. В образцах $BaY_{2-10y}Yb_{9y}Er_yGe_3O_{10}$ соотношение Yb^{3+}/Er^{3+} задавали равным 9/1, поскольку согласно результатам спектрально люминесцентных исследований, предварительно выполненным для серии $BaYb_{2-x}Er_xGe_3O_{10}$, данное значение являлось оптимальным. В качестве исходных веществ для синтеза объектов исследования использовали ВаСО₃ (99.9%), Y₂O₃ (99.99%), Yb₂O₃ (99.99%), Er₂O₃ (99.99%) и GeO₂ (99.95%). Смесь компонентов, взятых в стехиометрических количествах, тщательно перетирали, а затем подвергали ступенчатому отжигу при $T = 900 - 1200^{\circ}$ С с шагом 100° С и выдержкой при каждой температуре в течение 20 h.

Рентгенофазовый анализ синтезированных соединений осуществляли с помощью дифрактометра STADI-P (STOE), оснащенного линейным позиционно-чувствительным детектором. Съемка проводилась в Cu $K_{\alpha 1}$ излучении в интервале углов 2θ 5°-120° с шагом 0.02°. В качестве внутреннего стандарта использовали поликристаллический кремний с параметром элементарной

8 Физика твердого тела, 2021, том 63, вып. 7

ячейки a = 5.43075(5) Å. Идентификацию фаз проводили с использованием картотеки PDF2 (ICDD, 2016). Уточнения структуры выполняли методом Ритвельда с использованием программного пакета GSAS [20,21]. В качестве исходной модели для уточнения профиля рентгенограмм синтезированных германатов использовали данные кристаллической структуры Ba Re_2 Ge₃O₁₀ (Re = Y, Er, Yb) [19].

Спектры апконверсионной люминесценции получены методом синхронной съемки с использованием монохроматора МДР-204 (90° геометрия, дифракционная решетка 1200 lines/mm) и счетчика фотонов на основе ФЭУ R928 (Hamamatsu). В качестве внешнего источника возбуждения использовался диодный лазер, $\lambda_{\rm ex} = 980$ nm, P = 50 mW/mm² (KLM-H980-200-5, ФТИ-Оптроник, Россия). Мощность лазерного излучения контролировали детектором 11XLP12-3S-H2 (Standa). Для проведения высокотемпературных измерений (25–225°C) использовали термостат с оптическими окнами GS-21525 (Specac Ltd).

3. Экспериментальные результаты и их обсуждение

Анализ данных порошковой рентгеновской дифракции показал, что твердые растворы $BaYb_{2-x}Er_xGe_3O_{10}$ (x=0.1-0.3) и $BaY_{2-10y}Yb_{9y}Er_yGe_3O_{10}$ (x=0.015-0.15) изоструктурны, кристаллизуются в моноклинной сингонии, пр. гр. $P2_1/m$, Z = 2. При увеличении степени допирования происходит монотонное изменение параметров ячейки и объема (таблица). При этом для серии $BaYb_{2-x}Er_xGe_3O_{10}$ (x = 0.1-0.3) наблюдается закономерное увеличение кристаллографических параметров вследствие замещения ионов Yb³⁺ ионами Er^{3+} с большим кристаллическим радиусом: $CR_{VI}(Yb^{3+}) = 1.008$ Å,

Параметры кристаллических решеток для твердых растворов $BaYb_{2-x}Er_xGe_3O_{10}$ (x = 0.1-0.3) и $BaY_{2-10y}Yb_{9y}Er_yGe_3O_{10}$ (x = 0.015-0.15)

