01.1;05.2;12.1;15.1;15.2

Метод расчета поверхностных механических напряжений в осесимметричных магнитных системах

© А.К. Андреев

Московский авиационный институт (Национальный исследовательский университет), Москва, Россия E-mail: alexande_andreev@yahoo.com

Поступило в Редакцию 24 ноября 2020 г. В окончательной редакции 10 февраля 2021 г. Принято к публикации 13 февраля 2021 г.

Предложен метод расчета механических напряжений магнитных и токовых систем, вычисляемых из плотности энергии однородно намагниченного цилиндра. Для расчета вводится средний по объему размагничивающий фактор цилиндра \bar{N}_z , пропорциональный отношению диаметра цилиндра 2a к его длине h. Показано, что энергия размагничивания E_p , пренебрежимо малая для "длинного" цилиндра с $2a/h \ll 1$ ($\bar{N}_z \approx 0$), становится определяющей в формировании напряжений при $\bar{N}_z \leq 0.5$. Исследованы радиальные σ_r и аксиальные σ_z напряжения в широком диапазоне изменения отношения 2a/h.

Ключевые слова: механические напряжения, размагничивающее поле, энергия размагничивания, коэффициент Haraoka (Nagaoka).

DOI: 10.21883/PJTF.2021.09.50907.18626

Расчет механических напряжений катушек обычно предполагает определение внутри- и межвитковых пондеромоторных сил при допущении однородного распределения радиальных напряжений по длине катушки. При таких расчетах широко используются графоаналитические методы [1,2].

В настоящей работе представлен метод расчета механических напряжений, основанный на равенстве внутренних энергий катушек и эквивалентных им аксиально

Рис. 1. Схема катушки и эквивалентного цилиндра. \mathbf{M}_z — намагниченность цилиндра, \mathbf{H}_p — размагничивающее поле цилиндра, \mathbf{B} — индукция цилиндра или катушки, j_s — плотность поверхностного тока цилиндра или катушки, $+\sigma$ и $-\sigma$ — плотности торцевых "магнитных зарядов" цилиндра, F_r и F_z — радиальные и аксиальные силы соответственно.

намагниченных цилиндров. Факт равенства энергий использовался в [3] при расчете взаимной индуктивности катушек.

Схема катушки и эквивалентного цилиндра показана на рис. 1. В расчетах используются формулы, связывающие однородную намагниченность цилиндра $\mathbf{M}_z = \text{const}$ с плотностью поверхностного тока цилиндра \mathbf{j}_s и поверхностными "магнитными зарядами" [4]: $\mathbf{j}_s = \text{rot } \mathbf{M}_z$, $\sigma = -\operatorname{div} \mathbf{M}_z$ или в равносильной записи $\mathbf{j}_s = [\mathbf{M}_z \mathbf{n}]$, $\sigma = \mathbf{M}_z \mathbf{n}$; \mathbf{n} — внешняя нормаль к поверхности цилиндра. В скалярной форме имеем

$$M_z = j_s, \quad \sigma = M_z. \tag{1}$$

При заданных параметрах катушки: длине (h), диаметре (2a), числе витков (w) и токе в витке (I) плотность тока обмотки j = wI/h. Полагая $j_s = j$, получаем, что эквивалентная намагниченность равноразмерного цилиндра в соответствии с (1) равна $M_z = j$ (рис. 1), что обеспечивает равенство индукций катушки с "плотной намоткой" **В** и цилиндра **B**_{cyl}. Критерий плотности намотки определен в [5]. Согласно дипольной ("зарядовой") модели, на торцах однородно намагниченного цилиндра возникают поверхностные "магнитные заряды" $\pm \sigma$ (рис. 1), создающие размагничивающее поле $H_p = H_z$, направленное противоположно M_z . Радиальная компонента индукции B_r перпендикулярна M_z и не вносит вклада в энергию. Далее H_r и B_r в расчетах не фигурируют.

Размагничивающее поле H_p вычисляется следующим образом. Полагая $M_z = 1$ А/m, с учетом формулы (1) можно записать вспомогательный потенциал, создавае-

мый "магнитными зарядами" цилиндра $+\sigma$ и $-\sigma$, в виде

$$\psi_{1}(\mathbf{r}) = -\int_{0}^{a} r' dr' \int_{0}^{2\pi} d\theta' \\ \times \begin{bmatrix} \left[r^{2} + r'^{2} + (h - z)^{2} - 2rr' \cos(\theta - \theta') \right]^{-1/2} \\ - \left[r^{2} + r'^{2} + z^{2} - 2rr' \cos(\theta - \theta') \right]^{-1/2} \end{bmatrix}, \\ \mathbf{0} \le z \le h \land |r| \le a.$$
(1)

