Водорастворимые KT InP/ZnS как маркеры дибутилфталата. Влияние спирта на растворимость фталатов

© А.С. Кулагина^{1,2¶}, В.В. Данилов³, В.Б. Шилов⁴

¹ Санкт-петербургский национальный исследовательский академический университет им. Ж.И. Алферова РАН, 194021 Санкт-Петербург, Россия

² Физико-технический институт им. А.Ф. Иоффе РАН,

194021 Санкт-Петербург, Россия

23

³ Петербургский государственный университет путей сообщения Императора Александра I,

190031 Санкт-Петербург, Россия

⁴ АО "ГОИ им. С.И. Вавилова",

199053 Санкт-Петербург, Россия

[¶] e-mail: a.s.panfutova@gmail.com

Поступила в редакцию 03.02.2021 г. В окончательной редакции 03.02.2021 г. Принята к публикации 18.02.2021 г.

> Исследовано взаимодействие полупроводниковых водорастворимых квантовых точек (КТ) InP/ZnS-PEG-COOH с дибутилфталатом (ДБФ) в пробах пресной и морской воды. Обнаружено, что увеличение концентрации ДБФ в растворе пресной воды с КТ InP/ZnS приводит к росту амплитуды люминесценции КТ. Рост амплитуды люминесценции вызван локализацией молекул ДБФ в полости Онзагера КТ и пассивацией ее поверхности. Повышение концентрации этилового спирта повышает растворимость ДБФ и может служить средством повышения чувствительности при регистрации фталатов в водных средах. Наблюдения за динамикой люминесценции в образцах воды Черного, Средиземного и Белого морей показали индивидуальный характер взаимодействия КТ InP/ZnS с ДБФ, в том числе при увеличении концентрации этанола. Установлено, что пластиковая упаковка, содержащая внутри себя вещества, в составе которых присутствует спирт, является потенциально опасной для здоровья человека.

> Ключевые слова: качество воды, водорастворимые квантовые точки InP/ZnS, дибутилфталат, спектры поглощения, люминесценция.

DOI: 10.21883/OS.2021.06.50995.1878-21

Введение

Сегодня остро стоит вопрос о качестве воды, которую мы пьем и которая нас окружает. Повсеместно распространено использование пластиковых контейнеров для хранения воды, алкоголя, продуктов. Однако выделение в контактирующую среду продуктов разложения пластика — фталатов — может происходить под влиянием многих факторов [1]. В настоящее время в Европейском Союзе и Канаде в целях заботы о здоровье нации запрещено содержание фталатов в детских игрушках и продуктах [2]. Фталаты, имитирующие структуру эстрогена, могут вызывать нарушения в эндокринной системе. Будучи канцерогенами фталаты накапливаются в организме человека [3].

Продукты жизнедеятельности разлагающих пластик бактерий, среди которых присутствуют фталаты, могут повлиять на морскую экосистему, а также, поднимаясь по пищевой цепочке, вернуться к человеку [4]. По имеющимся сведениям [5] на сегодняшний день основной вклад в загрязнение потребительского молока вносят дибутилфталат (ДБФ) и диметилфталат.

В медицине метаболиты фталатов анализируют с помощью жидкостной хроматографии и тандемной масс-

спектроскопии [6]. Такой химический анализ дорог и сложен, что ограничивает список подходящих лабораторий до небольшого числа специальных центров. Миниатюризации приборной базы можно достичь с помощью использования наноструктур. Известно, что изменение спектральных свойств наночастиц служит индикатором их взаимодействия с различными агентами [7,8]. Известно, что водорастворимые квантовые точки (КТ) InP/ZnS обладают высоким квантовым выходом люминесценции, одновременно малой токсичностью для биологического применения и высокой реакционной способностью к изменению окружения [9].

Целью настоящей работы являлось исследование взаимодействия KT InP/ZnS с ДБФ в пробах пресной и морской воды, а также изучение влияния содержания спирта на растворимость фталатов. Подобное исследование перспективно с точки зрения разработки метода экспресс-диагностики фталатов в жидких средах.