BaYb _{2-x} Er _x Ge ₃ O ₁₀					
x	a, Å	<i>b</i> , Å	<i>c</i> , Å	eta , $^{\circ}$	$V, \text{\AA}^3$
0.10 0.15 0.20 0.25 0.30	5.5517(5) 5.5525(5) 5.5523(5) 5.5528(5) 5.5524(5)	$\begin{array}{c} 12.3396(10)\\ 12.3401(10)\\ 12.3414(10)\\ 12.3424(10)\\ 12.3439(10) \end{array}$	6.9207(6) 6.9212(6) 6.9222(6) 6.9235(6) 6.9241(6)	$\begin{array}{c} 106.559(5)\\ 106.554(5)\\ 106.553(5)\\ 106.552(5)\\ 106.556(5) \end{array}$	454.45(6) 454.58(6) 454.68(6) 454.84(6) 454.89(6)
$BaY_{2-10y}Yb_{9y}Er_yGe_3O_{10}$					
у	a, Å	<i>b</i> , Å	<i>c</i> , Å	eta , $^{\circ}$	$V, Å^3$
0.015 0.025 0.05 0.10 0.15	5.580(1) 5.579(1) 5.574(1) 5.569(1) 5.558(1)	$12.373(3) \\12.375(3) \\12.367(3) \\12.364(3) \\12.344(3)$	6.977(2) 6.975(2) 6.969(2) 6.957(2) 6.934(2)	$\begin{array}{c} 106.30(1)\\ 106.31(1)\\ 106.33(1)\\ 106.39(1)\\ 106.48(1) \end{array}$	462.3(2) 462.2(2) 461.0(2) 459.6(2) 456.2(2)

Рис. 1. Проекция кристаллической структуры $BaYb_{1.7}Er_{0.3}Ge_3O_{10}$ на плоскость (100).

 $CR_{VI}(Er^{3+}) = 1.030$ Å [22]. В то время как в соединениях Ва $Y_{2-10y}Yb_{9y}Er_yGe_3O_{10}$ происходит постепенное уменьшение параметров ячейки и объема, поскольку вводимые редкоземельные ионы (Re^{3+}) замещают катион с $CR_{VI}(Y^{3+}) = 1.040$ Å.

В изученных соединениях атомы Re занимают одну кристаллографическую позицию, координированную шестью атомами кислорода. Как видно из представленной на рис. 1 проекции кристаллической структуры BaYb_{1.7}Er_{0.3}Ge₃O₁₀, октаэдры ReO_6 объединяются друг с другом через общие грани и формируют протяженные загзагообразные цепочки вдоль направления [010]. Между этими цепочками располагаются триортогруппы Ge₃O₁₀. Атомы Ba (KЧ = 8) локализованы в каналах параллельных направлению [100]. Примечательно, что через атомы Ba, Ge(1), O(1) и O(2) проходит плоскость симметрии, таким образом концевые тетраэдры триоргтогруппы, Ge(2)O₄, являются полностью эквивалентными и находятся по отношению друг к другу в заслоненной конформации.

апконверсионной Спектры люминесценции $(\lambda_{ex} = 980 \, \text{nm})$ для германатов BaYb_{1.8}Er_{0.2}Ge₃O₁₀ и BaY_{1.75}Yb_{0.225}Er_{0.025}Ge₃O₁₀ представлены на рис. 2, *а*. Основные серии линий в обоих случаях расположены в диапазонах 510-580 nm и 625-720 nm и обусловлены ${}^{2}H_{11/2}, {}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ и ${}^{4}F_{9/2} \rightarrow {}^{4}I_{15/2}$ переходами в ионах Er³⁺ соответственно. По результатам проведенных концентрационных исследований для серии $BaYb_{2-x}Er_xGe_3O_{10}$ (рис. 2, b) было обнаружено, что наибольшей интенсивностью люминесценции обладает состав BaYb_{1.8}Er_{0.2}Ge₃O₁₀. Таким образом, оптимальное соотношение между сенсибилизатором (Yb³⁺) и активатором (Er³⁺) для исследуемых германатов составляет 9/1. Основываясь на полученном результате, был твердого предпринят синтез раствора $BaY_{2-10y}Yb_{9y}Er_yGe_3O_{10}$ (y = 0.005, 0.015, 0.025, 0.05, 0.1, 0.15) с фиксированным соотношением Yb^{3+}/Er^{3+} ,

