12

Концептуальная модель квазибессилового магнита малого объема с инерционным удержанием его торцевой части

© Г.А. Шнеерсон, А.А. Парфентьев, В.В. Титков, С.И. Кривошеев, А.Д. Лагуткина, А.С. Немов, А.П. Ненашев, С.А. Шиманский

Санкт-Петербургский политехнический университет Петра Великого, Санкт-Петербург, Россия E-mail: gashneerson@mail.ru

Поступило в Редакцию 1 декабря 2020 г. В окончательной редакции 12 марта 2021 г. Принято к публикации 12 марта 2021 г.

Показана эффективность применения диамагнитного экрана с инерционным удержанием в неразрушаемом квазибессиловом магните малого объема (масштаба $10 \,\mathrm{cm}^3$) для получения сверхсильного магнитного поля с длительностью импульса порядка $10\,\mu$ s. Построена конфигурация магнита, рассчитаны механические напряжения в обмотке, торцевая часть которой уравновешена благодаря тому, что экран практически не смещается за время разряда. Численные расчеты показали, что механическая прочность обмотки может быть обеспечена в поле с индукцией до 100 Т. Выполнены расчеты нагрева обмотки и указаны возможности его снижения до приемлемого уровня.

Ключевые слова: квазибессиловая обмотка, неразрушаемый магнит, сильные импульсные магнитные поля, нагрев проводника.

DOI: 10.21883/PJTF.2021.11.51007.18639

Особенностью современных неразрушаемых магнитов, предназначенных для получения полей с индукцией, достигающей мегагауссного уровня, является использование равнонагруженных многослойных обмоток [1,2]. Внешний радиус такого магнита должен быть много больше внутреннего, а энергия системы — много больше энергии в его рабочей области. Например, в магните с внутренним диаметром 15.5 mm, описанном в работе [2], для получения поля с индукцией около 90 Т используется мотор-генератор для создания поля с индукцией 36 Т в первой и конденсаторная батарея с энергией 2.5 MJ во второй стадии разряда. Альтернативой таким системам может быть магнит с квазибессиловой обмоткой, в которой остаточные механические напряжения могут быть снижены до значений, существенно меньших, чем магнитное давление генерируемого поля, при гораздо меньших размерах и энергии магнитной системы [3,4]. В таких магнитах наряду с обмоткой, разгруженной от электромагнитных сил, имеет место внешняя граница, на которую воздействует магнитное давление $P_M = P_0/A^2$, где $P_0 = B_0^2/(2\mu_0)$ — магнитное давление с индукцией B_0 на оси магнита, $A = R_2/R_1$ аспектное отношение (R₁ — внутренний, а R₂ — внешний радиус магнитной системы). Давление на бандаж, удерживающий внешнюю границу, может быть резко снижено при большом значении аспектного отношения. В работах по теории квазибессиловых магнитных систем показано, что для достижения высоких значений этого параметра при сохранении равновесия торцевой части может быть использован торцевой диамагнитный экран [5]. Его создание существенно облегчается, если магнит предназначен для получения кратковременных

импульсов магнитного поля в малых объемах. В этих условиях может быть использована инерция экрана для его удержания на время разряда, что позволяет избежать разрушения обмотки в очень сильном поле. Целью настоящей работы является обоснование этого метода получения сверхсильного поля в неразрушаемом магните. Исходная модель магнитной системы с обмоткой малой толщины и диамагнитным экраном представлена на рис. 1. Обмотка может быть построена так, что магнитные давления полоидального поля в точках *M* и

Рис. 1. Модель магнита с квазибессиловой обмоткой, торцевым и коаксиальным диамагнитными экранами и рассчитанное распределение нормированных напряжений. 1 — обмотка, 2 — торцевой экран, 3 — коаксиальный экран, 4 — диэлектрическая среда.

азимутального в точках N равны. При этом на границе обмотки отсутствует нормальная компонента индукции полоидального поля. В такой обмотке имеет место локальное равновесие проводников, и ожидаемые значения механических напряжений могут быть существенно ниже магнитного давления Р₀ [3,4]. В основной части обмотки 1 витки размещены под углом к оси, близким к 45°. При размещении вблизи торцевой части обмотки 2 идеально проводящего диска (экрана) 3 может быть обеспечено равновесие не только основной (цилиндрической), но и торцевой части обмотки. В приближении идеальной проводимости локальное равновесие тонкостенной обмотки может иметь место как на плоской части торца, так и на переходном участке определенной конфигурации, если внутренний радиус обмотки R₁ и зазор h между обмоткой и диском связаны условием $h = 0.5R_1$ [5]. Экран подвержен воздействию аксиальной силы. При постоянной толщине зазора индукция полоидального поля в зазоре В_р совпадает с радиальной компонентой индукции B_r : $B_p = B_r = B_0 R_1 / r$. В этом случае аксиальная сила определяется как

$$F_z \approx \int_{R_1}^{R_2} \frac{B_r^2 \pi r dr}{\mu_0} = \frac{B_0^2 \pi R_1^2}{\mu_0} \ln A.$$
(1)

