07.1 Барьер Шоттки на контакте магнитного 3*d*-металла с полупроводником

© С.Ю. Давыдов¹, О.В. Посредник²

¹ Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия ² Санкт-Петербургский государственный электротехнический университет "ЛЭТИ", Санкт-Петербург, Россия E-mail: Sergei_Davydov@mail.ru

Поступило в Редакцию 9 декабря 2020 г. В окончательной редакции 9 марта 2021 г. Принято к публикации 10 марта 2021 г.

С помощью модели Фриделя для *d*-зоны переходного металла и модели локального дефекта для полупроводника получены аналитические выражения для перехода заряда (электронов или дырок) между металлом и полупроводником и высоты барьера Шоттки. Показано, что учет намагниченности металла ведет к увеличению перехода заряда и связанного с этим вклада в высоту барьера Шоттки. Численные оценки представлены для контактов Со и Ni с 6*H*- и 4*H*-политипами SiC.

Ключевые слова: магнитный металл, полупроводник, локальный дефект, переход заряда, высота барьера Шоттки.

DOI: 10.21883/PJTF.2021.11.51006.18650

Несмотря на восьмидесятилетнюю историю теоретического изучения контакта металл-полупроводник, единой общепринятой модели барьера Шоттки (БШ) до сих пор не существует [1–3]. Среди подходов к расчету высоты БШ популярны модели, в которых положение уровня Ферми на интерфейсе связывается с локальными дефектными состояниями полупроводника (дефектные модели). В работах Людеке и др. [4,5] была предложена модель, основанная на теории адсорбции Андерсона-Ньюнса [6,7]. Модифицированный вариант модели [4,5] был затем использован для расчетов высоты БШ на контакте металлов с политипами карбида кремния [8,9]. В настоящей работе мы применим модель [8,9] к описанию ситуации, когда металлическими компонентами БШ являются магнитные 3*d*-металлы Fe, Со и Ni.

Согласно [4,5,8,9], контактная поверхность полупроводника описывается локальным уровнем дефекта ε_{def} . При этом предполагается, что поверхностная концентрация дефектов $N_{def} \ll N_{surf}$, где $N_{surf} \sim 10^{15}$ сm⁻² — поверхностная концентрация атомов. По аналогии с [6,7] запишем плотности состояний уровней дефекта в виде

$$\rho_{def}^{\sigma}(\omega) = \frac{1}{\pi} \frac{\Gamma_{\sigma}(\omega)}{\pi \left(\omega - \varepsilon_{def} - \Lambda_{\sigma}(\omega)\right)^2 + \Gamma_{\sigma}^2(\omega)}.$$
 (1)

Здесь $\sigma = \uparrow, \downarrow$ — спиновый индекс, $\Gamma_{\sigma}(\omega) = \pi V^2 \rho_{met}^{\sigma}(\omega)$ и $\Lambda_{\sigma}(\omega) = V^2 P \int_{-\infty}^{\infty} \rho_{met}^{\sigma}(\omega') d\omega' / (\omega - \omega')$ — функции уширения и сдвига уровня ε_{def} , V — матричный элемент взаимодействия металл-полупроводник, $\rho_{met}^{\sigma}(\omega)$ плотность состояний металла, P — символ главного значения интеграла. Для описания $\rho_{met}^{\sigma}(\omega)$ воспользуемся моделью Фриделя [10], описывающей магнетизм Стонера [11]:

$$\rho_{met}^{\sigma}(\omega) = \begin{cases} 5/W_d, & |\omega - \omega_{0\sigma}| \leq W_d/2, \\ 0, & |\omega - \omega_{0\sigma}| > W_d/2, \end{cases}$$
(2)

где ω — энергетическая переменная, W_d — ширина *d*-зоны, $\omega_{0\sigma}$ — центр подзоны для спиновой проекции σ . Полагая $\Gamma = 5\pi V^2/W_d$, легко показать, что

$$\Lambda_{\sigma}(\omega) = (\Gamma/\pi) \ln \left| \frac{\omega - \omega_{0\sigma} + W_d/2}{\omega - \omega_{0\sigma} - W_d/2} \right|.$$
(3)

