12 мая

04.1;04.4

Пылевые звуковые солитоны в плазме запыленной экзосферы Луны

© С.И. Копнин, С.И. Попель

Институт космических исследований РАН, Москва, Россия E-mail: serg_kopnin@mail.ru

Поступило в Редакцию 17 декабря 2020 г. В окончательной редакции 2 февраля 2021 г. Принято к публикации 6 февраля 2021 г.

Показана возможность существования и распространения пылевых звуковых солитонов в запыленной плазме экзосферы Луны, содержащей помимо электронов и ионов солнечного ветра и фотоэлектронов от ее поверхности заряженные пылевые частицы, а также фотоэлектроны, эмитирующие с поверхностей этих частиц. Найдены солитонные решения и определены диапазоны возможных скоростей и амплитуд таких солитонов в зависимости от высоты над лунной поверхностью для различных угловых высот Солнца.

Ключевые слова: пылевая плазма, пылевые звуковые солитоны, пылевая звуковая мода, адиабатически захваченные электроны.

DOI: 10.21883/PJTF.2021.09.50904.18660

В последние годы во всем мире усиливается интерес к исследованиям Луны. Особенно следует отметить успехи КНР в развитии лунных программ (см., например, [1]). Исследования процессов, протекающих на поверхности Луны, также крайне важны, особенно ввиду предстоящих российских лунных миссий, таких как "Луна-25", "Луна-26", "Луна-27" (см., например, [2]) и т.д. Особый интерес представляют процессы, связанные с наличием пылевых частиц в экзосфере Луны [3]. Лунная поверхность покрыта пылевыми частицами, возникшими в результате бомбардировки метеоритами различных размеров на протяжении многих миллиардов лет. Поверхность Луны, обращенная к Солнцу, находится под воздействием солнечного ветра и солнечной радиации. При этом лунная поверхность приобретает положительный заряд (важную роль играет фотоэффект) [4]. При определенных условиях силы электростатического отталкивания могут привести к подъему пылевых частиц субмикро- и микромасштабных размеров над лунной поверхностью [5]. В этом случае можно говорить о "запыленной" экзосфере Луны [6], в которой помимо электронов и ионов солнечного ветра содержатся левитирующие заряженные пылевые частицы, а также фотоэлектроны, поступающие в результате фотоэмиссии с лунной поверхности и с поверхностей левитирующих пылевых частиц. Следует подчеркнуть, что роль фотоэлектронов в процессе зарядки пылевых частиц оказывается определяющей. На рис. 1 приведены параметры "запыленной" экзосферы Луны, полученные на основе численных расчетов в модели, описанной в [5].

Настоящая работа посвящена определению возможности распространения пылевых звуковых солитонов и нахождению их параметров (характерных диапазонов

скоростей и амплитуд) в условиях таким образом "запыленной" экзосферы Луны.

К образованию пылевых звуковых солитонов у освещенной стороны Луны может, например, приводить пылевая звуковая неустойчивость, которая достаточно легко реализуется в условиях плазмы в области взаимодействия хвоста магнитосферы с Луной [7,8]. Если в результате раскачки колебаний (или волны) вследствие

Рис. 1. Параметры "запыленной" экзосферы Луны в зависимости от высоты h над лунной поверхностью (n_e и n_d концентрации электронов и пылевых частиц, Z_d — заряд пылевой частицы, выраженный в количестве электронов).

развития неустойчивости их амплитуды становятся достаточно большими, такими, что уже невозможно линейное рассмотрение, то в плазме могут возникать пылевые звуковые нелинейные волны, одним из видов которых являются солитоны.

При описании пылевых звуковых солитонов (см., например, [9,10]) важную роль играет динамика пылевых частиц, которую можно описать с помощью уравнения непрерывности и уравнения движения (Эйлера)

$$\partial n_d / \partial t + \partial (n_d v_d) / \partial x = 0,$$

$$\partial v_d / \partial t + v_d (\partial v_d / \partial x) = -(q_d / m_d) (\partial \varphi / \partial x),$$
 (1)

где φ — самосогласованный потенциал в плазме, координата x имеет горизонтальное направление, n_d — концентрация пылевых частиц, -e — заряд электрона, $q_d = Z_d e$ и m_d — заряд (Z_d — заряд пылевой частицы, выраженный в количестве электронов) и масса пылевой частицы, v_d — ее направленная скорость. Уравнения (1) справедливы, когда распространение солитонов горизонтально и, кроме того, высоты h, на которых рассматривается распространение солитонов, значительно превосходят дебаевский радиус электронов плазмы $\lambda_{De} = \sqrt{T_e/4\pi n_e e^2}$. Здесь n_e — концентрация электронов, выраженная в энергетических единицах.

