УДК 621.315.592

Характер взаимодействия в системе $SnSb_2Te_4-SnBi_2Te_4$ и термоэлектрические свойства твердых растворов ($SnSb_2Te_4$)_{1-x}($SnBi_2Te_4$)_x

© Г.Р. Гурбанов, М.Б. Адыгезалова

Азербайджанский государственный университет нефти и промышленности, Az-1010 Баку, Азербайджан E-mail: ebikib@mail.ru; mehpareadigozelova@vahoo.com

Поступила в Редакцию 4 февраля 2021 г. В окончательной редакции 15 февраля 2021 г. Принята к публикации 15 февраля 2021 г.

> Впервые различными физико-химическими методами в широком интервале температур изучен характер взаимодействия компонентов по разрезу SnSb₂Te₄–SnBi₂Te₄ и построены диаграммы состояния. Установлено, что разрез является квазибинарным сечением квазитройной системы SnTe–Sb₂Te₃–Bi₂Te₃. В разрезе имеется четверное соединение SnSbBiTe₄, плавящееся конгруэнтно при 900 К. Монокристаллы четверного соединения SnSbBiTe₄ получены методом химических транспортных реакций. Методом рентгенографического анализа определены параметры элементарной ячейки монокристаллов четверного соединения: a = 4.356 Å, c = 41.531 Å. Установлено, что соединение кристаллизуется в решетке тетрадимита ромбоэдрической сингонии, пр. гр. R3m, заряд z = 3, объем элементарной ячейки V = 682.43 Å³. Измерены термоэлектрические параметры (SnSb₂Te₄)_{1-x}(SnBi₂Te₄)_x в интервале температур 300–600 К. При увеличении содержания SnBi₂Te₄ в твердых растворах увеличивается термоэлектрическая эффективность образца твердых растворов (SnSb₂Te₄)_{1-x}(SnBi₂Te₄)_x с x = 1.0 имеет максимальное значение $Z = 3.1 \cdot 10^{-3}$ K⁻¹ при 300 K.

> Ключевые слова: твердые растворы $(SnSb_2Te_4)_{1-x}(SnBi_2Te_4)_x$, четверные соединения, квазитройная система, диаграмма состояния, фазовое равновесие, электропроводность, коэффициента термоэдс, теплопроводность.

DOI: 10.21883/FTP.2021.06.50911.9624

1. Введение

В последние годы значительно возрос интерес к тройным и четверным соединениям с участием свинца, олова, сурьмы и висмута, обладающим широким спектром физических свойств, благодаря чему они стали перспективными исследовательскими объектами современного материаловедения.

Известно, что получение кристаллов с ценными для практики свойствами является одной из основных проблем современной науки, являющейся важным фактором научно-технического прогресса. Производство синтетических кристаллов во многом определяет развитие таких важных областей техники, как радиоэлектроника, полупроводниковая и квантовая электроника, техническая оптика, акустика и другие.

Для выявления закономерностей строения и установления корреляции между структурой и условием образования новых фаз, с одной стороны, а также физикохимическими свойствами и структурой, — с другой, необходим целенаправленный синтез веществ с заданными характеристиками. Синтез, изучение кристаллохимических особенностей и определение физико-химических, электрофизических свойств получаемых четверных фаз являются весьма актуальными и имеют особенно большое значение применительно к теллуридам [1–8]. Развитие современной техники требует от металловедов изыскания новых конструкционных материалов с заданными свойствами. Решение этой важнейшей задачи во многом зависит от знания реальных диаграмм состояний тройных, четверных и более сложных металлических систем. В этой связи особое значение приобретает исследование многокомпонентных диаграмм состояний.

Одним из современных направлений поиска новых материалов, отвечающих предъявляемым требованиям, является синтез монокристаллов и исследование многокомпонентных халькогенидных полупроводников. В этом аспекте разработка научно обоснованной технологии синтеза халькогенидов, особенно теллуридов, особенно важна.

Халькогениды элементов подгруппы германия и мышьяка $A^{IV}B^{VI}$, $A_2^VB_3^{VI}$ (A = Sb, Bi; B = S, Se, Te) являются перспективными термоэлектрическими и фоточувствительными материалами, на основе которых создано уже немало термоэлектрических преобразователей энергии. Эти материалы нашли применение также при изготовлении термопар в термоэлектрических генераторах и холодильниках [9–19].