Здесь, как и в большинстве работ, основанных на модельном подходе к проблеме, мы игнорируем наличие *s*-зоны 3*d*-металлов, так как, во-первых, ширина *s*-зоны $W_s \gg W_d$, так что $1/W_s \ll 5/W_d$. Во-вторых, в соответствии с методом связывающих орбиталей Харрисона [12,13] матричный элемент связи *d*-орбитали металла с *s p*³-орбиталью дефекта в 2 раза больше, чем для связи *s*-орбитали.

Число $d\sigma$ -состоянии электронов В равно $N_{met}^{\sigma}=5(E_{
m F}-\omega_{0\sigma}+W_d/2)/W_d,$ где $E_{
m F}$ — уровень Ферми. В дальнейшем в качестве компонентов БШ будем рассматривать Со и Ni. Воспользовавшись данными по числам заполнения, приведенными в [11] (см. табл. 2.1 в указанной работе), для кобальта получаем $w_d \equiv \omega_{0\perp} - \omega_{0\uparrow} = 0.4 W_d$ (Co), для никеля имеем $w_d \equiv \omega_{0\downarrow} - \omega_{0\uparrow} = 0.2 W_d$ (Ni), где мы для простоты округлили числа заполнения, положив $N_{met}^{\uparrow}(\mathrm{Co}) = N_{met}^{\uparrow}(\mathrm{Ni}) = 5, \quad N_{met}^{\downarrow}(\mathrm{Co}) = 3, \quad N_{met}^{\downarrow}(\mathrm{Ni}) = 4.$ Отметим, что по данным [14] намагниченности на поверхности и в объеме образцов никеля практически совпадают.

Согласно данным, приведенным в [1,15], работы выхода никеля ϕ (Ni) для граней (100), (110) и (111) равны соответственно 4.89–5.22, 5.04 и 5.35 eV, справочник [15] дает значения 5.22, 5.04 и 5.35 eV. Для монокристаллов кобальта данные по работе выхода в [1,15] отсутствуют, однако для поликристалла в [15] приводится значение ϕ (Co) = 4.41 eV. Отметим, что для поликристалла никеля имеем ϕ (Ni) = 4.5 eV [15]. Двухпроцентная разница ϕ (Co) и ϕ (Ni) для поликристаллов позволяет предположить, что значения работ выхода для граней (100), (110) и (111) кобальта близки к соответствующим значениям для никеля.

Поскольку $W_d(\text{Co}) = 4.35 \text{ eV}$ и $W_d(\text{Ni}) = 3.78 \text{ eV}$, на один электрон приходятся энергетические интервалы $\delta(Me)$, равные соответственно 1.11 и 0.84 eV. Тогда энергии центров *d*-зон относительно вакуума имеют вид

$$\omega_0(Me) = -\left[\phi(Me) + N_{Me}\delta(Me)\right],$$

и $N_{\rm Ni} = 1.98$. где $N_{\rm Co} = 1.43$ Следовательно, *d-*зоны отвечает потолок (дно) энергии $\omega_{\pm}(Me) = \omega_0(Me) \pm W_d(Me)/2$ относительно вакуума. В настоящей работе мы намерены получить лишь качественные результаты, поэтому, полагая для кобальта и никеля $\phi = 5 \,\mathrm{eV}$, приближенно получим $\omega_+ \approx -4 \,\mathrm{eV}$ $\omega_0\approx-6\,\mathrm{eV}$ и $\omega_{_}\approx-8\,\mathrm{eV}$ для обоих металлов. При наличии магнитного момента имеем $\omega_{0,\pm\uparrow} = \omega_{0,\pm} + w_d/2$ и $\omega_{0,\pm\downarrow}=\omega_{0,\pm}-w_d/2$, где $w_d=1.6$ и $1.2\,\mathrm{eV}$ для Со и Ni соответственно. Тогда в случае кобальта d-зона (относительно вакуума) занимает интервал энергий от $E_{met}^{top} = -3.2 \text{ eV}$ до $E_{met}^{bot} = -8.8 \text{ eV}$, для никеля *d*-зона простирается от $E_{met}^{top} = -3.4 \text{ eV}$ до $E_{met}^{bot} = -8.6 \text{ eV}$.