На временны́х масштабах, характерных для пылевых звуковых колебаний, инертностью электронов и ионов можно пренебречь. Поэтому электроны и ионы успевают подчиниться статистическим распределениям. В таких условиях (когда пылевые частицы приобретают положительный заряд в результате действия фотоэффекта) пылевые звуковые солитоны создают положительный электростатический потенциал [11], который представляет собой потенциальную яму для электронов. Электроны могут быть захвачены такой потенциальной ямой, когда выполнено следующее неравенство [12]:

$$\tau_S \ge l_S / v_{Te},\tag{2}$$

где τ_s , l_s — характерные пространственно-временные масштабы солитона, v_{Te} — тепловая скорость электронов. Отметим, что $\tau_s \propto \omega_{pd}^{-1}$ (где $\omega_{pd} = \sqrt{4\pi n_d q_d^2/m_d}$ — пылевая плазменная частота), пространственный размер солитона l_s составляет величину порядка нескольких дебаевских радиусов электронов. Следовательно, $l_s/v_{Te} \propto \omega_{pe}^{-1}$ (где $\omega_{pe} = \sqrt{4\pi n_e e^2/m_e}$ — плазменная частота электронов, здесь m_e — масса электрона). Для пылевых звуковых солитонов неравенство (2) справедливо практически всегда. Поэтому при описании электронов следует учитывать их адиабатический захват [12] потенциальной ямой, сформированной пылевым звуковым солитоном, и в этом случае распределение электронов

описывается формулой Гуревича

$$n_e = n_{e0} \left[\left(1 - \frac{2}{\sqrt{\pi}} \int_{0}^{\sqrt{e\varphi/T_e}} e^{-u^2} du \right) e^{\frac{e\varphi}{T_e}} + \frac{2}{\sqrt{\pi}} \sqrt{\frac{e\varphi}{T_e}} \right].$$
(3)

Поскольку потенциал в пылевом звуковом солитоне положительный, для ионов подобного захвата не происходит, и можно считать, что ионы подчинены распределению Больцмана

$$n_i = n_{i0} e^{-\frac{e\varphi}{T_i}}.$$
 (4)

Здесь n_i — концентрация ионов, T_i — температура ионов, выраженная в энергетических единицах, индекс 0 соответствует невозмущенным состояниям.

Систему уравнений (1), (3) и (4) следует дополнить уравнением Пуассона

$$\partial^2 \varphi / \partial x^2 = 4\pi e (n_e - n_i - n_d Z_d).$$
⁽⁵⁾

Систему уравнений (1), (3)–(5) можно решать методом сагдеевского потенциала. Для локализованного волнового решения, распространяющегося с некоторой постоянной скоростью M, можно перейти в новую систему координат $\xi = x - Mt$. В этом случае все параметры задачи будут зависеть только от новой переменной ξ . Сагдеевский потенциал в безразмерных переменных

Рис. 2. Характерные пылевые звуковые солитоны и сагдеевские потенциалы для параметров плазмы, соответствующих высотам h = 10 и 100 ст и скорости M = 10 для всех профилей.

Рис. 3. Профили амплитуд для пылевых звуковых солитонов в зависимости от высоты h над поверхностью Луны для всего возможного диапазона скоростей M, когда угловая высота Солнца $\theta = 77^{\circ}(a)$, $82^{\circ}(b)$ и $87^{\circ}(c)$.

 $e\phi/T_e \to \phi, M/C_{Sd} \to M, \xi/\lambda_{De} \to \xi$, где $C_{Sd} = \sqrt{T_e/m_d}$, принимает следующий вид (ср., например, с [13] и [14]):

$$V(\varphi) = [t(h,\theta) + Z_d(h)d(h)] \left[1 - e^{\varphi} \left(1 - \frac{2}{\sqrt{\pi}} \right) \right]$$
$$\times \int_{0}^{\sqrt{\varphi}} \exp(-u^2) du - 2\sqrt{\varphi/\pi} - 4\sqrt{\varphi^3/9\pi} \right]$$
$$+ Md(h) \left(M - \sqrt{M^2 - 2Z_d \varphi} \right), \tag{6}$$

где $t(h, \theta) = \cos \theta \left[1 + h \lambda_{De}^{-1} \sqrt{\cos \theta/2} \right]^{-2}$ — слагаемое, соответствующее фотоэлектронам от лунной поверхности, $d(h) = n_d(h)/n_{e0}$, концентрация фотоэлектронов у поверхности Луны [15] $n_{e0} = 2.1 \cdot 10^5$ сm⁻³, θ — угловая высота Солнца над лунной поверхностью. Считаем, что температура всех фотоэлектронов составляет величину около 0.15 eV. Диапазон скоростей $(M_{\min} < M < M_{\max})$ для пылевых звуковых солитонов ограничивается следующими выражениями:

$$M \ge M_{\min} = \sqrt{Z_d^2(h)d(h)/[t(h,\theta) + Z_d(h)d(h)]}, \quad (7)$$

$$[t(h,\theta)/d(h) + Z_d(h)] \left[1 - \exp(M_{\max}^2/2Z_d(h)) \left(1 - \frac{2}{\sqrt{\pi}} \right)^{\sqrt{M_{\max}^2/2Z_d(h)}} \exp(-u^2)du \right) - 2\sqrt{M_{\max}^2/2\pi Z_d(h)}$$

$$- 4\sqrt{[M_{\max}^2/2Z_d(h)]^3/9\pi} + M^2 \ge 0. \quad (8)$$

На рис. 2 представлены характерные солитоны и сагдеевские потенциалы для параметров плазмы, соответствующих высотам h = 10 и 100 сm (см. рис. 1) и скорости

Отметим, что для всего диапазона параметров плазмы запыленной экзосферы Луны амплитуды пылевых звуковых солитонов оказываются того же знака, что и величина электрического заряда пылевых частиц, т.е. при $Z_d e > 0$ амплитуда солитона $\varphi_0 > 0$.