Как следует из вышеизложенного, и научный, и практический интерес представило бы изучение химического взаимодействия между халькогенидными соединениями.

Вещество	Сингония	Пространственная	Параметры элементарной ячейки		
	Сингония	группа симметрии	<i>a</i> , Å	<i>c</i> , Å	
SnSb ₂ Te ₄ SnBi ₂ Te ₄	Ромбоэдрическая Ромбоэдрическая	R3m R3m	4.294 4.41	41.548 [30] 41.511 [30]	

Таблица 1. Сведения о кристаллической структуре исходных компонентов

Это позволит значительно расширить круг полупроводниковых материалов и получать составы с заданными физическими и электрофизическими свойствами.

Халькогенидные соединения и полученные на их основе твердые растворы используются в преобразователях энергии, работающих в интервале температур 200–350 К, в частности в качестве термоэлектрических материалов в электронной промышленности. Однако узость интервала рабочих температур, низкие значения температур плавления и механической прочности ограничивают возможности их практического применения [20–27].

Термоэлектрическая эффективность материалов (ТЭМ) с электронной и дырочной проводимостью, используемых в термогенераторах, тем выше, чем выше коэффициент термоэдс (α), электропроводность (σ) и чем ниже их теплопроводность. Теплопроводность материала (κ_{tot}) в основном складывается из ее электронной (κ_{el}) и решеточной (κ_{ph}) составляющих: $\kappa_{\rm tot} = \kappa_{\rm el} + \kappa_{\rm ph}$ [28]. Уменьшение решеточной теплопроводности является одним из эффективных способов повышения ТЭМ. В настоящее время в термоэлектричестве активно развивается направление по поиску и изучению новых сплавов на основе соединений со сложными кристаллическими структурами, характеризующихся низкими значениями теплопроводности [11].

Таким образом, исследование системы $SnSb_2Te_4 - SnBi_2Te_4$ представляет определенный научный и практический интерес, так как позволяет выяснить возможности расширения области рабочих температур, возможности повышения температуры плавления, механической прочности и улучшения электрофизических параметров.

Цель настоящей работы заключалась в изучении фазовых равновесий в системе $SnSb_2Te_4 - SnBi_2Te_4$ и исследовании термоэлектрических свойств твердых растворов $(SnSb_2Te_4)_{1-x}(SnBi_2Te_4)_x$.

2. Методика эксперимента

Сплавы синтезировали в вакуумированных кварцевых ампулах из элементов, взятых в соответствующих соотношениях. В качестве исходных материалов использовали Ge, Sn, Sb, Те высокой чистоты с содержанием основного вещества не менее 99.999%. Синтез проводили при температуре T = 900-1100 K в зависимости от состава сплавов с последующим их охлаждением со скоростью 4 К/мин до 550 К. Полученные образцы отжигали в течение 240 ч при 550 К, после чего закаливали погружением в воду со льдом.

Для построения диаграммы состояния использовали данные, полученные методами дифференциального термического (ДТА), рентгенофазового (РФА) и микроструктурного (МСА) анализов, а также данные измерений микротвердости и определения плотности.

ДТА получаемых материалов проводили на пирометре HTP-73 с термопарой Pt—Pt/Rh. Запись кривых нагревания и охлаждения проводили в откачанных до 0.1 Па кварцевых сосудах Степанова. Общая масса навесок составляла 1 г. Для измерений температуры использовали хромель-алюмелевую термопару. В качестве эталона использовали прокаленный оксид алюминия. РФА осуществляли с использованием дифрактометра ДРОН-3 в Си K_{α} -излучении с никелевым фильтром. Микроструктурный анализ проводили на полированных и протравленных поверхностях образцов под микроскопом МИМ-8.

Для определения микротвердости синтезированных образцов использовали микротвердомер HV (100). Плотность сплавов определяли пикнометрическим методом, в качестве наполнителя использовали С₇Н₈. Для измерения термоэлектрических и электрофизических свойств использовали образцы размером 2 × 6 × 7 мм. Электропроводность измеряли с точностью 2-3%. Коэффициент термоэдс (α) измеряли в термостатированной ячейке из двух медных блоков, имеющих независимые нагреватели. Разность температур между блоками составляла в среднем 20 К. Термоэдс образца регистрировали цифровым вольтметром. Максимальная погрешность составляла ±2%. Теплопроводность измеряли абсолютным стационарным методом по методике, описанной в [29], в направлении длины слитков. Погрешность измерения не превышала 4%.