Рассмотрим в качестве полупроводниковых компонентов контакта политипы карбида кремния. Для положений центра E_{g0} и верхнего (нижнего) края $E_{g\pm}$ запрещенной зоны для 6H (4H)-политипов получим относительно вакуума

$$E_{g+} = -\chi = -3.45(-3.17) \text{ eV},$$

$$E_{g0} = -(\chi + E_g/2) = -4.95(-4.74) \text{ eV},$$

$$E_{g-} = -(\chi + E_g) = -6.45(-6.30) \text{ eV},$$

где χ — электронное сродство, E_g — ширина запрещенной зоны [16,17]. Таким образом, уровень Ферми металла располагается вблизи центра запрещенной зоны полупроводника, т. е. $E_F \approx E_{g0}$ или $\phi_m \approx \chi + E_g/2$. Еще одно обстоятельство, которое следует отметить, состоит в том, что *d*-зона металла практически перекрывает всю запрещенную зону политипов 6*H*- и 4*H*-SiC (здесь мы пренебрегаем узкой энергетической щелью ($E_{g+} - \omega_+$), равной 0.03 eV в верхней части запрещенной зоны 4*H*политипа при контакте с кобальтом и 0.23 eV при контакте с никелем).

Оценим теперь значение энергии дефекта ε_{def} . В дальнейшем под дефектами будем понимать нестехиометрические вакансии в подрешетках кремния и углерода политипов SiC [16,17]. Согласно простым оценкам в рамках теории сильной связи [7,18], уровень вакансии лежит вблизи центра запрещенной

зоны. В этой области энергий можно положить $\varepsilon_{def} + \Lambda_{\sigma}(\omega) \approx \varepsilon_{def} + \Lambda_{\sigma}(\varepsilon_{def}) \equiv \varepsilon_{def}^{\sigma}$.

При температуре T = 0 число заполнения $d\sigma$ -состояния $n_{def}^{\sigma} = \int_{E_{met}^{bot}}^{E_{F}} \rho_{def}^{\sigma}(\omega) d\omega$. Полагая $\omega_{0} = E_{g0} = 0$, $|\varepsilon_{def}|$, $\Gamma \ll E_{g}/2 < |E_{met}^{bot}|$, получим приближенно

$$n_{def}^{\sigma} = \frac{1}{\pi} \operatorname{arccot} \frac{\varepsilon_{def}^{\sigma} - E_{\rm F}}{\Gamma},\tag{4}$$

где в правой части уравнения (4) мы пренебрегли слагаемым $\pi^{-1} \operatorname{arccot}[(E_{met}^{bot} - \varepsilon_{def}^{\sigma})/\Gamma].$

Уровень Ферми системы металл-полупроводник, отсчитываемый от центра запрещенной зоны, определяется самосогласованным уравнением

$$E_{\rm F} = \chi + E_g/2 - \phi_m - \Phi_{def} Z_{def}.$$
 (5)

Здесь $\Phi_{def} = -4\pi e^2 l N_{def}$, N_{def} — поверхностная концентрация дефектов, 2l — толщина двойного электрического слоя, образованного заряженными дефектами и их изображениями в металле, e — величина заряда электрона, $Z_{def} = 1 - n_{def}$ — заряд дефекта, $n_{def} = \sum_{\sigma} n_{def}^{\sigma}$.

Поскольку для электронного полупроводника высота БШ, отсчитываемая от потолка валентной зоны, равна

$$\Phi_b^n = \phi_m - \chi + \Phi_{def} Z_{def}, \qquad (6)$$

для ее вычисления требуется найти решения системы двух самосогласованных уравнений (4) и (5), что в общем случае можно сделать только численно. Здесь рассмотрим лишь частный случай, позволяющий, однако, понять, к каким результатам приводит учет намагниченности металлического компонента контакта.

