05,04

Магнитные и магнитоэлектрические свойства скандобората NdSc₃(BO₃)₄

© Е.В. Еремин^{1,2,3}, А.А. Дубровский¹, И.А. Гудим¹, В.Р. Титова^{1,2}, М.В. Меркулов²

¹ Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН,

Красноярск, Россия ² Сибирский федеральный университет, Красноярск, Россия ³ Сибирский государственный университет науки и технологий им. М.Ф. Решетнева, Красноярск, Россия

E-mail: eev@iph.krasn.ru

Поступила в Редакцию 3 марта 2021 г. В окончательной редакции 3 марта 2021 г. Принята к публикации 8 марта 2021 г.

Групповым методом из раствора-расплава на основе тримолибдата висмута выращены монокристаллы тригонального неодимового скандобората $NdSc_3(BO_3)_4$. Исследованы его магнитные и магнитоэлектрические свойства в диапазоне температур 4.2-300 K и в магнитных полях до 9 T. В магнитном отношении он является парамагнетиком, свойства которого определяются магнитными свойствами иона Nd^{3+} с учетом ванфлековской парамагнитной поправки. Величина магнитоэлектрической поляризации оказалась сравнимой с ранее исследованным разбавленным алюмоборатом неодима $Nd_{0.35}Y_{0.65}Al_3(BO_3)_4$. Последнее обстоятельство открывает еще один подкласс соединений, в которых должен наблюдаться гигантский магнитоэлектрический эффект.

Ключевые слова: магнитоэлектрический эффект, рост кристаллов, мультферроики.

DOI: 10.21883/FTT.2021.07.51041.042

1. Введение

Тригональные редкоземельные оксибораты $RM_3(BO_3)_4$ (*R* — редкоземельный ион, *M* = Al, Sc, Fe, Ga) в последнее десятилетие активно исследуются благодаря широкой возможности различных комбинаций *R*- и *М*-элементов и, соответственно, большому разнообразию физических свойств [1-8]. Оксибораты имеют ромбоэдрическую структуру типа природного минарела хантита, описываемую пространственной группой R32 или Р3121. Нецентросимметричная структура делает эти материалы перспективными кандидатами для оптических приложений, благодаря их хорошим люминесцентным и нелинейным оптическим свойствам. Для ферроборатов $RFe_3(BO_3)_4$ установлена их принадлежность к новому классу мультиферроиков, в которых сосуществуют магнитные, электрические и упругие параметры порядка.

Интерес к парамагнитным алюмоборатам усилился с обнаружением в TmAl₃(BO₃)₄ большого магнитоэлектрического эффекта [9], который оказался сравним по величине с наблюдаемыми эффектами в изоструктурных ферроборатах $RFe_3(BO_3)_4$. Позже был обнаружен еще больший магнитоэлектрический эффект в HoAl₃(BO₃)₄ [10], величина которого (~ 5480 μ C/m²) в разы превышает известные максимальные значения магнитоэлектрической поляризации в ферроборатах (в SmFe₃(BO₃)₄ ~ 500 μ C/m² [5] и NdFe₃(BO₃)₄ около 300 μ C/m² [3] и Ho_{0.5}Nd_{0.5}Fe₃(BO₃)₄ ~ 900 μ C/m² [3]). Увеличение магнитоэлектрического эффекта наблюдается и при замене в $HoFe_3(BO_3)_4$ ионов Fe^{3+} на ионы Ga^{3+} [11].

Принимая во внимание, что при замене в $RM_3(BO_3)_4$ магнитной подсистемы (Fe) на немагнитную (Al, Ga) магнитоэлектрический эффект достигает гигантских значений, возникает интерес исследовать и другие подклассы оксиборатов со структурой хантита с одной магнитной подсистемой, например, редкоземельные скандобораты $RSc_3(BO_3)_4$. В качестве объекта для исследования был выбран скандоборат NdSc_3(BO_3)_4. Выбор этого соединения важен еще и тем, что стабильной тригональной фазы NdAl_3(BO_3)_4 не существует, и ранее был исследован только замещенный алюмоборат Nd_0.35Y_0.65Al_3(BO_3)_4 [12].

В настоящей работе представлены результаты магнитных и магнитоэлектрических исследований скандобората NdSc₃(BO₃).