Эту формулу можно преобразовать, используя интеграл Липшица и теорему сложения функций Бесселя. В результате получаем

$$\psi_1(r,z) = 2\pi a \int_0^\infty J_0(tr) J_1(ta) \left[e^{-tz} + e^{-t(h-z)} \right] \frac{dt}{t},$$

где $J_0(tr)$ и $J_1(ta)$ — функции Бесселя нулевого и первого порядка от действительного аргумента. Окончательно следуют формулы для размагничивающего фактора [3]:

$$N_{zz}(r, z) = -\frac{\partial}{\partial z} \psi_1(r, z) = \left| \frac{1}{2} a \int_0^\infty J_0(tr) J_1(ta) [e^{-tz} + e^{-t(h-z)}] dt, 0 \le z \le h \land 0 \prec |r| \le a, -\frac{1}{2} \left[\frac{h-z}{\sqrt{(h-z)^2 + a^2}} + \frac{z}{\sqrt{z^2 + a^2}} - \frac{h-z}{|h-z|} - \frac{z}{|z|} \right], r = 0,$$

0 везде.

(2) N_{zz} изменяется в пределах $0 \le N_{zz}(r, z) \le 1$. $N_{zz} \to 0$ при $h \to \infty$ и $N_{zz} \to 1$ при $h \to 0$. Формула (2) применима для внутренней области цилиндра $(0 \le z \le h, |r| \le a)$. Формулы для расчета 3D-полей цилиндра во всем пространстве, выраженные через эллиптические интегралы и через функции Бесселя, приведены в [3,5].

Размагничивающее поле H_p связано с M_z соотношением

$$H_p = -N_{zz}M_z, (3)$$

z-компонента индукции равна [6]:

$$B_z(r, z) = \mu_0(H_p + M_z) = \mu_0 M_z(1 - N_{zz}).$$
(4)

Энергия цилиндра записывается следующим образом:

$$E_{cyl}(a,h) = 2\pi \int_{0}^{h} \int_{0}^{a} \frac{\mu_0 M_z^2 (1 - N_{zz}(r,z))}{2} r \, dr dz.$$
 (5)

Интеграл (5) содержит разность энергий участка длиной h бесконечного цилиндра E_0 ($N_{zz} = 0$) и энергии

Рис. 2. Графики изменения объемных плотностей энергий и среднего по объему цилиндра размагничивающего фактора в диапазоне изменения длины цилиндра $0 \le h \le 50$ сm. 1 — энергия цилиндра \bar{E}_{cyl} , 2 — энергия размагничивающего поля \bar{E}_p , 3 — средний по объему цилиндра размагничивающий фактор \bar{N}_z . $\bar{N}_z = 0.5$ при h = 4.5 сm.

размагничивания *E_p*. Важный параметр, используемый в расчетах энергии, — средний по объему цилиндра размагничивающий фактор — равен

$$\bar{N}_{z}(a,h) = \frac{2\pi}{\pi a^{2}h} \int_{0}^{h} \int_{0}^{a} N_{zz}(r,z) dr \, dz.$$
 (6)

Далее выполнены численные расчеты для следующих параметров цилиндра: h = 50 cm, a = 5 cm, $M_z = 5 \cdot 10^3$ A/m. В результате получаем $E_{cyl}(a, h) =$ = 0.057 J, $E_p(a, h) = 4.929 \cdot 10^{-3}$ J, $E_0(a, h) = 0.062$ J, $\bar{N}_z(a, h) = 0.08$.

На рис. 2 приведены зависимости от h объемных плотностей энергий $\bar{E} = E/h\pi a^2$ ($\bar{E}_{cyl}(a, h), \bar{E}_p(a, h)$) и $\bar{N}_z(a, h)$.

Из рисунка следует, что энергия "длинного" цилиндра $(h \gg 2a) \bar{E}_{cyl}(a, h)$ (кривая *I*) доминирует. Однако при уменьшении *h* начиная с некоторого значения h_{cr} (в данном случае $h \le 4.5$ cm) преобладает энергия размагничивания $\bar{E}_p(a, h)$ (кривая 2). Этот эффект имеет место при $\bar{N}_z \le 0.5$ ($h \le 4.5$ cm) (кривая 3). Значение h_{cr} зависит от отношения 2a/h, но вместе с тем значение $\bar{N}_z(a, h) = 0.5$ не изменяется, и его можно предложить в качестве критерия "короткой катушки". Такой результат не следует из токовой модели.

Радиальные и аксиальные силы (механические напряжения), действующие на поверхность цилиндра длиной h и диаметром 2a, определяются из соотношений $F_r(a, h) = -dE_{cyl}(a, h)/da$, $F_z(a, h) = -dE_{cyl}(a, h)/dh$ и равны $F_r(a/h) = -2.178$ N, $F_z(a, h) = -0.123$ N.