Материалы и оборудование

Согласно техническому регламенту ТР ТС 005/2011 "О безопасности упаковки", тара, предназначенная для пищевой продукции, не должна выделять в контактирующие с ней среды вещества, вредные для здоровья человека, в количествах, превышающих предельно допустимые значения; по ДБФ совсем не допускается его миграция в контактирующие среды [1,3]. Поэтому в качестве объекта исследования был выбран ДБФ (дибутилбензол-1,2-дикарбонат, DBP — анг.) С₆H₄(СООС₄H₉)₂ — дибутиловый эфир фталевой кислоты. В качестве маркеров фталатов использовались полупроводниковые водорастворимые КТ InP/ZnS, покрытые лигандами PEG — СООН производства Mesolight. Максимум люминесценции КТ приходился на область 630 nm. Исходная концентрация КТ во всех исследуемых растворах составляла $C \approx 7 \cdot 10^{-8}$ М. В качестве пресной воды использовалась водопроводная вода, пропущенная через фильтр Аквафор. Образцы морской воды были взяты из Черного (г. Геленджик, соленость ~ 18.0%), Белого (г. Беломорск, соленость 24.0-30.0%) и Средиземного морей (западное побережье о. Гозо, Мальта, соленость 36.0-39.5%).

Спектры поглощения и люминесценции регистрировались с помощью спектрофотометра UV-probe 3600 (Shimadzu) и спектрофлуориметра Cary Eclipse (Varian). Возбуждение люминесценции производилось на длине волны $\lambda = 405$ nm.

Результаты и обсуждение

Исследование взаимодействия КТ и ДБФ в пресной воде

На рис. 1 представлены результаты исследований спектральных характеристик КТ InP/ZnS при взаимодействии с ДБФ в растворах с пресной водой. При малых концентрациях ДБФ скапливался в виде жировых капель на поверхности водного раствора. Начиная с 6 mol/L, ДБФ в виде сфер разных размеров опускался на дно. Во всем объеме водного раствора КТ-ДБФ наблюдались опалесцирующие центры. При увеличении концентрации фталатов в спектрах поглощения наблюдался рост полосы на длине волны 275 nm (рис. 1, данные 6-9), характерной для ДБФ, а в спектрах люминесценции — увеличение амплитуды в основной полосе свечения КТ (см. вставку на рис. 1).

Увеличение люминесценции КТ при взаимодействии с ДБФ, предположительно, обусловлено трансформацией лигандной оболочки КТ InP/ZnS в результате встраивания фталатов в сольватное окружение. Гидрофобность молекул ДБФ приводит к их локализации в полости Онзагера КТ и улучшению пассивации ее поверхности (пассивирующий эффект ДБФ более эффективен, чем действие тиогликолевой кислоты).

Аналогичная зависимость была получена для случая водно-спиртового раствора (9:1), содержащего КТ InP/ZnS, при возрастающей концентрации фталатов. В этом случае образование рассеивающих центров шло медленнее, чем в водном растворе; при минимальной

Рис. 1. Спектры поглощения: I -образец пресной воды; 2-4 -коллоидные растворы ДБФ с концентрациями $C_{2-4} = 1.25, 6.30$ и 12.50 mM; 5 -раствор КТ InP/ZnS; 6-9 -коллоидные растворы КТ-ДБФ с C_{6-9} (ДБФ) = 1.25, 6.30, 18.75 и 80.00 mM; серая кривая (ей соответствует шкала абсцисс справа) — спектр поглощения ДБФ. На врезке приведены спектры люминесценции: I -раствор КТ InP/ZnS; 2 -коллоидный раствор КТ-ДБФ с C_2 (ДБФ) = 1.25, 2.50 и 3.75 mM; 3 -раствор КТ-ДБФ с C_3 (ДБФ) = 5.00, 6.30 и 18.75 mM; 4 -раствор КТ-ДБФ с C_4 (ДБФ) = 80.00 mM. Стрелки указывают направление увеличения концентрации ДБФ.

концентрации ДБФ (1.25 mM) фталат полностью растворился. При увеличении концентрации ДБФ процесс смешивания протекал аналогично описанному выше.

Обеспечивая одинаковое мольное содержащей КТ в образцах с чистой водой и водой, содержащей фталаты, мы сравнили спектры поглощения и люминесценции КТ при возрастающей концентрации этанола (рис. 2). Отметим, что увеличение концентрации спирта в растворе с КТ приводило к разовому тушению люминесценции, связанному с разрушающим действием -OH- и -CH-групп спирта на PEG-COOH-лиганды, приведшему к частичному осаждению КТ. В присутствии же ДБФ при увеличении концентрации спирта интенсивность люминесценции КТ росла (рис. 2, *b*, данные 4-7), как и в случае водного раствора КТ (вставка на рис. 1). Последнее говорит о том, что содержание спирта в воде увеличивает растворимость фталатов.

Для всех рассмотренных случаев положение максимума люминесценции КТ соответствовало длине волны $\lambda = 636$ nm и не сдвигалось с увеличением концентрации фталатов. Полуширина спектра люминесценции на полувысоте составляла 62 ± 5 nm.