что позволило уменьшить концентрацию оптических центров в матрице, и тем самым снизить вероятность возникновения концентрационного тушения. Для иттрий-содержащей серии оптимальное содержание Er³⁺ составляет y = 0.025 (рис. 2, *c*). Согласно полученным данным, интегральная интенсивность апконверсионной люминесценции германата BaY_{1.75}Yb_{0.225}Er_{0.025}Ge₃O₁₀ в 4.5 раза превышает значение, полученное для ВаУb_{1.8}Er_{0.2}Ge₃O₁₀ (рис. 2, *a*). Кроме того, следует отметить, что по мере увеличения степени допирования в ряду BaY₂₋₁₀, Yb₉, Er, Ge₃O₁₀ наблюдается уменьшение интенсивности пиков, расположенных в диапазоне 510-580 nm, по сравнению с линиями в длинноволновой области спектра, что указывает на снижение вероятности протекания процессов передачи энергии между ионами Yb³⁺ и Er³⁺. Максимальное значение $R_{\text{green/red}} =$ $= I_{510-580 \, nm} / I_{625-720 \, nm} = 1.1$ достигается для образца $BaY_{1.85}Yb_{0.135}Er_{0.015}Ge_3O_{10}$, в то время как минимальное значение $R_{\text{green/red}} = 0.2$ было определено для германатов BaY_{1.0}Yb_{0.9}Er_{0.1}Ge₃O₁₀ и BaY_{0.5}Yb_{1.35}Er_{0.15}Ge₃O₁₀ (рис. 3, *a*). На рис. 3, *b* представлены зависимости интенсивности основных люминесцентных линий от плотности мощности возбуждающего ИК излучения $(\lambda_{\rm ex} = 980\,\rm{nm}),$ полученные для состава ВаУ_{1.75}Yb_{0.225}Er_{0.025}Ge₃O₁₀. Показано, что в исследуемом диапазоне плотностей ($P = 0.7 - 50 \, \text{mW}/\text{mm}^2$) зависимости близки к квадратичным, что указывает на протекание двухфотонных процессов для линий,

Рис. 2. Спектры апконверсионной люминесценции германатов BaY_{1.75}Yb_{0.225}Er_{0.025}Ge₃O₁₀ (*1*) и BaYb_{1.8}Er_{0.2}Ge₃O₁₀ (*2*), $\lambda_{ex} = 980$ nm, P = 50 mW/mm² (*a*); концентрационные зависимости интенсивности апконверсионной люминесценции для серий BaYb_{2-x}Er_xGe₃O₁₀ (*b*) и BaY_{2-10y}Yb_{9y}Er_yGe₃O₁₀ (*c*).

Рис. 3. *а*) Влияние степени допирования на соотношения $R_{\text{green/red}}$ ($\lambda_{\text{ex}} = 980 \text{ nm}$, $P = 50 \text{ mW/mm}^2$), *b*) Зависимость интенсивности люминесценции образца $\text{BaY}_{1.75}$ Yb_{0.225}Er_{0.025}Ge₃O₁₀ от мощности возбуждающего излучения ($\lambda_{\text{ex}} = 980 \text{ нм}$).

Рис. 4. Схема энергетических уровней и основных переходов при апконверсионной люминесценции в BaYb_{2-x}Er_xGe₃O₁₀ и BaY_{2-10y}Yb_{9y}Er_yGe₃O₁₀. Штриховыми линиями изображены межионные процессы переноса энергии, сплошными вертикальными линиями — оптические переходы, пунктирными линиями — безызлучательная релаксация.

обусловленных переходами из ${}^{2}H_{11/2}$, ${}^{4}S_{3/2}$ и ${}^{4}F_{9/2}$ возбужденных состояний ионов Er^{3+} [23].