Подготовка образцов и методика измерений

Монокристаллы NdSc₃(BO₃)₄ выращивались из раствора-расплава массой на основе молибдата висмута по технологии, подробно описанной в работе [13]. Раствор-расплавную систему удобно представить в квазибинарной форме 89wt.% [Bi₂Mo₃O₁₂ + 3Li₂O₃ + 2B₂O₃ + 0.1Nd₂O₃] + 11 wt.% NdSc₃(BO₃)₄.

Температура насыщения уточнялась $\pm 2^{\circ}$ С с помощью пробных кристаллов, и для данного раствора-расплава она оказалась равной 980°С. Кристаллы выращивались на затравках в режиме с понижением температуры 1°С/day. Стартовая температура была $T = T_s - 7^{\circ}$ С. Выращенные кристаллы имели размер порядка 4–6 mm. По завершению процесса выращивания кристаллы охлаждались до комнатной температуры со скоростью не более 100°С/h.

Магнитные свойства были исследованы на вибрационном магнитометре PPMS QuantumDesign (центр коллективного пользования ФИЦ КНЦ СО РАН) в диапазоне температур 4.2-300 К и магнитных полях до 9 Т, а также на а также на вибрационном магнетометре оригинальной конструкции [14]. Для измерения магнитоэлектрической поляризации на грани исследуемого образца, приготовленного в виде плоскопараллельной пластинки (плоскости граней перпендикулярны оси второго порядка, а-оси) наносились электроды из эпоксидной смолы с проводящим наполнителем. Заряд, возникающий на образце вследствие магнитоэлектрического эффекта, измерялся электрометром Keithley 6517В. Магнитное поле прикладывалось вдоль кристаллографической оси второго порядка (а-оси) и вдоль b-оси, перпендикулярной а-оси и оси третьего порядка (с-оси).

3. Результаты и обсуждение

Как было показано ранее при высокой температуре NdSc₃(BO₃)₄ имеет ромбоэдрическую структуру, описываемую пространственной группой *R*32. А при понижении температуры ($T_s = 504$ K) испытывает структурный переход $R32 \rightarrow P3_121$ [12].

Исследования магнитных свойств проводились в магнитных полях B = 0.1, 1, 3, 5, 6 и 9 T, при ориентации магнитного поля вдоль *c*-оси третьего порядка и вдоль *a*-оси второго порядка, перпендикулярной *c*-оси. На рис. 1 представлены температурные зависимости намагниченности в направлении магнитного поля вдоль и перпендикулярно оси третьего порядка. Видно, что при намагничивании вдоль *c*-оси при низких температурах имеет место тенденция к насыщению, и как следствие к отклонению от закона Кюри (рис. 2).

Из рис. 1 видно, что для всех кривых зависимости M(T), имеют похожий вид типичный для парамагнетика и различаются лишь по величине. С увеличением поля зависимости $M_{\parallel}(T)$ и $M_{\perp}(T)$ возрастают с разной скоростью, демонстрируя заметную анизотропию (рис. 3), которая увеличивается с ростом магнитного поля.

В направлениях **В** || c намагниченность $M_{||}(T)$ много меньше $M_{\perp}(T)$, почти линейно зависит от магнитного поля (рис. 4) и имеет форму несвойственную для классических парамагнетиков (рис. 1, *a*). Такой вид $M_{||}(T)$ может быть следствием примешивания возбужденных состояний иона Nd³⁺ к основному. Т.е наряду с ориен-

Рис. 1. Температурные зависимости намагниченности NdSc₃(BO₃)₄, измеренные в различных магнитных полях в геометрии **B** $\parallel c \ (a)$ и **B** $\perp c \ (b)$.

тационным парамагнетизмом необходимо еще учитывать поправку Ван Флека в определении магнитного момента.

Используя закон Кюри–Вейса, из высокотемпературной зависимости магнитной восприимчивости можно определить парамагнитную температуру Кюри θ и эффективный магнитный момент иона Nd³⁺ в элементарной ячейке. На рис. 2 показана такая зависимость полученная в магнитном поле **B** = 0.1 T в различной геометрии эксперимента (**B** || *c* и **B** \perp *c*). Эффективны магнитный момент одной структурной единицы NdSc₃(BO₃)₄ оказался равен $\mu_{\rm eff}$ = 3.69 $\mu_{\rm B}$, что близко к теоретическому значению $\mu_{\rm eff}$ с учетом поправки парамагнетизма Ван Флека ($\mu_{\rm eff}$ = 3.68 $\mu_{\rm B}$). Тогда как теоретическое значение магнитного момента иона Nd³⁺, определяемого как $\mu = g\mu_{\rm B}\sqrt{J(J+1)}$ (где g = 8/11 - g-фактор иона Nd³⁺ в свободном состоянии) равно $\mu_{\rm Nd} = 3.62 \,\mu_{\rm B}$.