3. Результаты и их обсуждение

Сведения о кристаллической структуре исходных компонентов системы приведены в табл. 1.

По данным термического и рентгенографического анализов и исследования микроструктуры построена диаграмма состояния разреза SnSb₂Te₄—SnBi₂Te₄, показанная на рис. 1. Как видно из рисунка, на термограмме сплавов наблюдаются изотермические линии при 740, 815, 840 К.

Рис. 1. Фазовая диаграмма системы SnSb₂Te₄-SnBi₂Te₄.

Данные МСА показали, что сплавы, содержащие 0-11, 45-55 и 89-93 мол% SnBi₂Te₄, являются однофазными, а остальные сплавы оказались двухфазными. Результаты РФА полностью согласуются с данными МСА (рис. 2).

Как видно из рис. 1, при соотношении компонентов 1:1 в системе образуется четверное соединение состава SnSbBiTe4, плавящееся конгруэнтно при 900 К. Это соединение делит систему SnSb₂Te₄—SnBi₂Te₄ на две подсистемы: SnSb₂Te₄—SnSbBiTe₄ и SnSbBiTe₄—SnBi₂Te₄. В первой подсистеме протекает эвтектическое превращение. Координаты эвтектической точки: 20 мол% SnBi₂Te₄, T = 815 К. На основе SnSb₂Te₄ образуется до 11 мол% твердых растворов. Ликвидус этой части системы состоит из ветвей первичной кристаллизации фаз α и γ , соприкасающихся в точке *e*.

В отличие от первой, во второй подсистеме (SnSbBiTe₄-SnBi₂Te₄) протекает сложное химическое взаимодействие, так как в точке *n* ликвидуса (60 мол% SnBi₂Te₄, T = 840 K) соприкасаются две первичные линии кристаллизации (γ и SnTe). В субсолидусе в точке *p* соприкасающиеся линии в зависимости от концентрации поле первичной кристаллизации (L + SnTe, L — жидкая фаза) отделяют от поля вторичной кристаллизации (L + SnTe + γ и L + SnTe + β). Как видно из

Рис. 2. Дифрактограммы сплавов системы SnSb₂Te₄-SnBi₂Te₄.

рис. 1, на основе обоих компонентов образуются узкие области растворимости (γ и β). Изотерма при 740 К отделяет субсолидус от солидуса системы и характеризует образование по четырехфазной перитектической реакции $L + \text{SnTe} \rightleftharpoons \beta(\text{SnBi}_2\text{Te}_4) + \gamma(\text{SnSbBiTe}_4)$ инкон-

Таблица 2. Режим выращивания монокристаллов SnSbBiTe4

Соединение	T_m, \mathbf{K}	<i>T</i> ₁ , K	<i>T</i> ₂ , K	Концентрация J ₂ , мг/см ³	Время, ч	<i>a</i> , Å	<i>c</i> , Å
SnSbBiTe ₄	900	800	700	~ 5	60-70	4.356	41.531

Примечание. *Т_m* — температура плавления соединения SnSbBiTe₄; *T*₁ — температура горячей зоны; *T*₂ — температура холодной зоны; *J*₂ — газноситель.

Таблица 3. Результаты химического анализа монокристаллов SnSbBiTe₄

Химический состав, мол%							
Расчет				Эксперимент			
Sn	Sb	Bi	Te	Sn	Sb	Bi	Te
12.37	12.68	21.77	53.17	12.02	12.31	21.36	54.3

Таблица 4. Термоэлектрические параметры твердых растворов $(SnSb_2Te_4)_{1-x}(SnBi_2Te_4)_x$ при 300 К

Параметр состава <i>х</i>	α, мкВ/К	σ , $Omm Omm Omm Omm Omm Omm Omm Omm Omm Om$	$10^{-3} \frac{\kappa_{\rm ph}}{{ m BT/cM}\cdot{ m K}}$	Z , $10^{-3} \mathrm{K}^{-1}$
0.2 0.4 0.6 0.8	-32.9 -36.8 -40.2 -42.1 45.7	1660 1490 1340 1160	9.0 8.4 7.8 7.2	2.0 2.4 2.7 2.8 2.1

груэнтно плавящегося соединения SnBi₂Te₄. Следует отметить, что количества жидкости и SnTe в стехиометрическом составе равны, поэтому в солидусе подсистемы SnSbBiTe₄—SnBi₂Te₄ совместно кристаллизуются две фазы: γ (твердый раствор на основе SnSbBiTe₄) и β (твердый раствор на основе SnBi₂Te₄).