При кратковременном воздействии поля импульс этой силы $P = \int_{0}^{\infty} F_z dt$ может быть достаточно мал, что позволяет обеспечить инерционное удержание диска и разгрузку торцевой части. Указанное можно подтвердить оценкой, выполненной в модели магнита с обмоткой нулевой толщины, когда сила F_z , рассчитанная без учета краевых эффектов, может быть представлена формулой (1). В том случае, когда индукция B_0 имеет вид униполярного импульса в форме полуволны синусоиды с амплитудой B_m и полупериодом τ , смещение диска с массой m к концу импульса может быть рассчитано по формуле

$$\Delta z = \frac{B_m^2 \pi R_1^2 \ln A}{\mu_0 m} \int_0^t dt \int_0^t \sin^2 \left(\frac{\pi t}{\tau}\right) dt = \frac{B_m^2 \pi R_1^2 \tau^2 \ln A}{4\mu_0 m}.$$
(2)

Даже при амплитуде индукции 100 Т для магнита малого объема с радиусами $R_1 = 5$ mm, $R_2 = 40$ mm при $\tau = 50 \,\mu$ s получаем, что тело с массой 3 kg к моменту максимума импульса смещается лишь на расстояние 0.27 mm. Это дает основание считать при оценках неизменной конфигурацию магнитной системы в течение разряда.

Важным моментом при построении обмотки является учет реальной конфигурации линий тока. Отношение длины обмотки к внутреннему радиусу и внешний радиус торцевой части должны быть выбраны так, чтобы азимутальные координаты начала и конца каждой секции совпадали. Это обеспечивает возможность их последо-

Рис. 2. Конфигурация обмотки с последовательным соединением ее четырех частей.

вательного соединения, как это показано на рис. 2.¹ Расположение выводов определяется конфигурацией линий тока. В модели обмотки малой толщины компоненты смещения dl_p и dl_{φ} соотносятся так же, как компоненты плотности тока:

$$\frac{dl_{\varphi}}{dl_{p}} = \frac{H_{p}}{H_{\varphi}} = \operatorname{tg} \alpha.$$
(3)

При изменении радиальной координаты точки s на этой линии от значения R_1 до значения R_2 азимутальная координата получает приращение

$$\Delta \varphi = \int_{R_1}^{R_2} \frac{H_p dl_p}{H_{\varphi} r}.$$
(4)

Линии тока, построенные по этому закону при условии $H_p = H_{\varphi}$, являются границами изоляционных зазоров между витками обмотки, показанной на рис. 2. В центральной части магнита $dl_p = dz$ эти линии являются спиралями: $\Delta \varphi = \Delta z$. На плоской части торца $dl_p = dr$, и линии тока описываются уравнением логарифмической спирали

$$\Delta \varphi = \int_{R_1}^{R_2} \frac{dr}{r} = \ln \frac{R_2}{R_1}.$$
 (5)

В представленной на рис. 2 модели магнита, состоящего из четырех последовательно включенных секций,

¹ На рис. 2 не показан один из проводников, соединяющих части обмотки, а также торцевой и коаксиальный экраны.

отношение радиусов R_2/R_1 и отношение длины к радиусу l/R_1 выбраны так, что точки a1 и b1 смещаются на угол $3/2\pi$ при переходе в положения a_2 и b_2 . Это обеспечивает возможность последовательного соединения витков. Толщина обмотки должна быть выбрана с учетом джоулева нагрева проводника в процессе диффузии импульсного магнитного поля. Дополнительным фактором, влияющим на выбор толщины, является требование, чтобы к моменту максимума тока распределение полоидального и азимутального токов в обмотке было близко к однородному. Лишь в этом случае происходит характерная для квазибессиловой обмотки частичная компенсация встречно направленных объемных лоренцевых сил, обусловленных этими токами. Таким образом, обмотка должна работать в условиях слабо выраженного скин-эффекта. Характерной особенностью квазибессиловой обмотки является слабая зависимость остаточных напряжений от ее толщины. Это позволяет выбрать толщину исходя из конструктивных и технологических соображений. Дальнейший анализ проведен для магнита с обмоткой из нержавеющей стали с внутренним радиусом $R_1 = 5 \,\mathrm{mm}$ и толщиной стенки $d = 3 \,\mathrm{mm}$. В первом приближении расчет проводится без учета влияния скинэффекта на распределение плотности полоидального и азимутального токов в момент максимума индукции, когда механические напряжения максимальны. После окончательного выбора длительности импульса с учетом нагрева обмотки проводится контрольный расчет, учитывающий диффузию поля в ходе разряда.

