Влияние внутренних отражателей на эффективность инфракрасных (850 нм) светодиодов

© А.В. Малевская, Н.А. Калюжный, Д.А. Малевский, С.А. Минтаиров, Р.А. Салий, А.Н. Паньчак, П.В. Покровский, Н.С. Потапович, В.М. Андреев

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия E-mail: amalevskaya@mail.ioffe.ru

Поступила в Редакцию 9 марта 2021 г. В окончательной редакции 15 марта 2021 г. Принята к публикации 15 марта 2021 г.

Выполнены исследования инфракрасных светодиодов с длиной волны излучения 850 нм на основе гетероструктур AlGaAs/GaAs, выращенных методом MOC-гидридной эпитаксии, с брэгтовским отражателем и дополнительным "отражающим" слоем $Al_{0.9}Ga_{0.1}As$, обеспечивающими снижение внутренних оптических потерь генерируемого излучения. Разработана постростовая технология формирования фронтальных полосковых омических контактов и текстурирования световыводящей поверхности, позволившая снизить омические потери и увеличить эффективность вывода излучения из кристалла. Внешний квантовый выход светодиодов с двумя внутренними отражателями и текстурированием составил > 9% в диапазоне токов 0.1-1.4 A.

Ключевые слова: инфракрасный излучающий диод, брэгговский отражатель, текстурирование.

DOI: 10.21883/FTP.2021.07.51028.9646

Светоизлучающие диоды (СИД) инфракрасного (ИК) диапазона широко используются в различных устройствах, например, в пультах дистанционного управления, для ИК подсветки в камерах видеонаблюдения, в охранных системах. Разработаны СИД с длиной волны излучения $\lambda = 800 - 870$ нм на основе гетероструктур AlGaAs/GaAs, получаемых методами жидкофазной эпитаксии [1-4] и МОС-гидридной эпитаксии (газофазной эпитаксии из металлоорганических соединений) [5,6] на GaAs-подложках. Снижение внутренних оптических потерь генерируемого излучения на поглощение в GaAsподложке достигается либо путем удаления (селективного стравливания) положки после выращивания гетероструктуры [1-5], либо путем создания внутреннего брэгговского отражателя (БО) между GaAs-подложкой и *p*-*n*-переходом [6], отражающего часть генерированного излучения, распространяющегося от *p*-*n*-перехода в сторону подложки. Мощность излучения (Р) в ИК СИД на основе жидкофазных AlGaAs-гетероструктур, постростовые технологии которых включают операции удаления подложки GaAs, составила: *P* = 50 мВт при токе 80 мА [1] и *P* > 150 мВт при токах > 1 А [2–4]. ИК СИД на основе МОС-гидридных гетероструктур с удаленной подложкой изготавливаются, например, методом "переноса" AlGaAs-гетероструктуры с GaAs-подложкой на инородную (кремниевую) подложку с нанесенным на ее поверхность слоем отражателя (серебра) с последующим удалением подложки GaAs [5]. Встраивание в постростовой процесс операций, связанных с "переносом" структур и с удалением подложки, значительно усложняют и удорожают процесс изготовления ИК СИД. В разработанных ранее СИД с внутренним брэгговским отражателем максимальная мощность излучения составила 8 мВт при токе 60 мА [6].

Целью настоящей работы являлось выяснение возможности увеличения внешнего квантового выхода и мощности СИД за счет встраивания в гетероструктуру AlGaAs/GaAs двух внутренних отражателей без использования сложных постростовых операций "переноса" структур на инородный носитель и удаления поглощающей подложки.

Гетероструктуры AlGaAs/GaAs для СИД выращивались методом MOC-гидридной эпитаксии на подложках *n*-GaAs. Активная область гетероструктур состоит из 6 квантовых ям толщиной 3 нм каждая, заключенных между широкозонными *n*- и *p*-эмиттерами Al_xGa_{1-x}As (x = 0.2-0.4).