На рис. 5 изображены полевые зависимости поперечной ($\Delta P_{ab}(B_b)$) и продольной ($\Delta P_{aa}(B_a)$) магнитоэлектрической поляризации NdSc₃(BO₃)₄ при различных температурах. Видно, что с ростом поля наблюдается нелинейный рост кривых ΔP_{ab} и ΔP_{aa} . Такой ход кривых

Рис. 2. Обратная зависимость магнитной восприимчивости $NdSc_3(BO_3)_4$ от температуры, измеренная в магнитном поле 9 T в геометрии **B** $\parallel c$ (треугольники) и **B** $\perp c$ (квадраты).

Рис. 3. Температурные зависимости $M_{\parallel} - M_{\perp}$ NdSc₃(BO₃)₄, полученные в различных магнитных полях.

Рис. 4. Полевые зависимости намагниченности $NdSc_3(BO_3)_4$, полученные при T = 4.2 K в геометрии **В** $\parallel c$ и **В** $\perp c$.

Рис. 5. Полевые зависимости продольной магнитоэлектрической поляризации ΔP_a при различных температурах: a — в геометрии **В** $\parallel a, b$ — в геометрии **В** $\parallel b$.

магнитоэлектрической поляризации является типичным для парамагнитных хантитов [9–11].

Обнаружена существенная анизотропия магнитоэлектрической поляризации от направления магнитного поля. Из рис. 5 видно, что величина поперечной поляризации достигает значений $\Delta P_{ab}(B_b) \sim -163\,\mu\text{C/m}^2$, а продольной $\Delta P_{aa}(B_a) \sim 83\,\mu\mathrm{C/m^2}$ при температуре $T = 5 \,\mathrm{K}$ и полях 9 Т. Эти значения больше по сравнению с ранее исследованным алюмоборатом неодима Nd_{0.35}Y_{0.65}Al₃(BO₃)₄ ($\Delta P_{ab}(B_b) \sim -68 \,\mu\text{C/m}^2$, $\Delta P_{aa}(B_a) \sim 69 \,\mu \text{C/m}^2$ при $T = 5 \,\text{K}$ и $H = 9 \,\text{T}$). Однако, если учесть, что концентрация иона Nd³⁺ в алюмоборате в $1/0.35 \approx 3$ раза меньше, чем в скандоборате неодима, то можно предположить, что увеличение эффекта при за-Mete Al (B Nd_{0.35} $Y_{0.65}$ Al₃(BO₃)₄) ha Sc (B NdSc₃(BO₃)₄) объясняется за счет увеличения концентрации магнитоактивного иона Nd³⁺. С другой стороны, ранее было показано, что магнитоэлектрический эффект может быть выше ожидаемого за счет изменения энергетической структуры редкоземельного иона, вызванного локальными искажениями [15]. Появление локальных искажений в Nd_{0.35}Y_{0.65}Al₃(BO₃)₄ очевидно имеет место из-за разного ионного радиуса Al³⁺ и Y³⁺ и неравномерного распределения ионов в матрице кристалла. Таким образом, в настоящее время нельзя сказать какая матрица $RAl_3(BO_3)_4$ или $RSc_3(BO_3)_4$ даст наибольший эффект. Для этого необходимы дополнительные исследования. Однозначно можно утверждать лишь то, что ионы Sc^{3+} наряду с ионами Al^{3+} и Ga^{3+} дают гигантский магнито-электрический эффект в редкоземельных оксиборатах со структурой хантита $RM_3(BO_3)_4$ (R — редкоземельный ион, M = Al, Sc, Ga).

4. Заключение

Групповым методом из раствора-расплава на основе тримолибдата висмута был выращен скандоборат NdSc₃(BO₃)₄. Впервые исследованы его магнитные и магнитоэлектрические свойства в диапазоне температур 4.2–300 К и магнитных полях до 9 Т.

В магнитном отношении NdSc₃(BO₃)₄ является парамагнетиком, свойства которого целиком определяются магнитным поведением тона Nd³⁺. Определены парамагнитная температура Кюри ($\theta_{\perp} = -28$ K, $\theta_{\parallel} = 48$ K) и эффективный момент $\mu_{\rm eff} = 3.69 \,\mu_{\rm B}$ на формульную единицу. Показано, что $\mu_{\rm eff}$ близко к теоретическому значению $\mu_{\rm eff}$ с учетом вклада парамагнетизма Ван Флека ($\mu_{\rm eff} = 3.68 \,\mu_{\rm B}$).

