05,04

Синтез, структурные и магнитные свойства NaNiFe₂(VO₄)₃

© Т.В. Дрокина¹, Д.А. Великанов¹, О.А. Баюков¹, М.С. Молокеев^{1,2}, Г.А. Петраковский¹

¹ Институт физики им. Л.В. Киренского, ФИЦ КНЦ СО РАН,

Красноярск, Россия

² Сибирский федеральный университет,

Красноярск, Россия

E-mail: tvd@iph.krasn.ru

Поступила в Редакцию 8 февраля 2021 г. В окончательной редакции 8 февраля 2021 г. Принята к публикации 11 февраля 2021 г.

Методом твердофазного синтеза получено новое магнитное соединение $NaNiFe_2(VO_4)_3$, приведены результаты изучения методами рентгеновской дифракции, гамма-резонанса и магнитометрии.

Кристаллическая структура многокомпонентного ванадата описывается триклинной пространственной группой симметрии P1. Элементарная ячейка содержит шесть неэквивалентных смешанных катионных позиций, занятых разновалентными ионами переходных металлов железа Fe^{3+} и никеля Ni^{2+} , что способствует реализации состояния с локальным нарушением зарядовой нейтральности. Кроме того, обнаружено наличие двух типов позиций атомов железа: с кислородным окружением как в виде октаэдров, так и квадратных пирамид с неравновероятной их заселенностью железом и никелем. Ход температурной и полевой зависимостей намагниченности в широком температурном интервале характерен для парамагнетика, содержащего ферромагнитные кластеры.

Ключевые слова: многокомпонентные ванадаты, кристаллическая структура, магнитные свойства.

DOI: 10.21883/FTT.2021.06.50935.020

1. Введение

Благодаря особенностям кристаллохимии сложных оксидов, содержащих ванадий, предоставляется широкая возможность для синтеза новых соединений с интересными физическими свойствами, открывающих перспективы новых практических применений. Интерес к изучению многокомпонентных ванадатов в значительной степени обусловлен своеобразием кристаллической структуры, допускающей существование конкурирующих магнитных взаимодействий и формирование разнообразных типов магнитного упорядочения [1–5]. В этом аспекте представляет интерес поиск новых соединений на основе ванадия и переходных металлов.

Изучению структурных свойств соединений с общей химической формулой ACuFe $_2$ (VO $_4$) $_3$ (A — одновалентные щелочноземельные элементы, A = Na, Li) посвящены работы [2,4,6,7]. Из результатов исследований следует, что при комнатной температуре кристаллическая структура LiCuFe $_2$ (VO $_4$) $_3$ и NaCuFe $_2$ (VO $_4$) $_3$ описывается триклинной пространственной группой симметрии $P\bar{1}$, элементарная ячейка содержит две неэквивалентные октаэдрические позиции железа Fe1 и Fe2. Показано, что замещение лития натрием в системе ACuFe $_2$ (VO $_4$) $_3$ (A = Na, Li) приводит к трансформации параметров кристаллической решетки, расстояний между магнитными ионами, размера кристаллитов [2].

Магнетизм $LiCuFe_2(VO_4)_3$ характеризуется преимущественно антиферромагнитным обменным взаимодействием и высоким уровнем фрустраций в цепочеч-

ной спиновой структуре [4]. В рамках модели косвенной связи оценены параметры обменных взаимодействий в шестиподрешеточном представлении магнетика $\text{LiCuFe}_2(\text{VO}_4)_3$. Показано, что соединение является антиферромагнетиком с сильными внутрицепочечными и фрустрирующими межцепочечными обменными взаимодействиями [4].

Интересной особенностью свойств соединения $LiCuFe_2(VO_4)_3$, в отличие от $NaCuFe_2(VO_4)_3$, является наличие магнитодиэлектрического эффекта: приложение внешнего магнитного поля приводит к увеличению диэлектрической проницаемости [8,9].

Данные исследования статических магнитных свойств говардэвансита $NaCuFe_2(VO_4)_3$ показали, что наряду с парамагнетизмом и антиферромагнетизмом в данном соединении в области низких температур реализуется неупорядоченное магнитное состояние [2,8]. Оценка параметров обменных взаимодействий показала наличие сильных внутрицепочечных и слабых межцепочечных обменных взаимодействий [8].

Проведены исследования резонансных свойств соединений LiCuFe $_2$ (VO $_4$) $_3$ и NaCuFe $_2$ (VO $_4$) $_3$, в области температур $110-300\,\mathrm{K}$ в X-диапазоне, зафиксирован электронный парамагнитный резонанс, характеризующийся g-фактором, равным 2 [2,4].

Конкуренция обменных взаимодействий разных знака и величины, неоднородное распределение катионов железа по неэквивалентным кристаллографическим позициям приводят, как показали опыты, к зависимости магнитных свойств системы ACuFe $_2$ (VO $_4$) $_3$ (A=Na, Li) от состава.

Можно ожидать, что введение в структуру сложных ванадатов различных ионов переходных металлов приведет к изменениям кристаллической решетки, способов перекрывания d-орбиталей переходных элементов с орбиталями соседних атомов, оказывая влияние на магнитные свойства. Цель настоящей работы заключается в получении нового оксидного материала состава NaNiFe₂(VO₄)₃ и экспериментальном изучении его свойств. В настоящей работе представлены результаты измерения структурных и магнитных характеристик сложного ванадата, содержащего ионы переходных элементов.