Сравнение дифрактограммы с дифракционной картиной для $SnSb_2Te_4$ и $SnBi_2Te_4$ подтверждает образование индивидуального соединения $SnSbBiTe_4$ (рис. 2).

Монокристаллы четверного соединения SnSbBiTe₄ получали из газовой фазы методом химических транспортных реакций (XTP) в кварцевых ампулах, вакуумированных до 0.133 Па [30]. Количество транспортирующего реагента (йод) определяли из расчета 5 мг на каждый 1 см³ объема ампулы (длина 18 см, диаметр 2 см). Запаянные ампулы помешали в горизонтальную двухсекционную печь. Температуру измеряли с помощью хромель-алюмелевой термопары.

Оптимальные параметры для выращивания монокристаллов четверного соединения SnSbBiTe₄ методом XTP приведены в табл. 2.

В результате были получены блестящие монокристаллы размерами 2 × 6 × 7 мм, пригодные для структурного анализа и термоэлектрических измерений. Механизм получения монокристаллов SnSbBiTe₄ методом XTP можно представить уравнениями

$$\begin{split} 2SnSbBiTe_4 + 4J_2 &\to 2SnJ_2 + 2SbJ_3 + 2BiJ_3 + 2Te_3, \\ SnJ_2 + SbJ_3 + BiJ_3 + 2Te_2 &\to SnSbBiTe_4 + 4J_2, \\ 2SnTe + Sb_2Te_3 + Bi_2Te_3 + 8J_2 &\to 2SnJ_2 + 2SbJ_3 \\ &\quad + 2BiJ_3 + 4Te_2, \\ SnJ_2 + SbJ_3 + BiJ_3 + 2Te_2 &\to SnSbBiTe_4 + 4J_2. \end{split}$$

Полученные игольчатые кристаллы подвергали химическому анализу (табл. 3).

В результате рентгенографических исследований выращенных монокристаллов установлено, что SnSbBiTe₄ кристаллизуется в решетке тетрадимита ромбоэдрической сингонии с параметрами решетки a = 4.356 Å, c = 41.531 Å; пр. гр. R3m, Z = 3, V = 682.43 Å³.

Плотность соединения SnSbBiTe₄ составляет 7.40 г/см³, микротвердость — 900 мПа. Соединение SnSbBiTe₄ устойчиво на воздухе, растворяется в минеральных кислотах, не растворяется в органических растворителях.

Измерены некоторые электрофизические характеристики твердых растворов на основе $SnSb_2Te_4$ в интервале температур 300–600 К.

В табл. 4 приведены термоэлектрические параметры сплавов твердых растворов $(SnSb_2Te_4)_{1-x}(SnBi_2Te_4)_x$ при 300 К.

Как видно из табл. 4, при увеличении содержания SnBi₂Te₄ в твердых растворах увеличивается термоэлектрическая эффективность. Термоэлектрическая эффективность образца твердого раствора (SnSb₂Te₄)_{1-x} (SnBi₂Te₄)_x с x = 1.0 имеет максимальное значение $Z = 3.1 \cdot 10^{-3}$ K⁻¹ при 300 K.

4. Заключение

Комплексными методами физико-химического анализа изучен характер взаимодействия в разрезе $SnSb_2Te_4-SnBi_2Te_4$ квазитройной системы $SnTe-Sb_2Te_3-Bi_2Te_3$ и построена ее T-x-диаграмма состояния.

Установлено, что при соотношении $SnSb_2Te_4: SnBi_2Te_4 = 1:1$ образуется конгруэнтно плавящееся четверное соединение химического состава

SnSbBiTe₄. В системе SnSb₂Te₄-SnBi₂Te₄ установлена растворимость с образованием сплавов на основе обоих компонентов.

Монокристаллы четверного соединения SnSbBiTe₄ получены методом химических транспортных реакций. Рентгеноструктурное исследование показало, что SnSbBiTe₄ кристаллизуется в ромбоэдрической сингонии с параметрами элементарной ячейки a = 4.356 Å, c = 41.531 Å; пр. гр. R $\bar{3}$ m, z = 3, V = 682.43 Å³.

