04,11

Рентгеновское и калориметрическое исследование порошковых нанокристаллических систем на основе ZrO₂(Y) и Al₂O₃ со вторым нерастворимым компонентом

© П.В. Королёв¹, А.В. Князев², И.Р. Гаврилов¹, М.Р. Гаврилов¹, А.В. Королёв¹

1 ООО Научное предприяние "Высокие технологии",

Чебоксары, Россия

² Нижегородский государственный университет им. Н.И. Лобачевского,

Нижний Новгород, Россия

E-mail: staltex25@rambler.ru

(Поступила в Редакцию 28 июня 2011 г.)

Исследованы четыре нанокристаллических порошка на основе $ZrO_2(Y)$ и на основе Al_2O_3 , синтезированных плазмохимическим способом. Показано, что в системах на основе $ZrO_2(3Y)$ со вторым компонентом Al_2O_3 формируется неравновесный твердый раствор $ZrO_2(3Y,Al)$ с тетрагональной структурой. Показано, что в системах на основе Al_2O_3 присутствие нерастворимого в крупнокристаллическом состоянии компонента ($ZrO_2(Y)$) вызывает задержку $\gamma \rightarrow \alpha$ превращения и измельчает размер областей когерентного рассеяния формирующихся наноразмерных модификаций Al_2O_3 .

1. Введение

Исследование систем с ограниченной взаимной растворимостью, таких как $ZrO_2-Al_2O_3$ [1] (рис. 1) является актуальной задачей, как с фундаментальной, так и с прикладной точки зрения. Данные системы, благодаря уникальному сочетанию физико-механических свойств, находят широкое применение в различных отраслях техники [2–5].

В равновесных условиях даже при высоких температурах Al_2O_3 в крупнокристаллическом состоянии обладает очень ограниченной растворимостью в решетке диоксида циркония (рис. 1) [1]. В свою очередь, в аналогичных условиях диоксид циркония в крупнокристаллическом состоянии и твердые растворы частично-стабилизированного диоксида циркония, такие как ZrO₂(Y), также обладают малой растворимостью в решетке Al_2O_3 рис. 1 [1]. При этом влияние $ZrO_2(Y)$ на кинетику превращения модификаций Al_2O_3 в α -фазу изучено мало.

В последние два десятилетия наблюдается интерес к получению систем на основе диоксида циркония и оксида алюминия в нанокристаллическом состоянии для расширения сфер их потенциального применения [6], например, для получения конструкционной керамики и композитов с наноструктурой.

Следует отметить, что наноструктурные порошки на основе $ZrO_2(Y)$ и Al_2O_3 могут быть получены различными способами: золь-гель-синтезом, химическим осаждением и т.д. [7–9]. Однако одним из наиболее перспективных является плазмохимический способ [10–14]. При этом для нанокристаллических систем на основе $ZrO_2(Y)$ и Al_2O_3 с ограниченной взаимной растворимостью компонентов, получаемых плазмохимических ис-

следований фазового состава, параметров наноструктуры и характера структурно-фазовых изменений при нагреве.

Целью настоящей работы явилось исследование фазового состава и параметров наноструктуры порошковых систем на основе $ZrO_2(Y)$ и Al_2O_3 , полученных плазмохимическим способом, методом рентгеноструктурного анализа, а также изучение поведения данных систем при нагреве методом дифференциальной сканирующей калориметрии.

Рис. 1. Равновесная фазовая диаграмма системы ZrO₂-Al₂O₃ [1].

Система	№ состава	Химический состав порошка	Условное обозначение
На основе $ZrO_2(Y)$	1	$95 \text{wt.\%ZrO}_2 + 5 \text{wt.\%Y}_2 O_3$	$ZrO_2(3Y)$
	2	$76\text{wt.}\%\text{ZrO}_2 + 4\text{wt.}\%\text{Y}_2\text{O}_3 + 20\%\text{Al}_2\text{O}_3$	$ZrO_2(3Y) + 20\%Al_2O_3$
На основе Al ₂ O ₃	3	$80wt.\%Al_2O_3+17wt.\%ZrO_2+3wt.\%Y_2O_3$	$80\%Al_2O_3{+}20\%ZrO_2(Y)$
	4	Al ₂ O ₃	Al ₂ O ₃