2. Синтез образцов и техника эксперимента

Новое соединение $NaNiFe_2(VO_4)_3$ получено реакцией в твердой фазе из смеси окислов высокой чистоты Na_2CO_3 , Fe_2O_3 , NiO, V_2O_5 , взятых в стехиометрическом соотношении

$$\begin{split} 1/2(Na_2CO_3) + Fe_2O_3 \\ + NiO + 3/2(V_2O_5) &\rightarrow NaNiFe_2(VO_4)_3. \end{split}$$

Образцы в виде спрессованных из смеси реагентов таблеток диаметром $10\,\mathrm{mm}$ и толщиной $1.5{-}2.0\,\mathrm{mm}$ подвергались высокотемпературной обработке при температурах $600{-}640^{\circ}\mathrm{C}$ на воздухе. Химический и фазовый состав синтезированного соединения контролировался методом рентгеноструктурного анализа.

Порошковая рентгенограмма NaNiFe $_2(VO_4)_3$ получена при комнатной температуре на дифрактометре D8 ADVANCE фирмы Bruker, при использовании линейного детектора VANTEC и CuK_α -излучения. Уточнение Ритвельда реализовано при помощи программы TOPAS 4.2 [10]. В ходе рентгеновского эксперимента использовались разные размеры щелей первичного пучка: 0.6 mm в диапазоне углов $2\theta = 5-70^\circ$ и 2 mm в диапазоне $70-120^\circ$. Шаг сканирования равнялся 0.016° и оставался постоянным на всех участках, время экспозиции на каждом шаге составляло 3 s. Впоследствии вычислены стандартные отклонения интенсивности и стандартные отклонения всех точек рентгенограммы, а затем интенсивности и стандартные отклонения всех точек высокоугловой части были умножены на нормирующий коэффициент 0.6.

Мёссбауэровские спектры измерены на спектрометре MC-1104Eм (НИИ физики ЮФУ) в геометрии пропускания с радиоактивным источником $\mathrm{Co}^{57}(\mathrm{Rh})$ при комнатной температуре на порошковом образце с составом $5{-}10\,\mathrm{mg/cm^2}$ по естественному содержанию железа.

Статические магнитные характеристики образцов измерены на магнитометрах оригинальной конструкции Института физики им. Л.В. Киренского ФИЦ КНЦ СО РАН [11,12]: СКВИД-магнитометре в интервале

температур $4-300\,\mathrm{K}$ в магнитном поле $H=0-2\,\mathrm{kOe}$, а также на автоматизированном вибрационном магнитометре в интервале температур $77-830\,\mathrm{K}$ в магнитном поле до $25\,\mathrm{kOe}$. Температурная зависимость магнитного момента измерена в магнитном поле $H=0,\,1000,\,2000$ и $2200\,\mathrm{Oe}$. Петли гистерезиса получены при температурах $T=830,\,77\,\mathrm{K}$ и комнатной температуре.

3. Экспериментальные результаты и их обсуждение

3.1. Структурные свойства NaNiFe $_2(VO_4)_3$

На рис. 1 показана порошковая рентгенограмма синтезированного соединения $NaNiFe_2(VO_4)_3$, полученная при комнатной температуре.

Практически все рефлексы рентгенограммы образца были проиндицированы триклинной ячейкой с параметрами решетки a = 6.7559(1) Å, b = 8.1309(2) Å, $c = 9.8098(2) \text{ Å}, \quad \alpha = 106.346(2)^{\circ}, \quad \beta = 104.300(2)^{\circ},$ $\gamma = 102.143 \, (2)^{\circ}, V = 477.83 \, (2) \, \text{Å}^3$, близкими к таковым y NaFe₃(VO₄)₃: a = 6.757(2) Å, b = 8.155(2) Å, c = $\alpha = 106.05(2)^{\circ}, \quad \beta = 104.401(9)^{\circ},$ = 9.816(3) Å, $\gamma = 102.09\,(2)^\circ,\ V = 480.46\,\text{Å}^3$ [13], поэтому именно структура NaFe₃(VO₄)₃ была использована в качестве исходной. Поскольку уточнение заселенности позиций Fe/Ni ШЛО крайне нестабильно из-за функций атомного рассеяния, все шесть позиций катионов Fe были заселены катионами Fe/Ni c фиксированными заселенностями позиций согласно химической формуле Fe/Ni = 2:1. Координаты Na1 не уточнялись, что требуется для фиксации начала координат в полярной группе *P*1. Основные кристаллографические характеристики NaNiFe₂(VO₄)₃ и параметры рентгеновского эксперимента приведены в табл. 1.

Рис. 1. Рентгенограмма поликристаллического соединения $NaNiFe_2(VO_4)_3$ при комнатной температуре. Разностная рентгенограмма — нижняя кривая.

Таблица 1. Основные параметры рентгеновского эксперимента, проведенного при температуре $T=300\,\mathrm{K}$, и результаты уточнения кристаллической структуры NaNiFe₂(VO₄)₃

Пр. гр.	P_1
a, Å	6.7559 (1)
b, Å	8.1309 (2)
c, Å	9.8098 (2)
$lpha$ $^{\circ},$	106.346 (2)
β°,	104.300 (2)
γ°,	102.143 (2)
V , A^3	477.83 (2)
2θ интервал, $^{\circ}$	5-120
Число рефлексов	1473
Число уточн. парам.	160
R_{wp} , %	0.97
R_p , %	0.87
R_B , %	0.42
χ^2	1.50
••	•

Примечание. $a,b,c,\alpha,\beta,\gamma$ — параметры элементарной ячейки; V — объем ячейки; факторы недостоверности: R_{wp} — весовой профильный, R_p — профильный, R_B — интегральный; χ^2 — качество полгонки.