Положив $E_{\rm F} = E_{g0} = 0$ или $\phi_m = \chi + E_g/2$, перепишем уравнения (4) и (5) в виде

$$n_{def} = \frac{1}{\pi} \sum_{\sigma} \operatorname{arccot} \frac{\varepsilon_{def} + \Lambda_{\sigma}(\varepsilon_{def}) + \Phi_{def} Z_{def}}{\Gamma}.$$
 (7)

Здесь

$$\begin{split} \Lambda_{\uparrow,\downarrow}(\varepsilon_{def}) &= (\Gamma/\pi) \ln |f_+^{\mp}/f_-^{\mp}|, \\ f_+^{\mp} &= W_d/2 \mp w_d/2 \pm \varepsilon_{def}/2, \end{split}$$

где верхние (нижние) индексы соответствуют знакам перед вторым (третьим) слагаемым. Считая $|\varepsilon_{def}| \ll \Gamma$, $(W_d - w_d)/2$, получим

$$Z_{def} \approx \frac{2\varepsilon_{def}}{\pi\Gamma} \left(1 - \frac{2\Phi_{def}}{\pi\Gamma} + \frac{4\Gamma W_d}{\pi(W_d^2 - w_d^2)} \right).$$
(8)

В рамках тех же приближений магнитный момент $m_{def} = n_{def}^{\uparrow} - n_{def}^{\downarrow}$, наведенный металлом на дефекте, равен

$$m_{def} \approx \frac{8\varepsilon_{def}W_d}{\pi^2(W_d^2 - w_d^2)}.$$
(9)

Отметим прежде всего, что $Z_{def} \propto \varepsilon_{def}/\Gamma$. Тот же результат при $|\varepsilon_{def}| \ll \Gamma$ можно получить и в стандартной

задаче об адсорбции одиночного атома (в нашем случае дефекта) на металлической подложке [6,7]. С учетом (9) выражение (8) может быть переписано как

$$Z_{def} = Z_{def}^{nm} + m_{def}$$

где $Z_{def}^{nm} pprox (2 arepsilon_{def} / \pi \Gamma) (1 - 2 \Phi_{def} / \pi \Gamma)$ — немагнитный вклад в заряд дефекта. Из формулы (9) следует также, что с ростом намагниченности металла M_{met} = $N_{met}^{\dagger} - N_{met}^{\downarrow}$ растут величины w_d и m_{def} . Так, например, полагая, как и выше, $W_d(\text{Co}) = W_d(\text{Ni})$, получим m_{def} (Co)/ m_{def} (Ni) \approx 1.1. Перепишем теперь выражение (6) в виде суммы немагнитного $(\Phi_h^n)_{nonmag} =$ $=E_g/2+\Phi_{def}Z_{def}^{nm}$ и магнитного $(\Phi_b^n)_{mag}=\Phi_{def}m_{def}$ вкладов в высоту БШ. Так как знак m_{def} совпадает со знаками ε_{def} и Z_{def}^{nm} , намагниченность металла увеличивает переход заряда и вызванное этим переходом изменение высоты БШ. Таким образом, изменение высоты барьера Шоттки пропорционально наведенной намагниченности на дефекте. Легко показать, что отношение $m_{def}/Z_{def}^{nm} \sim \Gamma/W_d \sim 0.1$, так что $(\Phi_b^n)_{nonmag} \sim E_g/2 + 1.1 \Phi_{def} Z_{def}^{nm}$ и $(\Phi_b^p)_{nonmag} \sim E_g/2 - -1.1 \Phi_{def} Z_{def}^{nm}$ для электронного и дырочного полупроводников соответственно. Таким образом, намагниченность металла приводит к изменению высоты барьера Шоттки на $\sim 0.1 \Phi_{def}$ (оценка по максимуму). Отметим, что величина параметра Г во многом определяется технологией формирования барьера Шоттки. То же можно сказать и о реальных концентрациях N_{def} , определяющих значение Φ_{def} полупроводниковых дефектов (не только нестехиометрических, но и внесенных при формировании контакта).