Таблица 1. Химический состав и условные обозначения исследуемых порошков

Таблица 2. Результаты рентгеновского анализа фазового состава и структуры порошков $ZrO_2(3Y)$ и $ZrO_2(3Y) + 20\%$ Al_2O_3

Химический состав порошка	Фазовый состав порошков	Параметр <i>a</i> , nm	Параметр <i>с</i> , nm	Тетрагональность, <u>с</u> а	Средний размер ОКР <i>T-</i> фазы, nm
$\begin{array}{l} ZrO_2(3Y)\\ ZrO_2(3Y) \ [11,12]\\ ZrO_2(3Y) + 20\% \ Al_2O_3\\ ZrO_2(3Y) + 20\% \ Al_2O_3 \ [12] \end{array}$	87% t + 13% m 95% t + 5% m t t	0.51008 0.51060 0.50972 0.50970	0.51813 0.51740 0.51759 0.51630	1.016 1.013 1.015 1.013	$51(t) 85-86(m) 23(t) 68^{*}(t), 6^{**} 30^{*}(t), 4^{**}$

Примечание. *t* — тетрагональная, *m* — моноклинная фазы диоксида циркония.

* — для "узкой" составляющей профиля (111) *t*-фазы; ** — для "широкой" составляющей профиля (111).

2. Материалы и методика эксперимента

Для исследования были выбраны четыре порошка, табл. 1, полученных на ОАО "Сибирский химический комбинат" (г. Северск) плазмохимическим синтезом из водных растворов нитратных солей (термическим разложением в плазме высокочастотного разряда капель раствора).

По данным растровой электронной микроскопии (РЭМ) порошки состояли из полых сфер, оболочек, пленок, частиц "пенообразного" строения и других подобных частиц микронного масштаба. Распределение основных элементов (Zr, Y, Al, O) в порошках изучалось методом "карт распределения химических элементов" в растровом электронном микроскопе JEOL JSM-6390A с рентгеновским микроанализатором. Исследование показало, что основные химические элементы распределены по частицам порошков равномерно.

Фазовый состав порошков определялся методом рентгеновской дифрактометрии. Съемка проводилась на рентгеновском дифрактометре "Shimadzu XRD 6000" в Си– $K\alpha$ -излучении. Шаг по углу 2 θ составлял 0.02 deg, экспозиция в точке — 20 s.

Содержание кубической (C), тетрагональной (t) и моноклинной (m) фаз диоксида циркония определялось по соотношению интегральных интенсивностей линий типа (111) с использованием формулы из [15].

Оценка среднего размера областей когерентного рассеяния (ОКР) фаз диоксида циркония и оксида алюминия в порошках осуществлялась по уширению ближних линий по формуле Селякова–Шерера [16].

Исследование методом дифференциальной сканирующей калориметрии (ДСК) проводили на калориметре

LABSYS фирмы SETARAM в диапазоне температур 20–1300°C при скорости нагрева 10° C/min. В экспериментах использовали платиновые тигли.

3. Результаты и их обсуждение

3.1. Рентгеновское исследование систем на основе $ZrO_2(Y)$. На дифрактограмме порошка N_0 1 присутствует ряд сильных линий t и m фаз диоксида циркония (рис. 2, кривая I). На дифрактограмме порошка N_0 2 присутствуют линии аналогичной T-фазы с асимметрией со стороны больших углов, (рис. 2, кривая 2). Линий, принадлежащих модификациям Al_2O_3 , не наблюдается.

Рис. 2. Дифрактограммы исследуемых плазмохимических порошков: $I - ZrO_2(3Y)$; $2 - ZrO_2(3Y) + 20\%$ Al₂O₃ (t — тетрагональная, m — моноклинная фазы диоксида циркония).

Рис. 3. Фрагменты дифрактограмм исследуемых плазмохимических порошков в области малых углов: $a - ZrO_2(3Y)$; $b - ZrO_2(3Y) + 20\% Al_2O_3$ (t — тетрагональная, m — моноклинная фазы диоксида циркония; I — "узкая" составляющая, 2 — "широкая" составляющая рентгеновского профиля).

