Microstructural and Electronic Properties of Rapid Thermally Grown MoS₂|Silicon Hetero-Junctions with Various Process Parameters

© D. Pradhan¹, J.P. Kar^{1,2,¶}

 ¹ Department of Physics and Astronomy, National Institute of Technology, Rourkela, 769008 India
² Centre for Nanomaterials, National Institute of Technology, Rourkela, 769008 India
[¶] E-mail: karjp@nitrkl.ac.in

Received November 24, 2020 Revised November 24, 2020 Accepted for publication February 2, 2021

> Molybdenum disulphide (MoS₂) has gained tremendous attention due to its tunable semiconducting properties and versatile applications in future electronic and optoelectronic devices. Here, MoS₂ thin films were grown by adopting rapid thermal process. The process parameters like time and temperature have been systematically varied to modulate the morphological, microstructural, and electronic properties of MoS₂ thin films. A uniform morphology has been observed from FESEM images. The microstructural study was further carried out using XRD pattern and Raman spectra. The intensity of (002) XRD characteristic peak at $2\theta = 14.1^{\circ}$ is found to be increased, whereas the FWHM values are reduced with the growth time and process temperature. The improvement of crystallinity of the MoS₂ thin films with growth temperature is attributed to the decrease in the FWHM values of the characteristic Raman peaks, E_{2g}^1 and A_{1g} . The dependence of hetero-junction characteristics such as ideality factor η , built-in voltage V_{bi} , and carrier concentration on the growth parameters was evaluated using current–voltage and capacitance–voltage measurements. The films grown at 900°C for 5 min. have possessed carrier concentration of $5.21 \cdot 10^{16}$ cm⁻³, with 0.55 V as V_{bi} , and η is found to be 2.04 for MoS₂|Si hetero-junction. The decrease in the carrier concentration, η , and V_{bi} in MoS₂|Si hetero-junction with the increase in the growth temperature has been ascribed to the reduction in the defect states due to enhancement in the sulfurization.

Keywords: molybdenum disulphide, rapid thermal processing, sulfurization, hetero-junction.

Full text of the paper will appear in journal SEMICONDUCTORS.