Кристаллическая структура кислородного соединения $NaNiFe_2(VO_4)_3$ описывается триклинной пространственной группой симметрии P1, отличной от $P\bar{1}$, характеризующей ванадаты $LiCuFe_2(VO_4)_3$ и $NaCuFe_2(VO_4)_3$. В элементарной ячейке исследуемого соединения содержится две формульные единицы (Z=2). Независимая часть ячейки в $NaNiFe_2(VO_4)_3$ (P1) совпадает с элементарной, в отличие от структур в группе $P\bar{1}$, где независимая часть ячейки в 2 раза меньше и число независимых атомов также в 2 раза меньше. Именно наличие/отсутствие центра инверсии приводит к таким отличиям. В остальном эти структуры принципиально не отличаются.

Координаты атомов, заселенность позиций в кристаллической структуре $NaNiFe_2(VO_4)_3$ и тепловые параметры эксперимента представлены в табл. 2, а основные длины связей в кристаллической решетке показаны в табл. 3. Зарядовый состав соединения имеет вид $Na^+Ni^{2+}Fe_2^{3+}(V^{5+}O_4)_3$.

Согласно рентгеноструктурным исследованиям, катионы железа Fe^{3+} в элементарной кристаллической ячейке $NaNiFe_2(VO_4)_3$ занимают шесть кристаллографически неэквивалентных позиций, заселенных совместно с катионами никеля Ni^{2+} (табл. 2). Четыре из этих шести позиций Fe/Ni имеют по кислороду координацию 6 (октаэдр) и две позиции имеют координацию 5 (тригольная бипирамида). Таким образом, одной из особенностей кристаллической структуры исследуемого соединения является локализация катионов разных сорта и валентности в одной и той же позиции кристалла. Это приводит к тому, что в зависимости от соотношения ионов железа и никеля в одной кристаллографической позиции образуется избыток или недостаток положительного заряда,

то есть реализуется состояние локального нарушения зарядовой нейтральности.

Для получения дополнительной информации о структуре и характеризации состояния железа в веществе проведено изучение образца $NaNiFe_2(VO_4)_3$ с помощью эффекта Мессбауэра. На рис. 2, a представлен мессбауэровский спектр поликристалла $NaNiFe_2(VO_4)_3$ при комнатной температуре. Обработка спектра выполнена

Таблица 2. Координаты атомов, изотропные тепловые параметры $B_{\rm iso}$ (Å 2) и заселенность позиций (Осс.) в кристаллической структуре соединения NaNiFe $_2$ (VO $_4$) $_3$ при температуре $T=300\,{\rm K}$

				T	1
Атом	x/a	y/b	z/c	Biso	Occ.
Na1	0.99425	0.07762	0.5534	3 (1)	1
Na2	0.462 (9)	1.018 (7)	0.492 (7)	0.5 (7)	1
Fe1	0.111 (7)	0.551 (5)	0.400 (5)	0.3 (2)	0.667
Ni1	0.111 (7)	0.551 (5)	0.400 (5)	0.3 (2)	0.333
Fe2	0.879 (7)	0.448 (5)	0.610 (5)	0.3 (2)	0.667
Ni2	0.879 (7)	0.448 (5)	0.610 (5)	0.3 (2)	0.333
Fe3	0.458 (7)	0.318 (5)	0.984 (5)	0.3 (2)	0.667
Ni3	0.458 (7)	0.318 (5)	0.984 (5)	0.3 (2)	0.333
Fe4	0.546 (7)	0.733 (4)	0.021 (5)	0.3 (2)	0.667
Ni4	0.546 (7)	0.733 (4)	0.021 (5)	0.3 (2)	0.333
Fe5	0.796 (7)	0.767 (4)	0.784 (5)	0.3 (2)	0.667
Ni5	0.796 (7)	0.767 (4)	0.784 (5)	0.3 (2)	0.333
Fe6	0.234 (7)	0.222 (5)	0.192 (5)	0.3 (2)	0.667
Ni6	0.234 (7)	0.222 (5)	0.192 (5)	0.3 (2)	0.333
V1	0.392 (8)	0.419 (5)	0.664 (6)	0.5 (2)	1
V2	0.606 (8)	0.594 (5)	0.329 (5)	0.5 (2)	1
V3	0.280 (7)	0.839 (5)	0.732 (5)	0.5 (2)	1
V4	0.730 (7)	0.168 (5)	0.261 (5)	0.5 (2)	1
V5	0.090 (7)	0.777 (5)	0.131 (5)	0.5 (2)	1
V6	0.902 (7)	0.216 (5)	0.879 (5)	0.5 (2)	1
O1	0.427 (17)	0.442 (11)	0.864 (11)	0.5 (2)	1
O2	0.577 (17)	0.555 (11)	0.139 (11)	0.5 (2)	1
O3	0.366 (17)	0.487 (11)	0.344 (11)	0.5 (2)	1
O4	0.629 (16)	0.537 (11)	0.649 (11)	0.5 (2)	1
O5	0.268 (13)	0.80(1)	0.56 (1)	0.5 (2)	1
O6	0.743 (14)	0.195 (11)	0.46 (1)	0.5 (2)	1
Ο7	0.500 (17)	0.22(1)	0.16(1)	0.5 (2)	1
O8	0.498 (16)	0.76 (1)	0.828 (11)	0.5 (2)	1
O9	0.149 (16)	0.26 (1)	0.009 (11)	0.5 (2)	1
O10	0.843 (16)	0.73 (1)	0.994 (11)	0.5 (2)	1
O11	0.180 (14)	0.46(1)	0.58 (1)	0.5 (2)	1
O12	0.838 (14)	0.51 (1)	0.41 (1)	0.5 (2)	1
O13	0.019 (17)	0.721 (12)	0.739 (12)	0.5 (2)	1
O14	0.977 (17)	0.286 (11)	0.261 (11)	0.5 (2)	1
O15	0.319 (17)	0.054 (12)	0.824 (11)	0.5 (2)	1
O16	0.682 (17)	0.959 (12)	0.177 (11)	0.5 (2)	1
O17	0.343 (15)	0.193 (11)	0.58 (1)	0.5 (2)	1
O18	0.666 (17)	0.791 (11)	0.42 (1)	0.5 (2)	1
O19	0.187 (17)	0.012 (11)	0.24 (1)	0.5 (2)	1
O20	0.82 (2)	0.999 (11)	0.78 (1)	0.5 (2)	1
O21	0.282 (15)	0.734 (11)	0.04 (1)	0.5 (2)	1
O22	0.734 (15)	0.270 (11)	0.969 (11)	0.5 (2)	1
O23	0.066 (15)	0.655 (11)	0.232 (8)	0.5 (2)	1
O24	0.926 (15)	0.332 (11)	0.746 (9)	0.5 (2)	1