На рис. 3, *а*, *b* представлены фрагменты дифрактограмм исследуемых порошков в области малых углов. Видно, что асимметричные линии порошка № 2 можно описать с помощью двух составляющих: "узкой" и "широкой" (рис. 3, *b*). В соответствии с [12] подобный вид дифрактограмм порошка № 2 свидетельствует о формировании в его частицах при синтезе неравновесного твердого раствора $ZrO_2(3Y,AI)$ с переменной концентрацией ионов AI^{3+} в решетке.

Результаты количественной обработки дифрактограмм исследуемых порошков сведены в табл. 2. Здесь же для сравнения приведены аналогичные данные, для подобных плазмохимических порошков, взятые из работы [12]. Размер ОКР кристаллических фаз в исследуемых порошках не превышает 90 nm. Это означает, что частицы микронного размера, наблюдаемые методом РЭМ, являются поликристаллами, состоящими из наноразмерных зерен. Ряд частиц порошка № 2, дающих вклад в "широкую" составляющую рентгеновского спектра (рис. 3, *b*), очевидно, обладает еще более дисперсной структурой, о чем свидетельствует значительно меньший размер ОКР (табл. 2).

Тетрагональность кристаллической решетки *t*-фазы (отношение параметров $\frac{c}{a}$) в исследуемых порошках (табл. 2) отличается от равновесного значения 1.017–1.018 [12,17]. Уменьшение тетрагональности может быть обусловлено влиянием малого размера кристаллитов на значение параметров кристаллической решетки, отмечавшимся ранее в работах [18,19] для аналогичных порошков.

Появление *m*-фазы в порошке № 1 связано с превышением наиболее крупными кристаллитами в частицах "критического размера", выше которого наблюдается $t \rightarrow m$ превращение при охлаждении от температуры синтеза [2,11,12]. Об этом свидетельствует более крупный размер ОКР *m*-фазы (табл. 2). Отсутствие *m*-фазы в порошке № 2 и отличие в параметрах решетки между двумя системами, также как и в [12] может быть интерпретировано в терминах дополнительной стабилизации *T*-фазы, за счет образования неравновесного тетрагонального твердого раствора ZrO₂(3Y,A1).

3.2. Рентгеновское исследование систем на основе Al_2O_3 . На рис. 4 представлены дифрактограммы систем на основе Al_2O_3 . Видно, что данным системам присущи более размытые и слабые дифракционные линии, значительно менее заметные на уровне фона, что свидетельствует о более высоком содержании рентгеноаморфного материала в их составе [16].

На дифрактограмме порошка Al_2O_3 (рис. 4, кривая 2) присутствуют пики, которые можно отнести к промежуточным модификациям оксида алюминия: γ (карточка ASTM 29–63) и δ (карточка ASTM 16–394), а также к α -модификации (карточка ASTM 10–173). Наиболее сильны линии γ -модификации, что, по-видимому, указывает на ее доминирование в составе материала. На дифрактограмме порошка 80% $Al_2O_3 + 20\%$ ZrO₂(Y)

Таблица 3. Результаты рентгеновского анализа фазового состава и структуры порошков Al_2O_3 и 80% $Al_2O_3 + 20\%$ ZrO₂(Y)

Химический состав порошка	Фазовый состав порошков	Средний размер ОКР фазы, nm
Al ₂ O ₃	γ δ α	29 25 81
Al ₂ O ₃ [14]	$\gamma lpha$	20 70
$80\%Al_2O_3{+}20\%ZrO_2(Y)$	$ec{\gamma} \delta C$	20 16 28
80%Al ₂ O ₃ +20%ZrO ₂ (Y) [13]	$arphi^{\gamma}_{oldsymbol{ heta}}$ $arphi_{oldsymbol{ heta}}$ t	Не сообщается

 Примечание. С — кубическая,
 t— тетрагональная фазы диокисда циркония (ZrO2(Y,Al));
 γ -, δ -, θ -, α -фазы Al2O3.

Рис. 4. Дифрактограммы исследуемых порошков: 1 - 80% Al₂O₃ + 20% ZrO₂(Y); $2 - Al_2O_3$; $C - кубическая фаза диоксида циркония; <math>\gamma$ -, δ -, α -фазы Al₂O₃.

