Comparison of Thin Films of Titanium Dioxide Deposited by Sputtering and Sol—Gel Methods for Waveguiding Applications

 © M. Brella¹, A. Taabouche^{2,3,¶}, B. Gharbi^{1,3}, R. Gheriani¹, Y. Bouachiba⁴, A. Bouabellou², H. Serrar⁵, S. Touil⁴, K. Laggoune⁵, M. Boudissa⁶

¹ Laboratoire de Rayonnement et Plasmas et Physique des Surfaces (LRPPS), Université Kasdi Merbah, Ouargla 30000, Algeria

² Thin Films and Interfaces Laboratory, University of Fréres Mentouri Constantine,

Constantine 25000, Algeria

³ Faculty of Hydrocarbons and renewable energies and Earth and universe sciences, University Kasdi Merbah, Ouargla 30000, Algeria

⁴ Mechanics and advanced materials laboratory, National Polytechnic School of Constantine Malek BENNABI, BP 75A RP Ali Mendjeli — Constantine, Algeria

⁵ Research Center in Industrial Technologies (CRTI),

BP 64 Cheraga (Alger), Algeria

⁶ ENMC Laboratory, Department of Physics, Faculty of Sciences, University Ferhat Abbas, Setif 19000, Algeria

[¶] E-mail: Adelphm@gmail.com

Received November 11, 2020 Revised November 11, 2020 Accepted for publication January 20, 2021

> In this work, TiO₂ thin films were deposited onto glass substrate by two different techniques: sol-gel dipcoating (SG) and reactive DC magnetron sputtering (Sput). The prepared samples have been characterized by means of micro-Raman, differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) measurements, scanning electron microscopy (SEM), UV-Visible spectrophotometry, and M-Lines spectroscopy (MLS). The micro-Raman results showed an amorphous TiO₂-SG phase and the vibrational mode of TiO₂-Sput is anatase phase. DSC-TGA analysis was used to investigate the thermal properties of the TiO₂ material. SEM spectroscopy has shown that TiO₂-SG has a disordered and more porous surface, TiO₂-Sput sample is homogeneous and shows uniform distribution of densely packed well-defined grains. The obtained films have an optical transmittance varying from 60 to 88% in the visible region. The optical band gaps deduced from the transmittance are 3.48 and 3.53 eV for TiO₂-SG and TiO₂-Sput, respectively. The optical waveguiding measurements carried out on TiO₂-SG and TiO₂-Sput films show single guided modes behavior (TE₀ and TM₀). These measurements have allowed deducing the refractive index and thickness values that are 2.06 at 216 nm for TiO₂-SG and 2.26 at 204 nm for TiO₂-Sput thin films. The analysis of waveguiding properties indicates that amorphous TiO₂ may prove to be more efficient in photonic device as compared to crystalline TiO₂.

Keywords: TiO₂, thin films, sol-gel, sputtering, anatase, waveguiding.

Full text of the paper will appear in journal SEMICONDUCTORS.