Таблица 3. Основные длины связей (Å) в кристаллической структуре NaNiFe₂(VO₄)₃: (i) x+1,y,z; (ii) x,y+1,z; (iii) x-1,y,z; (iv) x,y,z+1; (v) x,y,z-1; (vi) x,y-1,z; (vii) x-1,y,z-1; (viii) x+1,y,z+1

Na1-O6	2.26 (6)	Ni4-O8 ^v	1.9 (1)
$Na1-O17^{i}$	2.27 (6)	Ni4-O10 ^v	2.09 (7)
Na2-O6ii	2.29 (6)	Ni4-O16	1.89 (9)
Na2-O17ii	1.88 (7)	Ni4-O21	1.85 (7)
Fe1-O3	2.05 (8)	Fe5-O4	1.87 (8)
Fe1-O5	2.07 (8)	Fe5-O8	2.15 (7)
$Fe1-O^{11}$	2.04 (8)	Fe5-O10	2.1 (1)
Fe1-O12 ⁱⁱⁱ	1.85 (6)	Fe5-O13 ⁱ	1.76 (7)
Fe1-O12	2.06 (8)	Fe5-O20	1.89 (6)
Fe1-O14	2.00 (8)	Ni5-O4	1.87 (8)
Ni1-O3		Ni5-O8	
	2.05 (8)		2.15 (7)
Ni1-O5	2.07 (8)	Ni5-O10	2.1 (1)
Ni1-011	2.04 (8)	Ni5-O13 ⁱ	1.76 (7)
Ni1-O12 ⁱⁱⁱ	1.85 (6)	Ni5-O20	1.89 (6)
Ni1-O14 ⁱⁱⁱ	2.06 (8)	Fe6-O3	2.10 (8)
Ni1-O23	2.04 (8)	Fe6-O7	1.88 (8)
Fe2-O4	2.05 (7)	Fe6-O9	1.88 (10)
Fe2-O6	2.03 (8)	Fe6-O14 ⁱⁱⁱ	2.13 (8)
Fe2-O11 ⁱ	2.13 (6)	Fe6-O19	1.87 (6)
Fe2-O12	2.10 (9)	Ni6-O3	2.10 (8)
Fe2-O13i	2.09 (8)	Ni6-O7	1.88 (8)
Fe2-O24	1.85 (8)	Ni6-O9	1.88 (10)
Ni2-O4	2.05 (7)	Ni6-O14 ⁱⁱⁱ	2.13 (8)
Ni2-O6	2.03 (8)	Ni6-O19	1.87 (6)
Ni2-O11i	2.13 (6)	V1-O1	1.87 (11)
Ni2-O12	2.10 (9)	V1-O4	1.75 (7)
Ni2-O13i	2.09 (8)	V1-O11	1.64 (7)
Ni2-O24	1.85 (8)	V1-O17	1.71 (7)
Fe3-O1	1.76 (8)	V2-O2	1.75 (11)
Fe3-O2iv	1.94 (9)	V2-O3	1.73 (7)
Fe3-O7 ^{iv}	2.09 (8)	V2-O12	1.92 (7)
Fe3-O9 ^{iv}	2.13 (7)	V2-O18	1.50 (7)
Fe3-O15	2.12 (9)	V3-O5	1.56 (9)
Fe3-O22	2.01 (6)	V3-O8	1.87 (7)
Ni3-O1	1.76 (8)	V3-O13	1.85 (7)
Ni3-O2 ^{iv}	1.94 (9)	V3-O15 ⁱⁱ	1.66 (8)
Ni3-O7 ^{iv}	2.09 (8)	V4-O6	1.8 (1)
Ni3-O7	2.09 (8)	V4-00 V4-07	
	2.13 (7)	V4-O14	1.83 (8)
Ni3-O15	2.12 (9) 2.01 (6)	V4-O14 V4-O16 ^{vi}	1.74 (7)
Ni3-O22			1.59 (8)
Fe4-O1 ^v	2.27 (8)	V5-O10 ^{vii}	1.75 (9)
Fe4-O2	2.11 (7)	V5-O19 ⁱⁱ	1.79 (7)
Fe4-O8 ^v	1.9 (1)	V5-O21	1.77 (7)
Fe4-O10 ^v	2.09 (7)	V5-O23	1.60 (7)
Fe4-O16	1.89 (9)	V6-O9 ^{viii}	1.73 (9)
Fe4-O21	1.85 (7)	$V6-O20^{vi}$	1.66 (7)
Ni4-O1 ^v	2.27 (8)	V6-O22	1.66 (8)
Ni4-O2	2.11 (7)	V6-O24	1.83 (8)

в два этапа. На первом этапе определено распределение вероятности квадрупольных расщеплений P(QS) (рис. 2,b) в экспериментальном спектре. На втором этапе на основе информации, полученной из распре-

Рис. 2. a — мессбауэровский спектр NaNiFe₂V₃O₁₂, измеренный при комнатной температуре. Цветными линиями показаны компоненты спектра, параметры которых приведены в табл. 4; b — распределение вероятности квадрупольных расщеплений в экспериментальном спектре.