Радиальное механическое напряжение σ_r , нормированное на длину цилиндра h, определяется

Рис. 3. Механические напряжения, действующие на единицу поверхности цилиндра, в диапазоне изменения $0 \le h \le 100$ сm. 1 — радиальные напряжения $\langle \sigma_r \rangle$, 2 — аксиальные напряжения $\langle \sigma_z \rangle$.

как $\sigma_r = -F_r/h \,[\text{N/m}]$. Радиальные $\langle \sigma_r \rangle$ и аксиальные $\langle \sigma_z \rangle$ механические напряжения, действующие на единицу поверхности цилиндра в *r*- и *z*-направлениях равны $\langle \sigma_r \rangle = -F_r/h2\pi a = 13.864 \,\text{N/m}^2$, $\langle \sigma_z \rangle = -F_z/\pi a^2 = -15.631 \,\text{N/m}^2$.

Изменения $\langle \sigma_r \rangle$ и $\langle \sigma_z \rangle$ с ростом *h* показаны на рис. 3. При $h \to \infty$ имеем равенство $\langle \sigma_r \rangle = \langle \sigma_z \rangle = 15.708 \text{ N/m}^2$. Равенство $\langle \sigma_r \rangle = \langle \sigma_z \rangle$ для "длинных" катушек с $h \gg 2a$ (соленоидов) было установлено в [6]. Радиальные силы приводят к расширению, а аксиальные — к сжатию образца.

Индуктивность катушки эффективно рассчитывается с введением коэффициента Нагаока [7] следующим образом:

$$L = \left(\mu_0 \frac{w^2}{h} \frac{\pi (2a)^2}{4}\right) k_L \quad (0 \le k_L \le 1), \tag{7}$$

где k_L — коэффициент Нагаока. Выражение в скобках определяет индуктивность участка соленоида длиной *h*. Коэффициент Нагаока в форме Лоренца (Lorenz) записывается в виде

$$k_L = \frac{8a}{3\pi h} \left(\frac{2k-1}{k^3} E_c(k) + \frac{1-k^2}{k^3} K_c(k) - 1 \right), \qquad (8)$$

где $K_c(k)$ и $E_c(k)$ — полные эллиптические интегралы первого и второго рода:

$$K_c(k) = \int_{0}^{\pi/2} (1 - k^2 \sin^2 \theta)^{-1/2} d heta,$$
 $E_c(k) = \int_{0}^{\pi/2} \sqrt{1 - k^2 \sin^2 heta} d heta$

с модулем $k = 2a(4a^2 + h^2)^{-1/2}$. Коэффициент Нагаока k_L связан с $\bar{N}_z(a, h)$ соотношением $k_L = 1 - \bar{N}_z$.

Далее определена индуктивность равноразмерной цилиндру (h = 50 cm, a = 5 cm, $M_z = 5 \cdot 10^3$ A/m) катушки с параметрами w = 500 и I = 5 A ($j = 5 \cdot 10^3$ A/m) [8]. Из (8) следует $k_L = 0.92$, и в соответствии с (7) получаем значение индуктивности $L = 4.54 \cdot 10^{-3}$ H, что находится в согласии с результатами [8]. Индуктивность участка длиной h соленоида равна $4.935 \cdot 10^{-3}$ H. Энергия, запасенная в катушке $E = I^2 L/2 = 0.057$ J, что совпадает с энергией цилиндра, рассчитанной ранее.

Таким образом, результаты расчетов механических напряжений, индуктивности, взаимной индуктивности [3] и пондеромоторных сил, полученные для цилиндров, справедливы для эквивалентных токовых систем. Кроме того, основной расчетный параметр моделей — размагничивающий фактор цилиндра — определяет характеристики устройств на постоянных магнитах, что позволяет рассчитывать гибридные токовые и магнитные системы.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] Д. Монтгомери, Получение сильных магнитных полей с помощью соленоидов (Мир, М., 1971).
- [2] Б.Л. Алиевский, А.М. Октябрьский, В.Л. Орлов, В.А. Постников, Моделирование магнитных полей осесимметричных систем, под ред. Б.Л. Алиевского (Изд-во МАИ, М., 2007).
- [3] А.К. Андреев, Письма в ЖТФ, 46 (21), 48 (2020).
 DOI: 10.21883/PJTF.2020.21.50198.18042
- [4] Э. Парселл, Электричество и магнетизм (Наука, М., 1975).
- [5] А.К. Андреев, Пробл. машиностроения и надежности машин, № 1, 34 (2019). DOI: 10.1134/S0235711919010036
- [6] С.Г. Калашников, Электричество (Физматлит, М., 2003), с. 220.
- [7] H. Nagaoka, J. Coll. Sci., 27, 18 (1909). http://www.g3ynh.info/ zdocs/refs/Nagaoka1909.pdf.
- [8] П.Л. Калантаров, Л.А. Цейтлин, Расчет индуктивностей (Энергоатомиздат, Л., 1986).