В заключение подчеркнем, что нам неизвестны работы по БШ, в которых обсуждалась бы роль намагниченности металлического компонента контакта. Поэтому здесь мы ограничились лишь качественными (порядковыми) оценками, не прибегая к расчетам, проведенным в [8,9]. Отметим, что магнитные состояния в барьерах Шоттки могут представлять интерес для приборных структур спинтроники (см., например, [19,20]).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] Ф. Бехштедт, Р. Эндерлайн, Поверхности и границы раздела полупроводников (Мир, М., 1990), гл. 4.
- W. Mönch, Rep. Prog. Phys., 53, 221 (1990). https://doi.org/10.1088/0034-4885/53/3/001
- [3] R.T. Tung, Appl. Phys. Rev., **1**, 011304 (2014). https://doi.org/10.1063/1.4858400
- [4] R. Ludeke, G. Jezequel, A. Taleb-Ibrahimi, Phys. Rev. Lett.,
 61, 601 (1988). https://doi.org/10.1103/PhysRevLett.61.601
- [5] R. Ludeke, Phys. Rev. B., 40, 1947 (1989). https://doi.org/10.1103/PhysRevB.40.1947

- [6] С.Ю. Давыдов, С.В. Трошин, ФТТ, 49 (8), 1508 (2007).
 [Пер. версия: https://doi.org/10.1134/S1063783407080318].
- [7] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник, Элементарное введение в теорию наносистем (Лань, СПб., 2014), гл. 8, 9.
- [8] С.Ю. Давыдов, А.А. Лебедев, О.В. Посредник, Ю.М. Таиров, ФТП, 35 (12), 1437 (2001). [Пер. версия: https://doi.org/10.1134/1.1427974].
- [9] С.Ю. Давыдов, ФТТ, 46 (12), 2135 (2004). [Пер. версия: https://doi.org/10.1134/1.1841381].
- [10] В.Ю. Ирхин, Ю.П. Ирхин, Электронная структура, физические свойства и корреляционные эффекты в d- и f-металлах и их соединениях (УрО РАН, Екатеринбург, 2004), гл. 2.
- [11] Дж. Займан, Принципы теории твердого тела (Мир, М., 1974), гл. 10.
- [12] У. Харрисон, Электронная структура и свойства твердых тел (Мир, М., 1983), т. 2.
- W.A. Harrison, Phys. Rev. B, 27, 3592 (1983). https://doi.org/10.1103/PhysRevB.27.3592
- [14] G. Bertoni, L. Calmels, A. Altibelli, V. Serin, Phys. Rev. B, 71, 075402 (2004). https://doi.org/10.1103/PhysRevB.71.075402
- [15] Физические величины. Справочник, под ред. И.С. Григорьева, Е.З. Мейлихова (Энергоатомиздат, М., 1991).
- [16] А.А. Лебедев, ФТП, 33 (7), 769 (1999). [Пер. версия: https://doi.org/10.1134/1.1187764].
- [17] С.Ю. Давыдов, ФТП, 53 (5), 706 (2019). [Пер. версия: 10.1134/S106378261905004X].
- [18] М. Ланно, Ж. Бургуэн, Точечные дефекты в полупроводниках: Теория (Мир, М., 1984), гл. 3.
- [19] A. Hirohata, K. Yamada, Y. Nakatani, I.-L. Prejbeanu, B. Dieny, P. Pirro, B. Hillebrands, J. Magn. Magn. Mater., 509, 166711 (2020). https://doi.org/10.1016/j.jmmm.2020.166711
- [20] J. Puebla, J. Kim, K. Kondou, Y. Otani, Commun. Mater., 1, 24 (2020). https://doi.org/10.1038/s43246-020-0022-5