Схема энергетических уровней 4 fⁿ оболочек ионов Er^{3+} и Yb^{3+} в германатах $\mathrm{BaYb}_{2-x}\mathrm{Er}_x\mathrm{Ge}_3\mathrm{O}_{10}$ и $BaY_{2-10y}Yb_{9y}Er_yGe_3O_{10}$ совместно основными с внутрицентровыми И межионными переходами, приводящими к возникновению апконверсионной люминесценции представлена на рис. 4. Численные значения энергий возбужденных состояний вычислены из результатов измерений спектров диффузного отражения для образцов BaYb₂Ge₃O₁₀ и BaEr₂Ge₃O₁₀, представленных в работе [19]. Согласно приведенной схеме, преобразование оптического излучения с $\lambda_{ex} = 980 \, nm$ происходит в соответствии с моделью,

предложенной F. Auzel в 1966 г. [24] и обусловлено суммированием нескольких первичных электронных возбуждений ионов Yb³⁺ на ионах Er³⁺, испускающих кванты света с более высокой энергией. Ионы Yb³⁺ поглощают энергию возбуждающего излучения и безызлучательно передают ее ионам Er³⁺. Процесс передачи (ET₁) можно записать следующим образом: ${}^{2}F_{5/2}(Yb^{3+}) + {}^{4}I_{15/2}(Er^{3+}) \rightarrow {}^{2}F_{7/2}(Yb^{3+}) + {}^{4}I_{11/2}(Er^{3+}).$ Помимо этого, заполнение ${}^{4}I_{11/2}$ уровня Er^{3+} может происходить за счет поглощения энергии падающих фотонов непосредственно ионами Er³⁺ без участия ионовсенсибилизаторов: ${}^{4}I_{15/2}\,({\rm Er}^{3+}) + h \nu \rightarrow {}^{4}I_{11/2}\,{\rm Er}^{3+}),$ однако вероятность протекания этого процесса значительно ниже, что связано с малым значением сечения поглощения Er³⁺. Далее происходит переход ионов в ${}^{4}F_{7/2}$ состояние посредством переноса энергии (ET₃): ${}^{2}F_{5/2}$ (Yb³⁺) + ${}^{4}I_{11/2}$ (Er³⁺) $\rightarrow {}^{2}F_{7/2}$ (Yb³⁺) + ${}^{4}F_{7/2}$ (Er³⁺) и, в меньшей мере, за счет поглощения энергии ионами Er³⁺, находящимися в возбужденном ${}^{4}I_{11/2}$ состоянии: ${}^{4}I_{11/2}(\text{Er}^{3+}) + h\nu \rightarrow {}^{4}F_{7/2}(\text{Er}^{3+})$. В результате последующего процесса многофононной релаксации заполняются ${}^{2}H_{11/2}$ и ${}^{4}S_{3/2}$ уровни, переходы с которых в основное состояние сопровождаются люминесценцией с $\lambda_{\rm em} = 510 - 580$ nm. Уровень ${}^4F_{9/2}$, с которого происходит излучение красного цвета, заполняется за счет еще одного процесса переноса энергии (ЕТ₂): ${}^{2}F_{5/2}(\mathrm{Yb}^{3+}) + {}^{4}I_{13/2}(\mathrm{Er}^{3+}) \rightarrow {}^{2}F_{7/2}(\mathrm{Yb}^{3+}) + {}^{4}F_{9/2}(\mathrm{Er}^{3+}),$ а также вследствие безызлучательной релаксации с $^{2}H_{11/2}$ и $^{4}S_{3/2}$ состояний ионов Er³⁺.