Обнаружена существенная анизотропия магнитоэлектрической поляризации от направления магнитного поля $\Delta P_{ab}(B_b) \sim -163 \,\mu\text{C/m}^2$, а $\Delta P_{aa}(B_a) \sim 83 \,\mu\text{C/m}^2$ при температуре T = 5 K в полях 9 Т. В сравнении с ранее исследованным разбавленным алюмоборатом неодима Nd_{0.35}Y_{0.65}Al₃(BO₃)₄ эффект в NdSc₃(BO₃)₄ меньше, однако это может быть вызвано изменением энергетической структуры редкоземельного иона Nd³⁺ в Nd_{0.35}Y_{0.65}Al₃(BO₃)₄ вызванного локальными искажениями из-за разного ионного радиуса Al³⁺ и Y³⁺ и неравномерного распределения ионов в матрице кристалла.

Финансирование работы

Исследование выполнено при финансовой поддержке Российского фонда фундаментальных исследований, Правительства Красноярского края, Красноярского краевого фонда науки в рамках научного проекта: Разработка раствор-расплавных технологий выращивания новых монокристаллов скандоборатов со структурой хантита и исследование взаимодействия их магнитной и электрической подсистем (№ 18-42-240011).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

 А.К. Звездин, С.С. Кротов, А.М. Кадомцева, Г.П. Воробьев, Ю.Ф. Попов, А.П. Пятаков, Л.Н. Безматерных, Е.А. Попова. Письма в ЖЭТФ 81, 6, 335 (2005).

- [2] E.A. Popova, D.V. Volkov, A.N. Vasiliev, A.A. Demidov, N.P. Kolmakova, I.A. Gudim, L.N. Bezmaternykh, N. Tristan, Yu. Skourski, B. Buechner, C. Hess, R. Klingeler. Phys. Rev. B 75, 22, 224413 (2007).
- [3] R.P. Chaudhury, F. Yen, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 80, 10, 104424 (2009).
- [4] А.М. Кадомцева, Ю.Ф. Попов, Г.П. Воробьев, А.П. Пятаков, С.С. Кротов, К.И. Камилов, В.Ю. Иванов, А.А. Мухин, А.К. Звездин, А.М. Кузьменко, Л.Н. Безматерных, И.А. Гудим, В.Л. Темеров. ФНТ **36**, *6*, 640 (2010).
- [5] В.И. Зиненко, М.С. Павловский, А.С. Крылов, И.А. Гудим, Е.В. Еремин. ЖЭТФ 144, 6, 1174 (2013).
- [6] А.П. Пятаков, А.К. Звездин. УФН 182, 6, 593(2012).
- [7] А.Н. Васильев, Е.А. Попова. ФНТ **32**, 8-9, 968 (2006).
- [8] T. Usui, Y. Tanaka, H. Nakajima, M. Taguchi, A. Chainani, M. Oura, S. Shin, N. Katayama, H. Sawa, Y. Wakabayashi, T. Kimura. Nature Mater. 13, 6, 618.
- [9] R.P. Chaudhury, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 81, 22, 220402 (2010).
- [10] K.-C. Liang, R.P. Chaudhury, B. Lorenz, Y.Y. Sun, L.N. Bezmaternykh, V.L. Temerov, C.W. Chu. Phys. Rev. B 83, 18, 180417 (2011).
- [11] Н.В. Волков, И.А. Гудим, Е.В. Еремин, И.А. Бегунов, А.А. Демидов, К.Н. Болдырев. Письма в ЖЭТФ 99, 2, 72 (2014).
- [12] E.V. Eremin, M.S. Pavlovskiy, I.A. Gudim, V.L. Temerov, M.S. Molokeev, N.D. Andryushin, E.V. Bogdanov. J. Alloys Compd. 828, 154355 (2020).
- [13] L.N. Bezmaternykh, V.L. Temerov, I.A. Gudim, N.A. Stolbovaya. Crystallogr. Rep. 50, 1, S97 (2005).
- [14] А.Д. Балаев, Ю.В. Бояршинов, М.И. Карпенко, Б.П. Хрусталёв. ПТЭ 3, 167 (1985)
- [15] E. Eremin, I. Gudim, V. Temerov, D. Smolyakov, M. Molokeev. J. Cryst. Growth 518, 1 (2020).

Редактор Д.В. Жуманов