Между тыльным эмиттером и подложкой выращивались два отражателя, один из которых — брэгтовский отражатель (БО) [7], выполненный из 15 пар слоев *n*-Al_{0.9}Ga_{0.1}As/*n*-Al_{0.1}Ga_{0.9}As с применением технологии легирования, уменьшающей его последовательное сопротивление [8].

На рис. 1 приведены спектры отражения трех гетероструктур БО, выращенных на подложках GaAs. Величина коэффициента отражения БО в спектральном диапазоне 800–900 нм составляет > 90% для лучей, падающих на БО перпендикулярно плоскостям эпитаксиальных слоев и под углами, близкими к 90°. При уменьшении угла падения увеличивается доля лучей, проходящих сквозь БО без отражения и поглощающихся в подложке.

Для отражения лучей, прошедших сквозь БО, в структуре между подложкой и БО выращивался дополнительный широкозонный слой *n*-Al_{0.9}Ga_{0.1}As (300 нм),

Рис. 1. Спектры отражения трех гетероструктур с брэгговскими отражателями, в которых толщины слоев $Al_{0.9}Ga_{0.1}As$ и $Al_{0.1}Ga_{0.9}As$ увеличиваются в последовательности $1 \rightarrow 3$.

имеющий меньшее значение показателя преломления по сравнению с узкозонным слоем $Al_yGa_{1-y}As$ (y < 0.2), прилегающим к слою $Al_{0.1}Ga_{0.9}As$, и отражающий лучи, падающие на этот слой под углами, при которых имеет место полное внутреннее отражение.

На рис. 2 приведены расчетные значения доли отраженного от гетерограницы $Al_{y}Ga_{1-y}As - Al_{x}Ga_{1-x}As$ изотропного излучения в зависимости от содержания AlAs в "отражающем" слое $Al_xGa_{1-x}As$ при трех различных составах "эмитирующего" слоя Al_vGa_{1-v}As, из которого излучение падает на гетерограницу. Содержание AlAs в слое Al_vGa_{1-v}As взято изменяющимся от x = 0 до x = 1, а составы "эмитирующего" слоя Al_vGa_{1-v}As выбраны дискретными: кривая 1 — слой GaAs, 2 — слой Al_{0.1}Ga_{0.9}As и 3 — слой Al_{0.2}Ga_{0.8}As. При расчетах излучение в узкозонном слое принято изотропным. При расчете доли отраженных лучей учитывалось как полное внутреннее отражение, так и френелевское отражение. Из рис. 2 видно, что более половины генерируемого *p*-*n*-переходом изотропного излучения отражается от гетерограницы $Al_yGa_{1-y}As/Al_xGa_{1-x}As$ при составах, соответствующих x = 0.9 в отражающем слое и y = 0 - 0.2 в слое, в котором распространяется излучение.

Фактором, благоприятствующим увеличению внешнего квантового выхода СИД на основе гетероструктур с двумя отражателями, является преимущественное отражение от слоя $Al_{0.9}Ga_{0.1}As$ латеральных лучей, распространяющихся от p-n-перехода под углами $< 30-35^{\circ}$ к гетерограницам, т.е. лучей, для которых первичный отражатель (БО) является практически прозрачным и которые при отсутствии дополнительного "отражающего" слоя $Al_{0.9}Ga_{0.1}As$ были бы поглощены в подложке GaAs.

Для увеличения эффективности и мощности СИД необходимо снижение омических потерь на растекание и на полосковых фронтальных контактах. Для снижения сопротивления растекания фронтальной *p*-области гетероструктуры после выращивания барьерного слоя *p*-Al_{0.4}Ga_{0.6}As был кристаллизован сильно легированный слой p^+ -Al_{0.2}Ga_{0.8}As (5 мкм). Для снижения омических потерь на сопротивлении полосковых контактов к фронтальной поверхности структуры выращивание гетероструктуры завершалось кристаллизацией сильно легированного тонкого "контактного" слоя *p*⁺-GaAs, стравливаемого в местах, свободных от контактов.

Для увеличения эффективности вывода излучения из кристалла осуществлялось текстурирование фронтальной световыводящей поверхности СИД [9]. Наиболее технологичным способом текстурирования поверхности является метод жидкостного химического травления. Широкий спектр химических реактивов обеспечивает возможность формирования необходимого профиля световыводящей поверхности.