Поскольку энергетический зазор между ${}^{2}H_{11/2}$ и ${}^{4}S_{3/2}$ уровнями в Er^{3+} сравним с энергией тепловых колебаний, постепенное повышение температуры приводит к частичному переходу ионов в более высокое энергетическое ${}^{2}H_{11/2}$ состояние. В результате происходит температурное перераспределение и изменяется отношение (FIR) между интенсивностями двух люминесцентных полос с максимумами при 521 и 552 nm. Такая взаимосвязь позволяет решать обратную задачу: определять значение температуры по величине FIR. Нами дополнительно были изучены люминесцентные характеристики германата $\mathrm{BaY}_{1.75}\mathrm{Yb}_{0.225}\mathrm{Er}_{0.025}\mathrm{Ge}_{3}\mathrm{O}_{10}$ в интервале 25–225°C (298–498 K). Эмиссионные спектры, снятые в режиме ступенчатого нагрева, представлены на рис. 5, *a*.

Согласно литературным данным [16], зависимость FIR = f(T) можно записать следующим образом:

$$FIR = A \exp(-\Delta E_{21}/k_B T) + B.$$
⁽²⁾

Температурная зависимость отношения пиковых интенсивностей двух аналитических линий для порошка $BaY_{1.75}Yb_{0.225}Er_{0.025}Ge_3O_{10}$ представлена на рис. 5, *b* и хорошо описывается уравнением FIR = 20.3 exp(-1272.9/*T*), таким образом, значение ΔE_{21} для $BaY_{1.75}Yb_{0.225}Er_{0.025}Ge_3O_{10}$ составляет 884.5 cm⁻¹. Данное значение соответствует разности между энергетическими уровнями ${}^{2}H_{11/2}$ и ${}^{4}S_{3/2}$,

Рис. 5. Спектры люминесценции германата $BaY_{1.75}Yb_{0.225}Er_{0.025}Ge_3O_{10}$, измеренные при различной температуре нагрева (*a*); температурная зависимость отношения интенсивностей, FIR, двух аналитических линий при 521 и 552 nm (*b*); абсолютная (*S_a*) и относительная (*S_r*) чувствительности измерения температуры (*c*).

которая была ранее определена по результатам спектроскопических исследований для $BaEr_2Ge_3O_{10}$ [19], $\Delta E_{21} = 872 \text{ cm}^{-1}$, что свидетельствует об установлении термодинамического равновесия в населенности этих уровней.

Одной из важнейших характеристик датчика температуры является его чувствительность, показывающая относительное изменение отношения интенсивностей флуоресценции при изменении температуры на один градус. Абсолютная и относительная чувствительности определения температуры для германата BaY_{1.75}Yb_{0.225}Er_{0.025}Ge₃O₁₀ могут быть оценены из следующих уравнений [16,25]:

$$S_a = d \operatorname{FIR}/dT = (\Delta E/k_{\mathrm{B}}T^2) \times [A \exp(-\Delta E/k_{\mathrm{B}}T)], \quad (3)$$

$$S_r = (1/\text{FIR}) \times (d \,\text{FIR}/dT) = \Delta E/k_{\text{B}}T^2. \tag{4}$$

Как видно из представленных на рис. 5, с зависимостей, по мере увеличения температуры происходит постепенный рост абсолютной чувствительности образца. Достигнутое при $T \sim 225^{\circ}$ С (498 K) значение S_a равное 0.81% K⁻¹ не является предельным. Несмотря на ограниченный температурный диапазон, полученные данные позволяют говорить о перспективности синтезированного состава. Полученная величина S_a превышает значения, определенные ранее для других неорганических соединений, активированных ионами Yb³⁺/Er³⁺: K₃Y(PO₄)₂:Yb³⁺/Er³⁺ ($S_a = 0.304\%$ K⁻¹), $Na_2Y_2B_2O_7:Yb^{3+}/Er^{3+}$ $(S_a = 0.79\% \,\mathrm{K}^{-1}),$ Yb₂Ti₂O₇: Yb³⁺/Er³⁺ ($S_a = 0.74\%$ K⁻¹) [26–28], но уступает величинам, определенным лля $KBaY(MoO_4)_3: Yb^{3+}/Er^{3+}$ $(S_a = 1.3\% \,\mathrm{K}^{-1}),$ SrWO₄:Yb³⁺/Er³⁺ ($S_a = 1.5\% \text{ K}^{-1}$) [29,30]. Максимальное значение $S_r = 1.43\% \, {\rm K}^{-1}$ достигается при комнатной температуре, что согласуется с теоретическими представлениями, изложенными в работе [18].

