оо Столкновения атомов лития в основном состоянии. Комплексные сечения спинового обмена

© В.А. Картошкин

Физико-технический институт им. А.Ф. Иоффе РАН, 194021 Санкт-Петербург, Россия e-mail: victor.kart@mail.ioffe.ru

Поступила в редакцию 22.12.2020 г. В окончательной редакции 22.12.2020 г. Принята к публикации 11.01.2021 г.

Рассмотрено взаимодействие двух поляризованных атомов лития (⁷Li). При столкновении таких атомов наряду с упругим рассеянием имеет место процесс спинового обмена, т. е. обмен электронной поляризацией между сталкивающимися атомами. Одновременно с переносом поляризации процесс спинового обмена приводит к сдвигу частоты магнитного резонанса сталкивающихся атомов. На основании данных по потенциалам взаимодействия между двумя атомами лития впервые проведен расчет энергетических зависимостей сечений спинового обмена и сдвига частоты магнитного резонанса.

Ключевые слова: спиновый обмен, поперечные сечения, сдвиги частоты.

DOI: 10.21883/OS.2021.05.50881.311-20

Введение

Димер лития — одна из наиболее изученных двухатомных молекул, причем как экспериментально, так и теоретически. Это связано с тем, что атом лития и соответственно димер лития являются наиболее простыми объектами исследований, если не принимать во внимание изотопы водорода. В связи с этим в литературе имеется достаточно большое количество работ, посвященных потенциалам взаимодействия димера Li₂, как теоретических [1–3], так и основанных на данных, полученных в результате различных экспериментальных исследований [4–6].

В настоящей работе рассмотрено взаимодействие с участием двух атомов изотопа ⁷Li, находящихся в основном состоянии $1s^22s$. Рассматриваемые атомы лития в основном состоянии имеют нескомпенсированный электронный спин S = 1/2, соответственно при столкновении двух атомов лития образуется димер с полным спином S = 1, 0.

В работе рассмотрено взаимодействие двух поляризованных атомов лития, находящихся в основном состоянии. В этом случае при столкновении атомов происходит обмен электронной поляризацией между сталкивающимися атомами (так называемый спиновый обмен) [7,8]. Таким образом, если перед столкновением один из атомов был поляризован, то он может передать имеющуюся у него поляризован, то он может передать имеющуюся у него поляризацию партнеру по столкновению [9]. Это позволяет осуществлять непрямую [10] поляризацию атомных частиц в случаях, когда осуществить прямую поляризацию (например, поляризованным оптическим излучением) оказывается невозможно. Подобный процесс характеризуется сечением спинового обмена q_{sc} . Вместе с передачей поляризации при спин-обменном столкновении имеет место также и сдвиг частоты маг-

нитного резонанса поляризованных атомов [11]. Сдвиг частоты магнитного резонанса может быть описан с помощью сечения сдвига $q_{\rm sh}$.

В работе на основании данных по потенциалам взаимодействия двух атомов лития в основном состоянии рассчитаны комплексные сечения спинового обмена в интервале энергий столкновения от $2 \cdot 10^{-4}$ до 10^{-2} a.u.

Потенциалы взаимодействия сталкивающихся атомов лития

Как уже отмечалось выше, взаимодействие двух атомов лития (⁷Li) исследуется достаточно давно. Это обусловлено тем, что атомы лития имеют самую простую (если не принимать во внимание атомы изотопов водорода) электронную структуру. Основное состояние атома ⁷Li имеет электронную конфигурацию $1s^22s$. Таким образом, у атома лития в основном состоянии имеется электронный спин S = 1/2. Также атом ⁷Li имеет ядерный спин I = 3/2. При столкновении двух атомов лития образуется молекула Li2. Поскольку время столкновения атомов (порядка 10⁻¹² s) существенно меньше времени сверхтонкого взаимодействия в атоме лития (порядка 10⁻⁹ s [12]), то в процессе столкновения происходит взаимодействие только между электронами, а дальнейшее перераспределение поляризации между электронными и ядерными степенями свободы происходит между столкновениями за счет сверхтонкого взаимодействия. При столкновении атомов лития образуется димер с полным спином S = 1, 0. Эти состояния могут быть описаны с помощью двух потенциалов — триплетного, соответствующего полному спину S = 1 $(a^3 \Sigma_{\mu}^+)$, и синглетного, соответствующего полному спину S = 0 $(X^1\Sigma_{\rho}^+).$

Исследованию вышеприведенных молекулярных термов в литературе уделялось большое внимание. В частности, синглетный терм исследовался в работах [2,3,6], а триплетный — в [1,13,14].