В работе исследованы различные травители твердых растворов AlGaAs на основе разбавленной азотной кислоты, плавиковой кислоты, фторида аммония, перекиси водорода. Текстурирование в разбавленной азотной кислоте (HNO₃ 20–25%) позволяет проводить травление контактного слоя p^+ -GaAs и слоя твердого раствора p^+ -Al_{0.2}Ga_{0.8}As в едином технологическом цикле за счет отсутствия селективности травления. Однако высокая скорость травления (0.5–0.7 мкм/с) приводит к снижению точности профиля текстурированной поверхности: высота пиков (пирамид) составляет 1–1.5 мкм при очень коротком времени травления 1.5–2 с.

При использовании травителя на основе плавиковой кислоты, фторида аммония и перекиси водорода необходимо проводить предварительное стравливание контактного слоя p^+ -GaAs для вскрытия нижележащего слоя твердого раствора p^+ -Al_{0.2}Ga_{0.8}As (из-за селективности травления). Скорость травления p^+ -Al_{0.2}Ga_{0.8}As при

Рис. 2. Зависимости доли отраженного изотропного излучения, падающего на гетерограницу, от параметра состава x в отражающем слое $Al_xGa_{1-x}As$ при различных составах слоя, в котором распространяется излучение: 1 - GaAs, $2 - слой Al_{0.1}Ga_{0.9}As$, $3 - слой Al_{0.2}Ga_{0.8}As$.

Рис. 3. Токовая зависимость внешнего квантового выхода (1) и ватт-амперные характеристики (2, 3) СИД с двумя внутренними отражателями: 1,2 — с текстурированной поверхностью СИД, 3 — без текстурирования.

использовании травителя данного состава значительно ниже (0.8–1.2 мкм/мин), что обеспечивает высокую степень контроля процесса и возможность формирования пиков заданной высоты (0.5–1 мкм). Варьирование профиля текстурированной поверхности излучателей позволяет достигнуть существенного увеличения эффективности вывода излучения.

При изготовлении СИД фронтальный полосковый омический контакт к слою GaAs p--типа проводимости формировали путем напыления слоев Ag(Mn)/Ni/Au толщиной 0.2-0.3 мкм, что обеспечивало получение низкого переходного контактного сопротивления, $\sim (3-5) \cdot 10^{-5} \,\mathrm{Om} \cdot \mathrm{cm}^2$. Тыльный омический контакт к подложке GaAs *n*-типа проводимости формировали на основе слоев Au(Ge)/Ni/Au, с переходным контактным сопротивлением $\sim (3-5) \cdot 10^{-6} \, \mathrm{Om} \cdot \mathrm{cm}^2$. Для увеличения проводимости контактных шин осуществлялось электрохимическое осаждение слоев Ag/Ni/Au толщиной 2-4 мкм. Для увеличения эффективности СИД на его световыводящую поверхность приклеивали оптический элемент (силиконовую полусферу). При площади чипов СИД 1 мм² оптимальный диаметр полусферы элемента составлял 3-4 мм.

В СИД, изготовленных из гетероструктур AlGaAs/ GaAs без внутренних отражателей, внешний квантовый выход составлял ~ 1% без силиконовой полусферы и ~ 2% с полусферой. Такие значения эффективности являются типичными для СИД AlGaAs/GaAs с поглощающей GaAs-подложкой.

Измерения ватт-амперных характеристик СИД (рис. 3) осуществляли в непрерывном и импульсном (длительность импульсов 5 и 300 мкс) режимах. При токах до 1 А и площади чипов 1 мм² результаты непрерывных и импульсных измерений практически совпадают, что свидетельствует об эффективном

отводе тепла при плотностях тока до 100 А/см² в разработанной конструкции с монтажом готовых чипов СИД на основания, выполненные из алюмооксидной теплопроводящей электроизолирующей керамики.