(рис. 4, кривая 1) присутствуют относительно сильные линии высокотемпературной кубической *C*-фазы диоксида циркония и слабые линии γ- и δ-модификаций Al₂O₃.

В табл. 3 представлены результаты оценки размера ОКР-фаз, присутствующих в порошках. Видно, что размеры ОКР γ - и δ -модификаций в порошке Al_2O_3 несколько больше, чем в порошке $80\% Al_2O_3 + 20\% ZrO_2(Y)$. Размер ОКР *С*-фазы диоксида циркония в порошке $80\% Al_2O_3 + 20\% ZrO_2(Y)$ несколько выше, чем размеры модификаций ОКР оксида алюминия. Это указывает на то, что фазы диоксида циркония в структуре частиц растут быстрее, чем фазы оксида алюминия.

Наблюдаемое структурно-фазовое состояние оксида алюминия в системах на основе Al_2O_3 позволяет предположить, что оно формируется в результате различной "глубины" протекания в различных частицах хорошо известной последовательности превращений: аморфное состояние $\rightarrow \gamma$ - $Al_2O_3 \rightarrow \delta$ - $Al_2O_3 \rightarrow \theta$ - $Al_2O_3 \rightarrow \alpha$ - Al_2O_3 [20]. Из полученных данных следует, что в порошке № 3 нерастворимая в крупнокристаллическом состоянии добавка $ZrO_2(Y)$ тормозит превращение Al_2O_3 в α -форму и измельчает размер ОКР формирующихся промежуточных фаз Al_2O_3 . Подобное же смещение температуры превращения Al_2O_3 в α -форму к большим значениям наблюдалось ранее в работе [21] для синтезированных методом золь-гель-систем Al_2O_3 – ZrO_2 при содержании добавки ZrO_2 в количестве 3-17 wt.%.

Параметр решетки *C*-фазы наблюдаемой в порошке N_{2} 3 составляет 0.5119 nm. Равновесное же значение параметра для массивного состояния материала *C*-фазы с аналогичным содержанием $Y_{2}O_{3}$ (порядка 9.4 mol.%) в составе должно составлять порядка 0.5137 nm [17]. Наблюдаемое отличие по аналогии с вышеописанными системами на основе $ZrO_{2}(Y)$ можно рассматривать как свидетельство влияния малого размера кристаллитов, а также как следствие растворения $Al_{2}O_{3}$ в решетке.

Отсутствие следов *М*-фазы диоксида циркония указывает на то, что наблюдаемая *С*-фаза является устойчивой по отношению к превращению в *М*-фазу при охлаждении.

В табл. З для сравнения приведены также данные для аналогичных порошков из списка литературы. Видно, что определенные нами значения размеров ОКР несколько отличаются от наблюдавшихся ранее в работах [13,14] размеров ОКР для аналогичных порошков Al_2O_3 и $80\% Al_2O_3 + 20\% ZrO_2(Y)$. Некоторое отличие в размерах ОКР и фазовом составе может быть обусловлено отличием в параметрах плазмохимического синтеза материалов.

3.3. Калориметрическое исследование систем на основе $ZrO_2(Y)$ и Al_2O_3 . На рис. 5, a, b представлены кривые ДСК исследуемых нанокристаллических порошков при нагреве. При низких температурах существенные тепловые эффекты отмечаются лишь в порошке ZrO₂(3Y). Так, в диапазоне 300-450°C наблюдается интенсивный, хотя и сильно размытый экзоэффект (кривая 1). В других исследуемых системах (кривые 2, 3, 4) подобные экзоэффекты выражены незначительно. При более высоких температурах в порошке ZrO₂(3Y) существенных тепловых эффектов при нагреве не наблюдается (кривая 1). В порошке ZrO₂(3Y) + 20%Al₂O₃ отмечается размытый экзоэффект в области 840°С (кривая 2). В порошке Al₂O₃ имеет место относительно небольшой экзоэффект при 870°С (кривая 4), а в системе $80\% Al_2O_3 + 20\% ZrO_2(Y)$ четкий экзоэффект при 943°С (кривая 3). Все обнаруженные экзоэффекты необратимы и не наблюдаются при охлаждении образцов.