Конфигурация магнита с обмоткой малой толщины использована как основа для построения его расчетной 2Dмодели с указанными размерами. Использовано допущение об идеальной проводимости экрана. При выбранной длительности импульса это приближение приемлемо, если экран имеет покрытие из меди. В ходе расчетов с использованием программ Comsol-Multiphysics и Ansys произведена коррекция формы обмотки и изоляционного зазора между экраном и обмоткой с целью достижения минимального значения прочностного параметра — нормированного эквивалентного напряжения $\eta = 2\mu_0 \sigma_M / B_0^2$, равного отношению этого напряжения, рассчитанного по формуле фон Мизеса, к магнитному давлению генерируемого поля. Значение $\eta_{\rm max}$ может быть снижено путем заполнения области, прилегающей к обмотке, диэлектрической средой с достаточно высоким модулем упругости. На рис. 1 показаны оптимизированные конфигурации экрана и обмотки, а также распределение интенсивности нормированных механических напряжений по Мизесу в теле обмотки. При использовании диэлектрической среды с модулем упругости 80 МРа максимальное значение нормированного напряжения составляет $\eta_{\text{max}} = 0.235$. Это соответствует максимальному механическому напряжению в обмотке 0.94 GPa при значении индукции на оси магнита 100 Т.

Наряду с прочностью материала нагрев обмотки является фактором, лимитирующим достижимый уровень индукции. Приращение температуры за время разряда мо-

Рис. 3. Характерное распределение ортогональных магнитных полей и токов и нагрев поверхностей плоского слоя.

жет быть рассчитано по формуле $\Delta T = f(k)B_m^2/(\mu_0\gamma c)$, где у — плотность материала, с — удельная теплоемкость, В_т — амплитуда индукции импульсного поля, имеющего форму полупериода синусоиды, f(k) — безразмерная функция параметра $k = (\rho \tau / \mu_0)^{1/2} / d$ (представлена на рис. 3), ρ и d — удельное электрическое сопротивление и толщина проводника соответственно. Анализ данных рис. 3 при амплитуде индукции 100 Т показывает неприемлемо высокий нагрев проводника. Известным техническим решением снижения нагрева проводников в импульсном магнитном поле является применение проводящей среды с переменной по толщине электропроводностью [4]. При этом должны быть соблюдены условия более низкой проводимости поверхностных слоев проводника по сравнению с проводимостью в его глубине. Наибольший эффект достигается применением среды с плавно изменяющейся проводимостью: от низкой на поверхности к высокой в глубине [6]. Применительно к рассматриваемой здесь обмотке был исследован нагрев плоского проводника с параболическим распределением удельного электрического сопротивления по его толщине $ho(x) = (
ho_{
m max} -
ho_{
m min})(2x/d - 1)^2 +
ho_{
m min}.$ При этом для толщины проводника $d = 3 \,\mathrm{mm}$ и $\rho_{\mathrm{max}} = 0.224 \,\mu\Omega \cdot \mathrm{m},$ $\rho_{\rm min} = 0.05 \,\mu\Omega \cdot {\rm m}$ полное приращение температуры (за время $t = 2\tau = 100 \,\mu s$) в поле с амплитудой индукции 100 Т снижается до 1300°С, что приемлемо для проводящих материалов, получаемых с помощью технологии селективного лазерного сплавления металлических порошков (SLM).

Таким образом, показано, что при получении коротких импульсов магнитного поля в магните малого объема можно избежать его разрушения благодаря применению диамагнитного экрана с инерционным удержанием. Подобная система может быть основой для создания неразрушаемых магнитов со сверхсильным полем. Для изготовления обмотки могут быть использованы современные методы аддитивной технологии. При использовании диэлектрической среды с высоким модулем упругости механическая прочность обмотки может быть обеспечена в поле с индукцией до 100 Т. Нагрев обмотки, не превышающий допустимого предела, может иметь место в поле с индукцией до 70 Т, если проводимость постоянна по толщине витка. В поле с индукцией 100 Т допустимый нагрев возможен, если проводимость определенным образом изменяется по толщине проводника.

Благодарности

Результаты работы получены с использованием вычислительных ресурсов суперкомпьютерного центра Санкт-Петербургского политехнического университета Петра Великого (www.scc.spbstu.ru).

Финансирование работы

Работа выполнена при поддержке Российского научного фонда (грант № 18-19-00230).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- F. Herlach, Rep. Prog. Phys., 62 (6), 859 (1999).
 DOI: 10.1088/0034-4885/62/6/201
- [2] C.A. Swenson, W.S. Marshall, A.V. Gavrilin, K. Han, J. Schillig, J.R. Sims, H.J. Schneider-Muntau, Physica B, 346-347, 561 (2004). https://doi.org/10.1016/j.physb.2004.01.082
- [3] Г.А. Шнеерсон, И.А. Вечеров, Д.А. Дегтев, О.С. Колтунов, С.И. Кривошеев, С.Л. Шишигин, ЖТФ, 78 (10), 29 (2008).
 [Пер. версия: 10.1134/S1063784208100046].
- [4] G.A. Shneerson, M.I. Dolotenko, S.I. Krivosheev, Strong and superstrong pulsed magnetic fields generation (De Gruyter, Berlin, 2014). https://doi.org/10.1515/9783110252576
- [5] G.A. Shneerson, O.S. Koltunov, H.J. Shneider-Muntau, V.V. Titkov, A.A. Parfentjev, Physica B, 346-347, 566 (2004).
 DOI: 10.1016/j.physb.2004.01.083
- [6] И.М. Карпова, В.В. Титков, Электричество, № 12, 55 (1999).