деления P(QS), построен модельный спектр, который подогнан к экспериментальному спектру при варьировании всех сверхтонких параметров методом наименьших квадратов в линейном приближении. Результат подгонки сведен в табл. 4.

Распределение вероятности квадрупольных расщеплений в спектре (рис. 2, b) указывает на наличие двух типов позиций атомов железа, имеющих различные величины химических сдвигов и квадрупольных расщеплений. Обращаясь к рентгеновским данным, позиции с параметрами IS = 0.38 mm/s и QS = 0.45 mm/s следует отнести к октаэдрическим кислородным окружениям катионов $Fe^{3+}(6)$ в NaNiFe₂V₃O₁₂. Позиции ионов железа в кислородном окружении в виде тригональных пирамид имеют меньшее координационное число и, следовательно, меньшую величину химсдвига, а также значительную степень искажения локального окружения, т.е. большую величину квадрупольного расщепления. Этим условиям отвечают позиции, имеющие мессбауэровские параметры IS = 0.31 mm/s и QS = 1.10 mm/s(табл. 4). Таким образом, примерно 60% атомов железа, входящих в $NaNiFe_2V_3O_{12}$, размещаются в октаэдрах

Таблица 4. Мессбауэровские параметры NaNiFe $_2$ V $_3$ O $_{12}$. IS — изомерный химический сдвиг относительно α -Fe, QS — квадрупольное расщепление, W — ширина линий поглощения, A — площадь под парциальным спектром (долевая заселенность неэквивалентной позиции железом)

IS, мм/с	QS, mm/s	W, mm/s	А, атом.%	Позиция
±0.02	±0.04	±0.04	±0.03	
0.38	0.45	0.37	0.59	Fe ³⁺ (6)
0.31	1.10	0.34	0.41	Fe ³⁺ (5)

Рис. 3. Кристаллическая структура $NaNiFe_2(VO_4)_3$.

и $\sim 40\%$ — в тригональных пирамидах. Заселенности позиций железом оценены в предположении равной вероятности эффекта Мёссбауэра для октаэдрических и призматических позиций. Отсутствие гауссовой формы распределений P(QS), рис. 2, b, может свидетельствовать в пользу не равновероятной заселенности октаэдрических и призматических позиций железом и, соответственно, никелем.

Таким образом, при уточнении структурных особенностей $NaNiFe_2(VO_4)_3$ методом ядерного гамма-резонанса показано, что катионы железа Fe^{3+} , находятся в высокоспиновом состоянии S=5/2 и занимают два типа позиций, отличающихся кислородным окружением: октаэдрическим и в виде тригональных бипирамид. Соответственно, $\sim 80\%$ никеля размещаются в октаэдрах и $\sim 20\%$ — в тригональных пирамидах, и формулу ванадата можно представить в следующем виде:

$$Na[Fe_{1,2}Ni_{0.8}]\{Fe_{0.8}Ni_{0.2}\}(VO_4)_3,$$

где квадратные скобки содержат октаэдрические, а фигурные скобки — пирамидальные позиции.

В итоге на основании рентгеноструктурных и мёссбауэровских исследований можно считать, что в кристаллической структуре соединения $NaNiFe_2(VO_4)_3$ октаэдры $(Fe1/Ni1)O_6$, $(Fe2/Ni2)O_6$, $(Fe3/Ni3)O_6$, $(Fe4/N4)O_6$ и тригональные бипирамиды $(Fe5/Ni5)O_5$, $(Fe6/Ni6)O_5$ связаны между собой посредством общих ребер и формируют бесконечные цепи $(\dots - (Fe1/Ni1) - (Fe2/Ni2) - (Fe5/Ni5) - (Fe4/Ni4) - (Fe3/Ni3) - (Fe6/Ni6) - \dots)$, тянущиеся вдоль направления $\mathbf{a} - \mathbf{c}$. Кроме того, октаэдры и тригональные бипирамиды связаны через вершины с тетраэдрами ванадия VO_4 . Бесконечные цепи $\dots - Fe/Ni - Fe/Ni - \dots$ сшиваются между собой при помощи тетраэдров VO_4 в двумерный слой, который

находится в плоскости, заданной двумя векторами $\mathbf{a} - \mathbf{c}$ и \mathbf{b} . В свою очередь, эти слои объединяются между собой образованием VO₄, формируя трехмерную структуру — каркас. Кристаллическая структура ванадата NaNiFe₂(VO₄)₃ изображена на рис. 3.

3.2. Магнитные характеристики $NaNiFe_2(VO_4)_3$

Магнетизм в поликомпонентной системе NaNiFe $_2$ V $_3$ O $_{12}$ обусловлен ионами железа Fe $^{3+}$ (электронная конфигурация $3d^5$, спин S = 5/2) и никеля Ni $^{2+}$ ($3d^8$, S = 3/2). Ванадий в данном соединении пятивалентен, V $^{5+}$ (d^0), магнитный момент отсутствует.

На рис. 4-8 приведены результаты экспериментального исследования, характеризующие магнитные свойства NaNiFe $_2$ V $_3$ O $_{12}$.

Результаты изучения показали, что полевая зависимость магнитного момента M(H) NaNiFe₂V₃O₁₂ при комнатной температуре нелинейная и имеет гистерезис (рис. 4). Раскрытие петли магнитного гистерезиса наблюдается в магнитных полях |H| < 2 kOe. Таким образом, характеристики магнитного поведения образцов NaNiFe₂V₃O₁₂ указывают на ферромагнитные свойства.