На рис. 6 продемонстрирована зависимость FIR для германата $BaY_{1.75}Yb_{0.225}Er_{0.025}Ge_3O_{10}$ при многократном повторении измерения ($T = 25^{\circ}C$ и $T = 225^{\circ}C$).

Рис. 6. Зависимость FIR от температуры при многократном повторении измерения: квадратами обозначены данные, полученные при $T = 25^{\circ}$ C (298 K), звездочками — при $T = 225^{\circ}$ C (498 K).

Как видно из полученных данных для обеих температур, наблюдается хорошая воспроизводимость получаемых величин, что позволяет говорить о перспективности дальнейшего использования BaY_{1.75}Yb_{0.225}Er_{0.025}Ge₃O₁₀ в качестве чувствительного элемента бесконтактного датчика температуры.

4. Заключение

Германаты BaYb_{2-x}Er_xGe₃O₁₀ (x = 0.10-0.30) и BaY_{2-10y}Yb_{9y}Er_yGe₃O₁₀ (y = 0.015-0.15) синтезированы по стандартной керамической технологии. Согласно данным порошковой рентгеновской дифракции, все

соединения изоструктурны, кристаллизуются в моноклинной сингонии, пр. гр. $P2_1/m$, Z = 2. Атомы редкоземельных элементов в решетках изученных соединений занимают одну кристаллографическую позицию, координированную шестью атомами кислорода. Спектры апконверсионной люминесценции образцов, полученные под воздействием излучения с $\lambda_{ex} = 980 \, nm$, содержат интенсивные полосы в области 510-720 nm, обусловленные ${}^2H_{11/2},\,{}^4S_{3/2}
ightarrow {}^4I_{15/2}$ и ${}^4F_{9/2}
ightarrow {}^4I_{15/2}$ переходами в ионах Er³⁺. Максимальной интенсивностью эмиссии обладает германат BaY_{1.75}Yb_{0.225}Er_{0.025}Ge₃O₁₀, для которого впоследствии были изучены температурные и мощностные зависимости оптических характеристик, выполнен расчет абсолютной (S_a) и относительной (S_r) чувствительности в интервале 25-225°С (298-498 К). Определенные значения чувствительности, $S_a = 0.81\% \,\mathrm{K}^{-1}$ и $S_r = 1.43\% \,\mathrm{K}^{-1}$, позволяют говорить о перспективности дальнейшего использования BaY_{1.75}Yb_{0.225}Er_{0.025}Ge₃O₁₀ в качестве люминесцентного материала для проведения бесконтактной термометрии.