Исследование взаимодействия КТ и ДБФ в морской воде

Исследования проводились для изначально двух составов КТ и КТ-ДБФ, растворенных в одном из образцов морской воды, к которым осуществлялись последовательные добавки этанола. Из спектров поглощения КТ

Рис. 2. Спектры люминесценции: 1 -коллоидный раствор КТ; (a) 2-4 -при добавлении 20, 40 и 80 μ L этанола соответственно; (b) 2 -раствор КТ-ДБФ, C(ДБФ) = 3.75 mM; 3-7 -раствор КТ-ДБФ при добавлении 20, 40, 80, 120 и 160 μ L этанола соответственно. Стрелка указывает направление увеличения концентрации этанола.

в морской воде следует практически одноступенчатое снижение оптической плотности независимо от объема добавленного спирта (рис. 3, данные 3, 4). Наибольшее снижение оптической плотности наблюдалось в образце воды из Черного моря, наименьшее — в образце из Средиземного. Как и в случае пресной воды, снижение оптической плотности вызвано частичным осаждением КТ при сольватации их поверхности спиртом.

Для состава КТ-ДБФ при увеличении концентрации этанола в образце воды из Средиземного моря происходило увеличение полос поглощения на длинах волн $\lambda = 226$ и 276 nm, как это происходило в пресной воде (рис. 1, данные 6-9). Это подтверждает увеличение растворимости фталатов с увеличением доли спирта в растворе. Однако в образцах воды из Черного и Белого морей спектры поглощения КТ-ДБФ отличались: в Белом море с ростом содержания этанола спектры практически совпадали между собой с едва различимой изобестикой в области 246 nm, в Черном море — шли ниже кривой поглощения раствора КТ-ДБФ по аналогии со спектрами 3 и 4, представленными на рис. 3. Для образцов воды из Белого и Черного морей характерных пиков поглощения ДБФ не наблюдалось. Полученные спектры поглощения свидетельствуют о заметной зависимости растворимости фталатов от исходного состава воды. Содержащиеся в образцах воды Белого и Черного морей агенты, природа которых требует тщательного исследования, скрывали растворимость фталатов или же препятствовали ей. В этом смысле вода из Средиземного моря оказалась ближе к пресной.

По-разному реагировала на увеличение объемной доли спирта в образцах морской воды и люминесценция

Рис. 3. Спектры поглощения: *1* — образец воды из Черного моря; *2* — образец воды из Средиземного моря; *3* — коллоидный раствор КТ InP/ZnS в образце воды из Черного моря; *4* — раствор КТ в образце воды из Черного моря при добавлении 40–120 µL этанола.

Рис. 4. Спектры люминесценции образца воды из Черного моря. 1 — коллоидный раствор КТ; 2 — раствор КТ-ДБФ; 3-5 — растворы КТ-ДБФ, содержащие 40, 80 и $120\,\mu$ L этанола. На врезке: 1 — раствор КТ; 2 — раствор КТ InP/ZnS через 30 min; 3 — раствор КТ при последовательном добавлении 20, 40, 80 и $120\,\mu$ L этанола. Стрелка указывает направление увеличения концентрации этанола.

Рис. 5. Спектры люминесценции в образце воды из Средиземного моря: I — коллоидный раствор КТ; 2 — КТ-ДБФ; 3 — раствор КТ-ДБФ, содержащий $40\,\mu$ L этанола; 4, 5 — растворы КТ-ДБФ при добавлении 80 и $120\,\mu$ L этанола. На врезке: I — раствор КТ; 2 — раствор КТ при последовательном добавлении 20, 40, 80 и $120\,\mu$ L этанола.

КТ (рис. 4,5). Для образцов Белого и Средиземного морей спектры люминесценции исходных растворов КТ коррелировали со спектрами поглощения в пресной воде, а именно наблюдалось одноступенчатое снижение амплитуды люминесценции КТ при увеличении концентрации этанола в растворах по аналогии с раствором пресной воды (см. вставку на рис. 5). В образце же из Черного моря наблюдалась более сложная картина: через 30 min после растворения КТ интенсивность свечения самопроизвольно уменьшилась, а при добавлении этанола начала расти (см. врезку на рис. 4). Такая реакция на увеличение доли спирта в растворе повторила картину на рис. 2, b, сходную с наблюдавшейся при перестройке лигандной оболочки, т.е. при замене тиогликолевых лигандов на фталаты. Таким образом, можно предположить, что вода из Черного моря уже содержала некоторое количество фталатов.