Однако, из приведенных данных также следует, что на кривой полевой зависимости магнитного момента M(H) (рис. 4) наблюдается существенный прирост магнитного момента в магнитных полях выше технического насыщения (область "парапроцесса"). Как известно [14], для многих ферромагнетиков величина намагниченности в области парапроцесса увеличивается незначительно, и ее рост обусловлен изменением ориентации спиновых моментов отдельных электронов, находящихся внутри областей самопроизвольной намагниченности — доменов и оставшихся не повернутыми в направлении поля из-за влияния теплового движения. В исследуемом материале с кристаллической структурой, содержащей шесть различных смешанных позиций магнитных катионов,

Рис. 4. Петли магнитного гистерезиса в NaNiFe₂V₃O₁₂ при комнатной температуре. Образцы: массой $m=0.160\,\mathrm{g}$ (I) и $m=0.140\,\mathrm{g}$ (2). На вставке показано поведение магнитного момента в магнитных полях до $20\,\mathrm{kOe}$.

процессы намагничивания, такие как смещение доменных границ, вращение магнитных моментов доменов к направлению приложенного магнитного поля и парапроцесс, можно ожидать, могут частично накладываться друг на друга, приводя к росту магнитного момента в полях выше насыщения. Однако величина прироста намагниченности в области магнитных полей выше 2 kOe велика, и, скорее всего, является следствием проявления парамагнитных свойств исследуемого материала.

На рис. 5 приведены данные измерений полевых зависимостей намагниченности NaNiFe₂V₃O₁₂ при различных температурах 77, 300 и 830 К. Величина коэрцитивной силы H_C при комнатной температуре составляет $\approx 200 \, \text{Oe}$, при переходе к температуре $T = 830 \, \text{K}$ ее значение снижается в четыре раза. Экспериментальные данные также показывают, что понижение температуры до 77 К приводит к росту величины магнитного поля, необходимого для размагничивания материала NaNiFe₂V₃O₁₂. Вероятно, что дефектность образца, влияющая на динамику движения доменов и граничных областей — доменных стенок, является главным фактором, определяющим магнитный гистерезис в NaNiFe₂V₃O₁₂. Отметим, что при перемагничивании в противоположном направлении значение H_C отличается примерно на 10-20 Ое. По-видимому, последняя особенность связана с термомагнитной предысторией образца. На вставке рис. 5 показана зависимость коэрцитивной силы H_C от температуры в NaNiFe₂V₃O₁₂.

Итак, по данным магнитных измерений, с одной стороны, значение H_C растет с понижением температуры, что характерно для большинства ферромагнитных материалов. С другой стороны, характер полевых зависимостей статической намагниченности NaNiFe₂(VO₄)₃, измеренных при различных температурах, показывает изменение наклона кривых в магнитном поле выше 2 kOe при варьировании температуры (рис. 5), что свойственно для парамагнитного материала.

Анализ кривых намагничивания NaNiFe₂V₃O₁₂ при температурах $T=300\,\mathrm{K}$ и $T=830\,\mathrm{K}$ (кривая 3), приведенных на рис. 6, обнаруживает зависимость величины намагниченности от условий проведения эксперимента. При комнатной температуре измерение полевой зависимости намагниченности проводилось дважды: до нагрева образца до температуры $T=830\,\mathrm{K}$ (кривая 2) и после нагрева (кривая 1). Охлаждение образца до комнатной температуры после нагрева до $830\,\mathrm{K}$ приводит к увеличению намагниченности примерно на 40% в магнитном поле $2\,\mathrm{kOe}$. Изменение намагниченности в результате термообработки образца сохраняется и в более высоких магнитных полях ($H=10\,\mathrm{kOe}$). При этом величина коэрцитивной силы не изменяется.

Таким образом, исследуемый образец, как показывают экспериментальные данные, проявляет как ферромагнитные, так и парамагнитные свойства. Представляют интерес проведение эксперимента, позволяющего исключение влияния парамагнитной составляющей намагниченности на магнитные характеристики образца. С этой

Рис. 5. Магнитополевая зависимость статической намагниченности NaNiFe₂(VO₄)₃, измеренная при температурах $T=77~\mathrm{K}$ — кривая I, 300 K — кривая 2, 830 K — кривая 3. На вставке — температурная зависимость коэрцитивной силы H_C .

Рис. 6. Зависимость магнитных характеристик образца $NaNiFe_2V_3O_{12}$ от термомагнитной предыстории: петли магнитного гистерезиса при температурах $830\,\mathrm{K}$ (кривая I) и $300\,\mathrm{K}$ (кривая $\mathit{2}$ — измерение проведено до нагрева образца, кривая $\mathit{3}$ — после нагрева образца до температуры $830\,\mathrm{K}$.

целью была измерена температурная зависимость остаточной намагниченности в диапазоне температур от гелиевой до комнатной. На рис. 7 представлена кривая температурной зависимости остаточной намагниченности $NaNiFe_2V_3O_{12}$, измеренная на СКВИД-магнитометре в отсутствии внешнего магнитного поля H. Результаты измерения показали, что форма кривой (рис. 7) характерна для магнетика с ферромагнитным типом упо-

Рис. 7. Температурная зависимость остаточной намагниченности NaNiFe₂(VO₄)₃. Образец массой $m=0.120\,\mathrm{g}$.

Рис. 8. Температурные зависимости магнитного момента $NaNiFe_2(VO_4)_3$, измеренные в магнитных полях $H=1\,kOe$ и $H=2\,kOe$ в интервале температур $300-830\,K$ в режимах охлаждения (кривая I) и нагрева (кривая 2) образца.