На рис. 3 представлены токовая зависимость внешнего квантового выхода и ватт-амперные характеристики СИД на основе гетероструктуры с двумя внутренними отражателями, измеренные на различных этапах изготовления СИД: до текстурирования поверхности и после текстурирования.

Ватт-амперные характеристики практически линейны в исследованном диапазоне токов (до значений > 2 A). Величина внешнего квантового выхода СИД составила: $\eta = 9.6\%$ при токе 0.4 A и 9.1% при токе 1.4 A (рис. 3, кривая *I*).

Таким образом, методом МОС-гидридной эпитаксии созданы AlGaAs-гетероструктуры СИД с длиной волны излучения $\lambda = 850$ нм и двумя внутренними отражателями: с брэгговским отражателем и дополнительным отражающим слоем Al_{0.9}Ga_{0.1}As. Разработаны постростовые технологии изготовления ИК излучателей, обеспечившие снижение внутренних оптических, омических потерь и увеличение эффективности вывода излучения из кристалла. Созданы СИД с внешним квантовым выходом > 9% в диапазоне токов 0.1–1.4 А, при изготовлении которых не использовались сложные и дорогостоящие операции переноса гетероструктуры на инородный носитель и селективного удаления поглощающей подложки GaAs.

Благодарности

Авторы выражают благодарность М.З. Шварцу, Н.Д. Ильинской, Ю.М. Задиранову, Ф.Ю. Солдатенкову и С.О. Когновицкому за помощь и консультации при проведении экспериментов.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Ж.И. Алферов, В.М. Андреев, Д.З. Гарбузов, Н.Ю. Давидюк, Б.В. Егоров, Б.В. Пушный, Л.Т. Чичуа. ФТП, 48 (4), 809 (1978).
- [2] А.Л. Закгейм, В.М. Марахонов, Р.П. Сейсян. Письма ЖТФ, 6 (17), 1034 (1980).
- [3] У. Бекирев, С. Бабенко, В. Крюков, Б. Потапов, А. Скипер. Электроника. Спецвыпуск 00137, 137 (2014).
- [4] Электронный ресурс АО "Научно-исследовательский институт полупроводниковых приборов" https://www.niipp.ru/
- [5] https://www.epistar.com/EpistarEn/prodInfo
- [6] Su-Chang Ahn, Byung-Teak Lee, Won-Chan An, Dae-Kwang Kim, In-Kyu Jang, Jin-Su So, Hyung-Joo Lee. J. Korean Phys. Soc., 69 (1), 91 (2016).
- [7] V.M. Lantratov, V.M. Emelyanov, N.A. Kalyuzhnyy, S.A. Mintairov, M.Z. Shvarts. Adv. Sci. Technol., 74, 225 (2010).

- [8] В.М. Емельянов, Н.А. Калюжный, С.А. Минтаиров, М.В. Нахимович, Р.А. Салий, М.З. Шварц. ФТП, 54 (4), 400 (2020).
- [9] I. Schnitzer, E. Yablonovitch, C. Caneau, T.J. Gmitter, A. Scherer. Appl. Phys. Lett., 63, 2174 (1993).

Редактор Л.В. Шаронова

Internal reflectors influence on IR (850 nm) light-emitting diodes efficiency

A.V. Malevskaya, N.A. Kalyuzhnyy, D.A. Malevskii, S.A. Mintairov, R.A. Salii, A.N. Panchak, P.V. Pokrovskii, N.S. Potapovich, V.M. Andreev

loffe Institute, 194021 St. Petersburg, Russia

Abstract Investigated are IR light-emitting diodes with 850 nm radiation wavelength, based on AlGaAs/GaAs heterostructures grown by the method of MOC-hydride epitaxy with a Bragg reflector and additional "reflecting" layer Al_{0.9}Ga_{0.1}As, which ensures the decrease of optical losses of the generated radiation. Developed is the post growth technology for forming frontal ohmic contacts and for texturing the light-emitting surface, which ensures the decrease of ohmic losses and the increase of the radiation extraction efficiency from a crystal. External quantum efficiency of light-emitting diodes with two internal reflectors and surface texturing exceeded 9% in the current range 0.1-1.4 A.