Финансирование работы

Работа выполнена в рамках проекта Российского научного фонда № 19-73-00219.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- M. Chaika, S. Balabanov, D. Permin. Opt. Mater. 112, 110785 (2021).
- [2] M. Eichhorn. Appl. Phys. B 93, 269 (2008).
- [3] M. Pollnau, S.D. Jackson. Mid-Infrared Fiber Lasers. In: Solid-State Mid-Infrared Laser Sources / Eds T. Sorokina, K.L. Vodopyanov. Topics Appl. Phys. 89, 219 (2003). Springer-Verlag Berlin Heidelberg.
- [4] O.A. Lipina, L.L. Surat, A.Yu. Chufarov, A.P. Tyutyunnik, V.G. Zubkov. Mendeleev Commun. 31, 113 (2021).
- [5] R.E. Joseph, D. Hudry, D. Busko, D. Biner, A. Turshatov, K. Krämer, B.S. Richards, I.A. Howard. Opt. Mater. 111, 110598 (2021).
- [6] R. Dey, V.K. Rai. Dalton Trans. 43, 111 (2014).
- [7] O.A. Lipina, L.L. Surat, A.P. Tyutyunnik, V.G. Zubkov. Opt. Mater. 61, 98 (2016).
- [8] I.I. Leonidov, V.G. Zubkov, A.P. Tyutyunnik, N.V. Tarakina, L.L. Surat, O.V. Koryakova, E.G. Vovkotrub. J. Alloys Compd. 509, 1339 (2011).
- [9] A. Khare. J. Alloys Compd. 821, 153214 (2020).
- [10] J.C. Goldschmidt, S. Fisher. Adv. Opt. Mater. 3, 510 (2015).
- [11] X.Y. Huang, S.Y. Han, W. Huang, X.G. Liu. Chem. Soc. Rev. 42, 173 (2013).
- [12] B.M. van der Ende, L. Aarts, A. Meijerink. Phys. Chem. Chem. Phys. 11, 11081 (2009).
- [13] G.T. Xiang, X.T. Liu, Q. Xia, X.C. Liu, S. Xu, S. Jiang, X.J. Zhou, L. Li, D. Wu, L. Ma, X.J. Wang, J.H. Zhang. Talanta 224, 121832 (2021).

- [14] R. Rafique, S.H. Baek, L.M.T. Phan, S.J. Chang, A.R. Gul, T.J. Park. Mater. Sci. Eng., C 99, 1067 (2019).
- [15] H. Berthou, C.K. Jörgensen. Opt. Lett. 15, 1100 (1990).
- [16] C.D.S. Brites, A. Millán, L.D. Carlos. In: Handbook on the Physics and Chemistry of Rare Earth. V. 49 / Eds J.C. Bunzli, V.K. Pecharsky. Ch. 281: Lanthanides in Luminescence Thermometry. Elsevier (2016). P. 339–427.
- [17] M. Dramićanin. Luminescence Thermometry: Methods, Materials, and Applications. Ch. 6: Lanthanide and Transition Metal Ion doped Materials for Luminescence Temperature Sensing. Woodhead Publishing Series in Electronic and Optical Materials (2018). P. 113–157.
- [18] M. Suta, A. Mejerink. Adv. Theory Simul. 3, 2000176 (2020).
- [19] O.A. Lipina, L.L. Surat, A.Yu. Chufarov, A.P. Tyutyunnik, A.N. Enyshin, I.V. Baklanova, K.G. Belova, Ya.V. Baklanova, V.G. Zubkov. Cryst. Eng. Commun. 21, 6491 (2019).
- [20] B.H. Toby. J. Appl. Crystallogr. 34, 210 (2001).
- [21] A.C. Larson, R.B. VonDreele. General Structure Analysis System (GSAS). Los Alamos, NM (2004). Los Alamos National Laboratory Report LAUR 86–748.
- [22] R.D. Shannon, C.T. Prewitt. Acta Crystallogr. B 25, 925 (1969).
- [23] M. Pollnau, D.R. Gamelin, S.R. Lüthi, H.U. Güdel, M.P. Hehlen. Phys. Rev. B 61, 3337 (2000).
- [24] F. Auzel. Compt. Rendus l'Académie Sci. 263, 819 (1966).
- [25] V.K. Rai. Appl. Phys. B 88, 297 (2007).
- [26] J. Zhang, Y. Zhang, X. Jiang. J. Alloys Compd. 748, 438 (2018).
- [27] A.K. Soni, V.K. Rai, M.K. Mahata. Mater. Res. Bull. 89, 116 (2017).
- [28] B.S. Cao, Y.Y. He, Z.Q. Feng, Y.S. Li, B. Dong. Sens. Actuators B 159, 8 (2011).
- [29] K. Li, D. Zhu, H. Lian. J. Alloys Compd. 816, 152554 (2020).
- [30] A. Pandey, V.K. Rai, V. Kumar, V. Kumar, H.C. Swart. Sens. Actuators, B 209, 352 (2015).

Редактор Т.Н. Василевская