В широком температурном интервале были определены основные физические параметры $(SnSb_2Te_4)_{1-x}(SnBi_2Te_4)_x$. Установлено, что при увеличении содержания $SnBi_2Te_4$ в сплавах увеличивается термоэлектрическая эффективность. Наивысшее значение Z достигается для сплава с x = 1.0 при 300 К.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] A.R. West. *Solid State Chemistry and its Applications*. 2nd edn (Wiley, 2014).
- [2] C.B. Aakeröy, S. Alavi, N.K. Beyeh, L. Brammer, M. Branca, V. Dichiarante, A.J. Edwards, M. Erdelyi, C. Esterhuysen, M. Fourmigué, T. Friščić, P. Kennepohl, A.C. Legon, G.O. Lloyd, J.S. Murray, S. Tsuzuki. Faraday discussions, 203, 459 (2017).
- [3] A. Charoenphakdee, K. Kurosaki, H. Muta, M. Uni,
 S. Yamanaka. Phys. Status Solidi (RPL), 2, 65 (2008).
 DOI: 10.1002/pssr.200701302
- [4] Р.А. Исмаилова, С.Г. Алиев, Г.Н. Абдуллаева, А.Г. Гурбанова, М.Ю. Садыгова, Ш.Г. Мамедов. Химия и химическая технология, 63 (6), 11 (2020).
- DOI: https://doi.org/10.6060/ivkkt.20206310.6211
- [5] L.D. Ivanova, L.I. Petrova, Yu.V. Granatkina, D.S. Nikulin, O.A.Raikina. Inorg. Mater., 52 (3), 248 (2016).
 DOI: https://doi.org/10.1134/S0020168516030043
- [6] Л.И. Анатычук. Термоэлектричество. Т. 1. Физика термоэлектричества (Киев, ИТЭ, 2000).
- [7] А.А. Волыхов, Л.В. Яшина, В.И. Штанов. Неорг. матер., 42 (6), 662 (2006).
- [8] А.А. Волыхов, В.И. Штанов, Л.В. Яшина. Неорг. матер., 44 (4), 408 (2008).
- [9] Л.Е. Шелимова, О.Г. Карпинский, В.С. Земсков, П.П. Константинов, Е.С. Авилов, М.А. Кретова. Перспективные материалы, № 5, 23 (2000).
- [10] Л.Е. Шелимова, О.Г. Карпинский, П.П. Константинов, Е.С. Авилов, М.А. Кретова, В.С. Земсков. Неорг. матер., 40 (5), 530 (2004).
- [11] M.G. Kanatzidis. Semiconductors and semimetals, ed. by Terry M. Tritt (San Diego–San Francisco–N.Y.–Boston– London–Sydney–Tokyo, Academic Press, 2001) v. 69, p. 57. https://doi.org/10.1016/S0080-8784(01)80149-6
- [12] Л.И. Анатычук. Термоэлементы и термоэлектрические устройства (Киев, Наук. думка, 1979).
- [13] Л.Д. Иванова, Л.И. Петрова, Ю.В. Гранаткина. Неорг. матер., **52** (3), 289 (2016). https://doi.org/10.7868/S0002337X16030040