рядочения, самопроизвольная намагниченность образца $\sigma_{T=0}=0.095\,\mathrm{emu/g}\ (T=0\,\mathrm{K}).$

Отметим также особенности поведения соединения $NaNiFe_2V_3O_{12}$, связанные с его термомагнитной предысторией. На рис. 8 приведены кривые температурной зависимости магнитного момента, измеренные в магнитном поле $H=1000,\,2000\,\mathrm{Oe}$ в интервале температур $300-830\,\mathrm{K}$ в режимах охлаждения и нагрева образца $NaNiFe_2V_3O_{12}$. Опытные данные свидетельствуют о том, что магнитный момент образца при комнатной температуре увеличивается примерно на 27% после нагрева от $300\,\mathrm{дo}\,830\,\mathrm{K}$, несмотря на различие величин приложенного магнитного поля.

При интерпретации свойств ванадата $NaNiFe_2(VO_4)_3$ со сложными составом и кристаллографической структурой возникает ряд трудностей, обусловленных наличием

шести неэквивалентных кристаллографических позиций ${
m Fe}i/{
m Ni}i~(i=1-6),$ присутствием в них разновалентных катионов, заселенных неравномерно и приводящих к неоднородности структуры. Кроме того, при внедрении ионов никеля в позиции ионов железа из-за различия их ионных радиусов $r~(r_{{
m Fe}^{3+}}=0.67\,{
m Å}$ и $r_{{
m Ni}^{2+}}=0.78\,{
m Å})$ возникают искажения кристаллической решетки.

Отметим, что при синтезе образцов из смесей порошкообразных оксидов с помощью твердофазной реакции может происходить образование побочных продуктов, в том числе магнитных. Трудности в расшифровке опытных данных, связанные с присутствием примеси, требуют анализа их возможного влияния на магнитные свойства NaNiFe₂(VO₄)₃. Одной из вероятных примесей может быть гематит α -Fe₂O₃. Известно [15–17], что гематит является ромбоэдрическим антиферромагнетиком с температурой Нееля $T_{\rm N} = 950\,{\rm K}$, в окрестности температуры $T_{\rm M} \approx 260\,{\rm K}$ (температура Морина) происходит переориентация спинов с поворотом на 90°, при этом устанавливается неколлинеарное упорядочение спинов (со скосом друг относительно друга на 5°), приводящее к слабому магнетизму. Анализируя возможное влияние примеси α-Fe₂O₃ на магнитные свойства исследуемых образцов NaNiFe₂(VO₄)₃, отметим, что не обнаружены аномалии магнитных свойств в окрестности температуры $T_{\rm M} \approx 260\,{\rm K}$, соответствующей спинпереориентационному переходу Морина между коллинеарным антиферромагнитным и слабоферромагнитным состояниями. К возможным примесям, не обнаруженным в ходе проведенных экспериментов, можно отнести магнетит Fe₃O₄ — соединение со структурой обращенной шпинели $Fe^{3+}[Fe^{2+}Fe^{3}]O_{4}$. При комнатной температуре феррит Fe₃O₄ является ферримагнетиком, разрушение ферримагнитного упорядочения тепловым движением происходит при температуре 850-860 К, коэрцитивная сила $H_c = 2.1 \,\mathrm{Oe}$ [18,19]. При температуре $T = 100 - 120 \,\mathrm{K}$ (температура Вервея) имеет место низкотемпературное структурное превращение магнетита, проявляемое на температурных зависимостях намагниченности, теплоемкости, удельного сопротивления [18,19]. В образце NaNiFe₂(VO₄)₃ не обнаружена аномалия на температурной зависимости магнитного момента M(T) при $T=100-120\,\mathrm{K}$. Кроме того, отметим, что в исследуемых образцах согласно данным мессбауэровских исследований отсутствуют катионы Fe^{2+} . В качестве побочных продуктов твердотельной реакции следует рассмотреть никелевый феррит NiFe₂O₄, а также оксид никеля NiO. Соединение NiFe₂O₄ имеет кристаллическую структуру обращенной шпинели, температуру Кюри $T_c = 863 \,\mathrm{K}$, коэрцитивную силу $H_c = 5 \,\mathrm{Oe}$. Кубический кристалл NiO — антиферромагнетик, температура Нееля $T_{\rm N} = 793\,{\rm K}$ [18]. Таким образом, анализ свойств вероятных примесей показывает, что магнетизм синтезированного соединения NaNiFe₂(VO₄)₃ имеет характеристики, отличительные от таковых возможных побочных продуктов твердотельной реакции.

Кроме того, проведены измерения теплоемкости методом адиабатического калориметра в режиме непрерывного нагрева в области температур 77—870 К. Отметим в данном температурном диапазоне отсутствие особенностей в поведении температурной зависимости теплоемкости, свидетельствующих о наличии фазовых превращений в образце.

Итак, основными особенностями синтезированного образца $NaNiFe_2V_3O_{12}$, характеризующего его магнитные свойства, является наличие магнитного момента, зависящего от температуры (рис. 5, 7), магнитного поля (рис. 4,5) и его термомагнитной предыстории (рис. 6,8). Анализ поведения магнитных характеристик NaNiFe₂(VO₄)₃ показывает, что материал наряду с ферромагнитными свойствами проявляет свойства парамагнетика. Возможным объяснением совокупности экспериментальных фактов может быть предположение о том, что образец представляет собой парамагнитную матрицу с ферромагнитными включениями — кластерами. Последние определяют ферромагнитное поведение образца. Увеличение намагниченности после "отжига" в магнитном поле в данной концепции свидетельствует, по-видимому, не только о выстраивании отдельных магнитных частиц материала вдоль направления приложенного магнитного поля, увеличении их объема, но и об образовании новых ферромагнитных включений. Отметим также, что с повышением температуры наблюдается снижение остаточной намагниченности. Однако температура Кюри ферромагнитных образований, видимо, существенно превышает максимально достигнутую в эксперименте температуру 830 К. Можно предположить, что взаимодействие между ионами железа и никеля, занимающими неодинаковые позиции в кристаллической решетке $NaNiFe_2(VO_4)_3$, приводит к образованию неоднородной системы ферромагнитных кластеров, свойства которых могут зависеть, в частности, от межионных расстояний железо-железо, никель-никель, железо-никель. Упорядочение кластеров, природа которых не ясна и требует проведения дополнительных исследований, оказывает существенное влияние на формирование магнитных свойств изучаемого материала в широком диапазоне температур.