В настоящей работе исследовано взаимодействие двух атомов изотопа ⁷Li, которое может быть описано с помощью синглетного и триплетного термов. При столкновении атомов друг с другом возможен процесс упругого рассеяния. Если сталкивающиеся атомы обладают нескомпенсированным электронным спином, то возможен также и процесс спинового обмена, т.е. обмен электронными степенями свободы между сталкивающимися атомами.

1.1. Синглетный потенциал взаимодействия двух атомов лития в основном состоянии

Для расчета интересующих нас комплексных сечений спинового обмена был использован синглетный потенциал, рассчитанный в работе [6]. В работе методом фурье-спектроскопии исследовались вращательные переходы в A-X-системе для атомов изотопа ⁷Li. На основании полученных экспериментальных данных были определены параметры синглетного потенциала взаимодействия в интервале межъядерных расстояний от $R_{\min} = 2.516948$ Å (соответствующего колебательному уровню v = 0, в атомных единицах длины $R_{\min} = 4.756317$ a.u.) до $R_{\max} = 12.492700$ до Å (соответствующего колебательному уровню v = 40, в атомных единицах длины $R_{\text{max}} = 23.607657$ a.u.). Для проведения расчетов необходимо знать часть потенциала взаимодействия на межъядерных расстояниях меньше R_{min}. Для расчета этой части потенциала воспользуемся методикой, предложенной, в частности, в [15]. Потенциальная энергия V_{SR} для межъядерных расстояний, меньших $R_{\min} = 2.516948$ Å, представляется обычно в виде $V_{\rm SR} = A + B/R^{N_{\rm s}}$. Подбор параметров A, B и N_s производится таким образом, чтобы осуществить сшивку потенциальных кривых до и после R_{min}. На рис. 1 представлен синглетный потенциал взаимодействия, построенный на основании табличных данных [6], с короткодействующей частью, рассчитанной в настоящей работе по методике, предложенной в [15]. На рисунке потенциал взаимодействия приведен в атомных единицах. Параметры короткодействующей части синглетного потенциала взаимодействия ($R \leq R_{\min}$), представленной на рис. 1, имеют следующие значения (в обратных сантиметрах и ангстремах): $A = -12044.87509 \text{ cm}^{-1}$, $B = 80490.77484 \text{ cm}^{-1} \text{ Å}^{2.27468}, N_8 = 2.27468.$

Представленный синглетный потенциал характеризуется энергией диссоциации $D_{\rm e} = 8516.61 \, {\rm cm}^{-1}$ (в атомных единицах энергии $D_{\rm e} = 0.03884$ a.u.) и равновесным расстоянием $R_{\rm e} = 2.67299391$ Å (в атомных единицах длины $R_{\rm e} = 5.0511199$ a.u.).

 $D_{\rm e} = 0.001520$ a. u. 1 *V*, a. u. $R_{\rm e} = 7.88785$ a. u. 0 $D_{\rm e} = 0.03884$ a. u. *R*_{min} $R_{\rm e} = 5.051189$ a. u. -0.055 10 0 15 20 25 *R*, a. u. **Рис. 1.** Синглетный (1) [6] и триплетный (2) [1] по-

тенциалы взаимодействия димера ⁷Li-⁷Li (атомная система единиц). Короткодействующая часть синглетного потенциала при $R \leq R_{\min}$ построена в настоящей работе. Для синглетного потенциала $D_e = 8516.61 \,\mathrm{cm}^{-1}$ (в атомной системе единиц $D_e = 0.3884$ a.u.), $R_e = 2.67299391$ Å (в атомной системе единиц $R_e = 5.0511199$ a.u.); для триплетного терма $D_e = 333.69 \,\mathrm{cm}^{-1}$ ($D_e = 0.01520 \,\mathrm{a.u.}$), $R_e = 0.4173 \,\mathrm{nm}$ $(R_e = 7.885785 \text{ a.u.}).$

Триплетный потенциал взаимодействия 1.2. двух атомов лития в основном состоянии

В настоящей работе для расчета сечений использовался триплетный потенциал взаимодействия, рассчитанный в работе [1]. Расчет данного потенциала проведен в интервале межъядерных расстояний от $R_{\min} = 3.05$ a.u. до $R_{\max} = 37.05$ a.u. Представленный триплетный потенциал характеризуется энергией диссоциации $D_e = 333.69 \,\mathrm{cm}^{-1}$ $(D_e = 0.001520 \,\mathrm{a.u.})$ расстоянием И равновесным $R_{\rm e} = 0.4173 \, \rm nm$ (*R*_e = 7.885785 a.u.) [16]. На рис. 1 этот потенциал представлен в атомной системе единиц.