- [14] Л.Д. Иванова, Ю.В. Гранаткина, А.Г. Мальчев, И.Ю. Нихезина, М.В. Емельянов, Д.С. Никулин. Неорг. матер., 55 (5), 469 (2019). DOI: 10.31857/S0002337X20030057
- [15] Л.Д. Иванова, Ю.В. Гранаткина, А.Г. Мальчев, И.Ю. Нихезина, М.В. Емельянов, Д.С. Никулин. Неорг. матер., 54 (11), 1250 (2018). DOI: 10.1134/S0002337X18120072
- [16] Л.Д. Иванова, Л.И. Петрова, Ю.В. Гранаткина, С.А. Кичик, И.С.Маракушев, А.А. Мельников. Неорг. матер., 51 (7), 808 (2015). https://doi.org/10.7868/S0002337X15070064
- [17] Д.С. Никулин, Ю.В. Гранаткина, Л.И. Петрова, И.Ю. Нихезина, А.Г. Мальчев. ФТП, **51** (7), 955 (2017). https://doi.org/10.21883/FTP.2017.07.44652.38
- [18] Ю.В. Гранаткина, Л.Д. Иванова, Д.С. Никулин, Л.И. Петрова, О.А. Райкина. Неорг. матер., **52** (3), 289 (2016).
- [19] Ю.В. Гранаткина, Л.Д. Иванова, А.Г. Мальчев, Д.С. Никулин, И.Ю. Нихезина, Л.И. Петрова, О.А. Райкина. Неорг. матер., **52** (8), 815 (2016).
- [20] T.V. Menshchikova, S.V. Eremeeva, E.V. Chulkov. Appl. Surf. Sci., 267, 1 (2013). DOI: 10.1016/j.apsusc.2012.04.048
- [21] M. Caputo, M. Panighel, S. Lisi, L. Khalil, G. Di Santo, E. Papalazarou, A. Hruban, M. Konczykowski, L. Krusin-Elbaum, Z. Aliev, M. Babanly, M. Otrokov, A. Politano, E. Chulkov, A. Arnau, V. Marinova, P. Das, Jun Fujii, I. Vobornik, L. Perfetti, A. Mugarza, A. Goldoni, M. Marsi. Nano Lett., 16, 3409 (2016). https://doi.org/10.1021/acs.nanolett.5b02635
- [22] M. Papagno, S.V. Eremeev, J. Fujii, Z.S. Aliev, M.B. Babanly, S. Kr Mahatha, I. Vobornik, N.T. Mamedov, D. Pacilé, E.V. Chulkov. ACS Nano, 10 (3), 3518 (2016). https://doi.org/10.1021/acsnano.5b07750
- [23] C. Lamuta, D. Campi, A. Cupolillo, Z.S. Aliev, M.B. Babanly, E.V. Chulkov, A. Politano, L. Pagnotta. Scripta Materialia, **121**, 50 (2016). DOI: 10.1016/j.scriptamat.2016.04.036
- [24] И.Х. Абрикосов, В.Ф. Банкина, Л.В. Перенкая. Полупроводниковые халькогениды и сплавы на их основе (М., Наука, 1975).
- [25] М.М. Агагусейнова, Г.Р. Гурбанов, М.Б. Адыгезалова. Химия и химическая технология, **5** (8), 130 (2011).
- [26] Г.Р. Гурбанов. Химия и химическая технология, 54 (5), 66 (2011).
- [27] Т.Б. Жукова, А.И. Заславский. Кристаллография, 16 (5), 918 (1971).
- [28] А.Ф. Иоффе. Полупроводниковые термоэлементы (М.-Л., Изд-во АН СССР, 1960).
- [29] L.E. Shelimova, P.P. Konstantinov, O.G. Karpinsky, E.S. Avilov, M.A. Kretova, V.S. Zemskov. J. Alloys Compd., **329** (1–2), 50 (2001).
- [30] Г.Р. Гурбанов. Журнал химия и химическая технология, 56 (3), 124 (2013).
- Редактор Л.В. Шаронова

Interaction character in $SnSb_2Te_4-SnBi_2Te_4$ system and thermoelectric properties of $(SnSb_2Te_4)_{1-x}(SnBi_2Te_4)_x$ solid solutions

G.R. Gurbanov, M.B. Adygezalova

Azerbaijan State University of Oil and Industry, Az-1010 Baku, Azerbaijan

Abstract For the first time, by use of various physicochemical methods in a wide temperature range the nature of the components interaction along the $\mbox{SnSb}_2\mbox{Te}_4\mbox{--}\mbox{SnBi}_2\mbox{Te}_4$ cut was studied and the phase diagrams were plotted. It was found that the cut is a quasibinary section of the SnTe-Sb₂Te₃-Bi₂Te₃ quasi-ternary system. The section contains a quaternary compound SnSbBiTe₄ melting congruently at 900 K. Single crystals of the quaternary compound SnSbBiTe4 were obtained by the method of chemical transport reactions. By the method of X-ray analysis, the unit cell parameters of the quaternary compound single crystals were determined: a = 4.356 Å, c = 41.531 Å. It was found that the compound crystallized in the tetradymite lattice of rhombohedral syngony, sp. gr. R $\bar{3}$ m charge z = 3, unit cell volume $V = 682.43 \text{ Å}^3$. Thermoelectric parameters of $(SnSb_2Te_4)_{1-x}(SnBi_2Te_4)_x$ were measured in the temperature range 300-600 K. It was found that with an increase in the SnBi₂Te₄ content in solid solutions, the thermoelectric figure of merit increased. Thermoelectric efficiency of $(SnSb_2Te_4)_{1-x}(SnBi_2Te_4)_x$ with x = 1.0 had a maximum value, $Z = 3.1 \cdot 10^{-3} \text{ K}^{-1}$ at 300 K.