Следует отметить, что при температурах до 380-450°С обычно наблюдаются эффекты кристаллизации диоксида циркония [8], что позволяет интерпретировать низкотемпературный экзоэффект в системе

Рис. 5. Кривые дифференциальной сканирующей калориметрии исследуемых порошков при нагреве. $1 - ZrO_2(3Y)$; $2 - ZrO_2(3Y) + 20\% Al_2O_3$; $3 - 80\% Al_2O_3 + 20\% ZrO_2(Y)$; $4 - Al_2O_3$.

 $ZrO_2(3Y)$ как следствие завершения процесса кристаллизации. При более высоких температурах (до 580-600°С [8]) обычно проявляются эффекты кристаллизации у-Al₂O₃, однако в случае исследуемых систем сопутствующие этому процессу тепловые эффекты на кривых ДСК (рис. 5, *a*, *b*, кривые 2, 3, 4) четко наблюдать не удается. Взаимные превращения модификаций оксида алюминия при нагреве, например: γ -Al₂O₃ $\rightarrow \delta$ -Al₂O₃ (протекающее при 835° C [8]); δ -Al₂O₃ $\rightarrow \theta$ -Al₂O₃ (при 900°С [8]); *θ*-Al₂O₃ → α-Al₂O₃ (при 1266°С [8]) также либо не отражаются на кривых ДСК, либо оказываются очень размытыми вследствие дисперсной природы исследуемых материалов. Возможно, имеет место их смещение в другой температурный интервал вследствие формирования неравновесных твердых растворов и иного влияния вторых нерастворимых компонентов.

Можно предположить, что экзоэффект при 840° С, выявленный в порошке $ZrO_2(3Y) + 20\% Al_2O_3$ обусловлен началом распада неравновесного твердого раствора $ZrO_2(3Y,Al)$ при нагреве с выделением нанофаз Al_2O_3 . Подтверждением этого является необратимость наблюдаемого эффекта. Экзоэффекты, выявленные в порошках

на основе оксида алюминия (943°С — в порошке 80% $Al_2O_3 + 20\%$ ZrO₂(Y) и 870°С — в порошке Al_2O_3), могут быть обусловлены превращениями промежуточных модификаций Al_2O_3 . Если считать, что оба экзоэффекта связаны с одним и тем же необратимым превращением δ - $Al_2O_3 \rightarrow \theta$ - Al_2O_3 , то полученные данные свидетельствуют, что добавка диоксида циркония сдерживает осуществление данного превращения (смещая его в область более высоких температур), что было отмечено выше при анализе рентгеновских данных.

В целом данные ДСК подтверждают выводы рентгеноструктурного анализа о неравновесности нанофаз и наноструктур, формирующихся при плазмохимическом синтезе в исследуемых системах и существенном влиянии вторых (нерастворимых) компонентов на структурно-фазовое состояние порошков при нагреве. Эти обстоятельства необходимо учитывать при использовании данных порошков для получения наностуктурных керамических материалов на их основе.

4. Выводы

1. В нанокристаллических плазмохимических системах на основе $ZrO_2(Y)$ второй компонент Al_2O_3 , нерастворимый в крупнокристаллическом состоянии, способствует образованию неравновесного тетрагонального твердого раствора, $ZrO_2(3Y,A1)$ стабильного по отношению к $t \to m$ превращению.

2. В нанокристаллических плазмохимических системах на основе Al_2O_3 присутствие нерастворимого в крупнокристаллическом состоянии компонента $ZrO_2(Y)$ тормозит $\gamma \rightarrow \alpha$ превращение Al_2O_3 и измельчает размер ОКР формирующихся наноразмерных модификаций оксида алюминия.

3. В системах $ZrO_2(3Y) + 20\% Al_2O_3$ и (1-X%) $Al_2O_3 + X\% ZrO_2(Y)$, где X = 0 и 20 wt.%, при нагреве, при температурах 840, 943 и 870°С соответственно, наблюдаются экзоэффекты, связанные с распадом неравновесных твердых растворов $ZrO_2(Y,AI)$ и фазовыми превращениями промежуточных модификаций Al_2O_3 .