Таким образом, в запыленной экзосфере Луны, содержащей электроны и ионы солнечного ветра, заряженные пылевые частицы и фотоэлектроны, эмитирующие с лунной поверхности и поверхностей пылевых частиц, могут существовать локализованные волновые структуры, связанные с пылевой звуковой модой, такие как пылевые звуковые солитоны. Оказывается, что в этом случае следует учитывать адиабатический захват электронов потенциальными ямами, образованными такими солитонами. Методом сагдеевского потенциала найдены солитонные решения и определены диапазоны возможных скоростей и амплитуд таких солитонов в зависимости от высоты над лунной поверхностью для различных угловых высот Солнца. Выше параметры солитонов приведены в безразмерном виде. Реальные амплитуды солитонов, которые могли бы быть зарегистрированы в будущих наблюдениях, соответствуют значениям электрического поля порядка 1-10 V/m. При этом характерная ширина солитона составляет величину порядка 1 сm-1 m.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- D. Li, Y. Wang, H. Zhang, X. Wang, Y. Wang, Z. Sun, J. Zhuang, C. Li, L. Chen, H. Zhang, X. Zou, C. Zong, H. Lin, J. Ma, X. Li, X. Cui, R. Yao, X. Wang, X. Gao, Sh. Yang, X. Wang, B. Zhang, Geophys. Res. Lett., 47 (17), e2020GL089433 (2020). https://doi.org/10.1029/2020GL089433
- [2] Л.М. Зеленый, С.И. Попель, А.В. Захаров, Физика плазмы, 46 (5), 441 (2020). DOI: 10.31857/S0367292120050108
 [Пер. версия: 10.1134/S1063780X20050104].
- [3] А.В. Захаров, Л.М. Зеленый, С.И. Попель, Астрон. вестн., 54 (6), 483 (2020). DOI: 10.31857/S0320930X20060079
- [4] E. Walbridge, J. Geophys. Res., **78** (19), 3668 (1973). https://doi.org/10.1029/JA078i019p03668
- [5] С.И. Попель, С.И. Копнин, А.П. Голубь, Г.Г. Дольников, А.В. Захаров, Л.М. Зеленый, Ю.Н. Извекова, Астрон. вестн., 47 (6), 455 (2013). https://doi.org/10.7868/S0320930X13060078
- [6] А.П. Голубь, Г.Г. Дольников, А.В. Захаров, Л.М. Зеленый, Ю.Н. Извекова, С.И. Копнин, С.И. Попель, Письма в ЖЭТФ, 95 (4), 198 (2012). [Пер. версия: 10.1134/S0021364012040054].

- [7] С.И. Попель, Т.И. Морозова, Физика плазмы, 43 (5), 474 (2017). DOI: 10.7868/S0367292117050079 [Пер. версия: 10.1134/S1063780X17050075].
- [8] Yu.N. Izvekova, T.I. Morozova, S.I. Popel, IEEE Trans. Plasma Sci., 46 (4), 731 (2018). https://doi.org/10.1109/TPS.2017.2752084
- [9] S.I. Kopnin, I.N. Kosarev, S.I. Popel, M.Y. Yu, Planet. Space Sci., 52 (13), 1187 (2004). https://doi.org/10.1016/j.pss.2004.09.003
- [10] S.I. Popel, S.I. Kopnin, I.N. Kosarev, M.Y. Yu, Adv. Space Res., 37 (2), 414 (2006). https://doi.org/10.1016/j.asr.2005.12.003
- [11] Т.И. Морозова, С.И. Копнин, С.И. Попель, Физика плазмы, 41 (10), 867 (2015). DOI: 10.7868/S0367292115100066 [Пер. версия: 10.1134/S1063780X15100062].
- [12] Л.Д. Лившиц, Л.П. Питаевский, Теоретическая физика. Т. 10. Физическая кинетика (Физматлит, М., 2002), с. 182.
- [13] С.И. Копнин, И.Н. Косарев, С.И. Попель, Ю. Минг, Физика плазмы, **31** (3), 224 (2005). [Пер. версия: https://doi.org/10.1134/1.1884685]
- [14] С.И. Копнин, С.И. Попель, Письма в ЖТФ, 45 (20), 26 (2019). DOI: 10.21883/PJTF.2019.20.48389.17837 [Пер. версия: 10.1134/S1063785019100237].
- [15] Е.К. Колесников, А.С. Мануйлов, Астрон. журн., 59 (5), 996 (1982).