4. Заключение

Новый оксид ванадия NaNiFe₂(VO₄)₃ получен твердофазным синтезом и исследован методами рентгеновской дифракции, гамма-резонанса и магнитометрии. На основании вышеизложенного можно сделать следующие выводы.

Установлено, что образцы имеют триклинную кристаллическую структуру с пространственной группой P1 и параметрами решетки $a=6.7559\,(1)\,\text{Å},$ $b=8.1309\,(2)\,\text{Å},$ $c=9.8098\,(2)\,\text{Å},$ $\alpha=106.346\,(2)^\circ,$ $\beta=104.300\,(2)^\circ,$ $\gamma=102.143\,(2)^\circ,$ $V=477.83\,(2)\,\text{Å}^3.$ В структуре NaNiFe₂(VO₄)₃ имеется шесть неэквива-

лентных смешанных позиций с локализацией катионов разных сорта и валентности $({\rm Fe}^{3+}/{\rm Ni}^{2+})$ в одной и той же позиции.

Ионы железа, входящего в NaNiFe $_2$ V $_3$ O $_{12}$, находятся в трехвалентном высокоспиновом состоянии и занимают октаэдрические ($\sim 60\%$) и пирамидальные ($\sim 40\%$) позиции с неравновероятной заселенностью их атомами железа и никеля. Таким образом, формула соединения имеет вид Na[Fe $_{1.2}$ Ni $_{0.8}$]{Fe $_{0.8}$ Ni $_{0.2}$ }(VO $_4$), где квадратные скобки содержат октаэдрические, а фигурные скобки — пирамидальные позиции.

Анализ магнитных свойств $NaNiFe_2(VO_4)_3$ показывает, что как температурные, так и полевые зависимости намагниченности демонстрируют суперпозицию пара- и ферромагнитного поведения. Физическая природа наблюдаемых особенностей магнетизма $NaNiFe_2(VO_4)_3$, возможно, связана с магнитным взаимодействием между ионами железа и никеля с различными и не равномерно заселенными позициями в кристаллической решетке, способствующем образованию магнитных кластеров, упорядочение которых приводит к ферромагнетизму.

Благодарности

Авторы выражают благодарность В.С. Бондареву за проведение исследований тепловых свойств $NaNiFe_2(VO_4)_3$.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] M.A. Lafontaine, J.M. Grenéche, Y. Laligant, G. Férey. J. Solid State Chem. **108**, 1 (1994).
- [2] Т.В. Дрокина, Г.А. Петраковский, О.А. Баюков, М.С. Молокеев, А.М. Воротынов, С.И. Попков, Д.А. Великанов. ФТТ 62, 247 (2020).
- [3] N. Guskos, G. Zolnierkiewicz, J. Typek, R. Szymczak, A. Guskos, P. Berczynski, A. Blonska-Tabero. Mater. Sci. Poland 31, 601(2013).
- [4] Т.В. Дрокина, Г.А. Петраковский, О.А. Баюков, А.М. Воротынов, Д.А. Великанов, М.С. Молокеев. ФТТ 58, 1913 (2016)
- [5] G. Zolnierkiewicz, N. Guskos, J. Typek, E.A. Anagnostakis, A. Blonska-Tabero, M. Bosacka. J. Alloys Compd. 471, 28 (2009)
- [6] J.M. Hughes, J.W. Drexler, C.F. Campana, M.L. Malinconico. Am. Mineral. 73, 181 (1988).
- [7] A.A. Belik. Mater. Res. Bull. **34**, *12*, 1973 (1999).
- [8] A.V. Koshelev, K.V. Zakharov, L.V. Shvanskaya, A.A. Shakin, D.A. Chareev, S. Kamusella, H.-H. Klauss, K. Molla, B. Rahaman, T. Saha-Dasgupta, A.P. Pyatakov, O.S. Volkova, A.N. Vasiliev. Phys. Rev. Appl. 10, 034008 (2018).
- [9] Т.В. Дрокина, Г.А. Петраковский, А.Л. Фрейдман, М.С. Молокеев, Е.Г. Резина. Магнитодиэлектрический оксидный керамический материал. Патент РФ № 2592867 от 27.07.2016.

- [10] Bruker AXS TOPAS V4: General profile and structure analysis software for powder diffraction data. User s Manual. Bruker AXS, Karlsruhe, Germany (2008).
- [11] Д.А. Великанов. Вестн. СибГАУ 2, 48, 176 (2013).
- [12] Д.А. Великанов. Вибрационный магнитометр. Патент РФ № 2341810 от 20.12.2008.
- [13] F.D. Martin, H. Müller-Buschbaum. Z. Naturforsch. B **50**, *1*, 51 (1995).
- [14] К.П. Белов. Упругие, тепловые и электрические явления в ферромагнетиках. Гос. изд-во техн.-теор. лит., М. (1957). 279 с
- [15] L. Neel, R. Pauthenet. C.R. Acad. Sci. Paris 234, 2172 (1952).
- [16] L. Neel. Rev. Mod. Phys. 25, 58 (1953).
- [17] J.O. Artman, J.C. Murphy, S. Foner. Phys. Rev. 138, A912 (1965).
- [18] Итоги науки. Вып. 4. Антиферромагнетизм и ферриты. АН СССР, М. (1962). 215 с.
- [19] К.П. Белов. УФН 163, 5, 53 (1993).

Редактор Ю.Э. Китаев