Для состава КТ-ДБФ спектры люминесценции в образце Средиземного моря похожи на спектры в пресной воде (рис. 2, b), за исключением высоких концентраций этанола, когда амплитуда люминесценции начала снижаться (рис. 5).

Для состава КТ-ДБФ в образце воды из Белого моря наблюдалось последовательное тушение люминесценции КТ при добавлении спирта по аналогии с приведенными данными на вставке рис. 5. Здесь проявилось отличие от образцов Средиземного и Черного морей, в которых наблюдался схожий механизм перестройки сольватных оболочек КТ при добавлении ДБФ.

Исследования взаимодействия КТ с ДБФ в образцах морской воды представляют собой комплексную задачу. Проведенный выше анализ свидетельствует о разном содержании фталатов в морских акваториях. Предположительно, наибольшее содержание ДБФ можно обнаружить в районе г. Геленджик, а наименьшее — в водах острова Гозо. Полученные результаты в целом могут быть использованы при разработке технических требований к аппаратуре экспресс-контроля содержания фталатов в водных средах. Помимо прикладного значения данное исследование вносит заметный вклад в изучение фотолюминесценции гибридных систем на основе квантовых точек InP/ZnS.

Выводы

В ходе исследований обнаружено, что увеличение концентрации ДБФ в растворе пресной воды с КТ InP/ZnS приводит к росту амплитуды люминесценции КТ, увеличение концентрации этилового спирта в растворе пресной воды с КТ и ДБФ приводит к росту амплитуды люминесценции КТ. Исследования в образцах морской воды (Черного, Средиземного и Белого морей) показали различную динамику люминесценции коллоидных растворов КТ-ДБФ при увеличении концентрации этанола.

Установлено, что пластиковая упаковка, содержащая внутри себя вещества, в составе которых присутствует спирт, является потенциально опасной для здоровья человека. Увеличение амплитуды люминесценции КТ InP/ZnS при увеличении концентрации ДБФ в воде может выступать критерием его количественного содержания в воде. При регистрации фталатов добавление этилового спирта может повысить чувствительность метода.

Финансирование работы

Экспериментальные исследования были проведены при поддержке внутреннего гранта АО "ГОИ им. С.И. Вавилова" для молодых ученых 2015 г. Содержательная часть работы выполнена при поддержке Министерства науки и высшего образования в части Государственного задания № 0791-2020-0003.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- Bošnir J., Puntarić D., Galić A., Škes I., Dijanić T., Klarić M., Grgić M., Curković M., Šmit Z. // Food Techol. Biotechnol. 2007. V. 45. P. 91.
- [2] Government of Canada. Phthalates (retrieved 11 July 2019).
 [Электронный ресурс] Режим доступа: https://www.canada.ca/en/health-canada/services/ chemicals-product-safety/phthalates.html
- [3] Technical Regulations of the Customs Union (TR CU 005/2011). On Packaging Safety. [Электронный ресурс] Режим доступа: https://ec.europa.eu/food/sites/food/files/ safety/docs/ia_eu-ru_sps-req_decision-769_16082011_en.pdf

- [4] Zaikab G.D. // Nature. 2011. doi 10.1038/news.2011.191
- [5] Karnazhitskaya T.D., Antipyeva M.V., Zavernenkova E.O. // Aktualnyye problemy bezopasnosti i otsenki riska zdorovyu naseleniya pri vozdeystvii faktorov sredy obitaniya. Vserossiyskaya nauch.-prakt. Konferentsiya s mezhdunarodnym uchastiyem. Perm, 2014. P. 531 [in Russ.].
- [6] Sørensen L.K. // Rapid Commun. Mass Spectrom. 2006. V. 20.
 P. 1135. doi 10.1002/rcm.2425
- [7] Danilov V.V., Panfutova A.S., Khrebtov A.I., Ambrosini S., Videnichev D.A. // Opt. Lett. 2012. V. 37. N 19. P. 3948. doi 10.1364/OL.37.003948
- [8] Bodunov E.N., Danilov V.V., Panfutova A.S., Simões Gamboa A.L. // Ann. Phys. (Berlin). 2016. V. 528. N 3–4. P. 272– 277. doi 10.1002/andp.201500350
- [9] Litvinov I.K., Belyaeva T.N., Salova A.V., Aksenov N.D., Leontieva E.A., Orlova A.O., Kornilova E.S. // Cell and Tissue Biology. 2018. V. 12. P. 135. doi 10.1134/S1990519X18020050