02

Atomic Structure and Optical Properties of Plasma Enhanced Chemical Vapor Deposited SiCOH Low-*k* Dielectric Film*

© V.N. Kruchinin¹, V.A. Volodin^{1,2}, S.V. Rykhlitskii¹, V.A. Gritsenko^{1,2,3}, I.P. Posvirin⁴, Xiaoping Shi⁵, and M.R. Baklanov^{6,7}

¹ Rzhanov Institute of Semiconductor Physics, SB RAS, 630090 Novosibirsk, Russia
² Novosibirsk State University, 630090 Novosibirsk, Russia
³ Novosibirsk State Technical University, 630073 Novosibirsk, Russia
⁴ Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
⁵ Beijing Naura Microelectronics, E-Town, Beijing, China
⁶ North China University of Technology, Beijing, China
⁷ Russian Technological University MIREA, Moscow, Russia
e-mail: vladd.kruch@yandex.ru

Received October 06, 2020 Revised December 03, 2020 Accepted December 26, 2020

The SiCOH low-k dielectric film was grown on Si substrate using plasma-enhanced chemical vapor deposition method. Atomic structure and optical properties of the film were studied with the use of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) absorption spectroscopy, Raman spectroscopy, and ellipsometry. Analysis of XPS data showed that the low-k dielectric film consists of Si–O₄ bonds (83%) and Si–SiO₃ bonds (17%). In FTIR spectra some red-shift of Si–O–Si valence (stretching) vibration mode frequency was observed in the low-k dielectric film compared with the frequency of this mode in thermally grown SiO₂ film. The peaks related to absorbance by C–H bonds were observed in FTIR spectrum. According to Raman spectroscopy data, the film contained local Si–Si bonds and also C–C bonds in the $s-p^3$ and $s-p^2$ hybridized forms. Scanning laser ellipsometry data show that the film is quite homogeneous, homogeneity of thickness is ~ 2.5%, and homogeneity of refractive index is ~ 2%. According to the analysis of spectral ellipsometry data, the film is porous (porosity is about 24%) and contains clusters of amorphous carbon (~ 7%).

Keywords: low-k dielectrics, PECVD, optical properties, atomic structure.

^{*} Полный текст статьи опубликован в "Optics and Spectroscopy" 2021 V. 129. N 5.