Авторы выражают благодарность сотрудникам ОАО "СХК" (г. Северск) — С.П. Андрийцу и А.М. Селиховкину — за предоставление порошков для исследования и сотрудникам СамГТУ (г. Самара) — Е.А. Амосову и А.А. Ермошкину — за помощь в проведении РЭМ исследований порошков.

Список литературы

- [1] A.M. Apler. Science ceramics. V. 3 / Ed. G.H. Stewart. Academic Press, London (1967). 339 p.
- [2] L. Nettleship, R Stevens. J. High Tech. Ceram. 3, 1 (1987).
- [3] J. Wang, R. Stevens. J. Mater. Sci. 24, 3421 (1989).
- [4] В.С. Бакунов, В.Л. Балкевич, А.С. Власов, И.Я. Гузман, Е.С. Лукин, Д.Н. Полубояринов, Р.Я. Попильский. Керамика из высокоогнеупорных окислов. Металлургия, М. (1977). 304 с.

- [5] Р.А. Андриевский, И.И. Спивак. Прочность тугоплавких соединений и материалов на их основе. Справочник. Металлургия, Челябинск (1989). 368 с.
- [6] G.L. Messing, S.-C. Zhang, G.V. Jayanthi. J. Amer. Ceram. Soc. 76, 2707 (1993).
- [7] T. Kumagai, K. Hongo, H. Kimura. J. Amer. Ceram. Soc. 87, 644 (2004).
- [8] А.Л. Жарныльская, В.В. Вольхин. Вестн. Башкир. ун-та. 14, 753 (2009).
- [9] О.В. Альмяшева, Э.Н. Корытков, А.В. Маслов, В.В. Гусаров. Неорган. материалы 41, 1 (2005).
- [10] В.Д. Пархоменко, П.И. Сорока, Ю.И. Краснокутский, П.Н. Цибулаев, В.Г. Верещак, А.И. Максимов, А.Л. Моссэ, А.Б. Амбразявичус. Плазмохимическая технология. Наука, Новосибирск (1991). 392 с.
- [11] П.В. Королев, С.Н. Кульков. Перспективные материалы 1, 67 (1998).
- [12] П.В. Королев. Фазовые и структурные состояния в нанокристаллических порошках на основе диоксида циркония. Автореф. канд. дис. Томск (1998).
- [13] И.Н. Севостьянова, С.Н. Кульков. В сб. научных трудов IV Межрегиональной научно-практической конференции Волжского филиала МАДИ "Дорожно-транспортный комплекс: состояние, проблемы и перспективы развития" Волжский филиал МАДИ, Чебоксары (2010). 254 с.
- [14] С.П. Андриец, Н.В. Дедов, Э.М. Кутявин, А.М. Селиховкин, В.Н. Серенков, Н.И. Ситников, И.А. Степанов, Ю.Ф. Иванов, Э.В. Козлов. Изв. вузов. Цветная метллургия, **3**, 64 (2008).
- [15] R.C. Garvie, P.S. Nicholson. J. Am. Ceram. Soc. 55, 303 (1972).
- [16] Я.С. Уманский. Ю.А. Скаков, А.Н. Иванов, Л.Н. Расторгуев. Кристаллография, рентгенография и электронная микроскопия. Металлургия, М. (1982). 632 с.
- [17] N.G. Scott. J. Mater. Sci. 10, 1527 (1975).
- [18] В.Ф. Петрунин. Журн. Всесоюз. хим. об-ва им. Д.И. Менделеева. 36, 146 (1991).
- [19] В.Ф. Петрунин, А.Г. Ермолаев, А.В. Бурханов, Е.В. Князев, Л.И. Трусов, А.И. Зеликман, С.А. Васильев. Порошковая металлургия 3, 47 (1989).
- [20] Y. Shoji, R. Matsuzaki, Y. Saeki. Bull. Chem. Soc. Jpn. 55, 437 (1982).
- [21] P. Nair, J. Nair, E.B.M. Doesburg, J.G. Van Ommen, J.R.H. Ross, A.J.A. Burggraaf, Y. Oosawa, F. Mizukami. J. Porous Mater. 6, 69 (1999).