Комплексные сечения спинового 2. обмена

Ниже приводится методика расчета комплексного сечения спинового обмена, которая аналогична представленной в [7,8]. Как известно, при столкновении двух атомных частиц, обладающих электронными спинами, кроме процесса упругого рассеяния, возможен также процесс обмена электронами, а если одна из частиц была предварительно поляризована, то и обмен электронной поляризацией. Подобный процесс условно представляется следующим образом:

$$A(\uparrow) + B(\downarrow) \leftrightarrow A(\downarrow) + B(\uparrow). \tag{1}$$

Здесь стрелками показана возможная электронная поляризация частиц.

Процесс спинового обмена можно описать с помощью комплексного сечения спинового обмена вида [7,8]:

$$q^{AB} = \bar{q}^{AB} + i\bar{\bar{q}}^{AB}.$$
 (2)

Действительная часть комплексного сечения (\bar{q}^{AB}) определяет перенос поляризации при столкновении частиц, релаксацию, образование высших поляризационных моментов (выстраивание, сверхтонкая поляризация). Мнимая часть сечения $(\bar{\bar{q}}^{AB})$ определяет сдвиги частоты магнитного резонанса в системе как зеемановских, так и сверхтонких уровней атомов лития. Следовательно, зная комплексное сечение спинового обмена, можно полностью описать процессы, происходящие при спин-обменных столкновениях. Следует отметить, что сдвиги частоты магнитного резонанса существенно влияют на точностные характеристики приборов квантовой электроники, либо построенных с использованием явления спинового обмена, либо в случаях, когда спиновый обмен является "паразитным процессом" (квантовые магнитометры с оптической накачкой на щелочных атомах [17], квантовые стандарты частоты и времени [18] и т. д.)

Комплексное сечение спинового обмена можно представить стандартным образом через матрицу рассеяния [19]:

$$q^{AB} = \frac{\pi}{k_{AB}^2} (2l+1) [1 - T_0^{AB}(l) T_1^{AB}(l)^*].$$
(3)

Здесь $k_{AB}^2 = \mu_{AB} v_{AB} / \hbar$ — волновой вектор, μ_{AB} — приведенная масса сталкивающихся частиц *A* и *B*, v_{AB} — средняя относительная скорость сталкивающихся атомов, символ * указывает на комплексное сопряжение. Матрица рассеяния выражается через фазы рассеяния ($\delta_S^{AB}(l)$) в канале с полным спином *S* следующим образом:

$$T_{S}^{AB}(l) = \exp\left(2i\delta_{S}^{AB}(l)\right),\tag{4}$$

где *l* — орбитальное квантовое число.

Из выражений (3) и (4) следует, что действительная и мнимая части комплексного сечения имеют вид

$$\bar{q}^{AB} = \frac{\pi}{k_{AB}^2} \sum_{l=0}^{\infty} (2l+1) \sin^2[\delta_1^{AB}(l) - \delta_0^{AB}(l)], \quad (5)$$

$$\bar{\bar{q}}^{AB} = \frac{\pi}{k_{AB}^2} \sum_{l=0}^{\infty} (2l+1) \sin^2[\delta_1^{AB}(l) - \delta_0^{AB}(l)].$$
(6)

Таким образом, для расчета интересующих нас сечений необходимо рассчитать фазы рассеяния на синглетном и триплетном термах. Расчет фаз рассеяния проведен в квазиклассическом приближении в интервале энергий $10^{-4}-10^{-2}$ а.u., что соответствует интервалу температур от 30 до 3000 К. Применение квазиклассического приближения обусловлено тем, что вклад в сечения вносит большое количество парциальных волн *l* даже при низких энергиях столкновения.

Рис. 2. Зависимость действительной (1) и мнимой (2) частей комплексного сечения спинового обмена при столкновении атомов ⁷Li в основном состоянии от энергии столкновения.

Рис. 3. Зависимость от температуры действительной (I) и мнимой (2) частей комплексного сечения спинового обмена при столкновении атомов ⁷Li в основном состоянии.

На рис. 2 приведены полученные в результате расчета зависимости действительной и мнимой частей комплексного сечения спинового обмена для системы ⁷Li-⁷Li. Как видно из рисунка, сечение сдвига \bar{q}^{AB} (кривая 2) в исследуемом интервале энергий стремится в сторону отрицательных значений, сечение обмена остается в области положительных значений. Для использования полученных в работе сечений при обработке экспериментальных данных необходимо перейти от энергетических к температурным зависимостям сечений. С этой целью необходимо было провести максвелловское усреднение сечений по скоростям. На рис. 3 представлены результаты такого усреднения. Из рисунка видно, что как сечение сдвига частоты, так и сечение спинового обмена положительны во всем интервале исследуемых температур.

Финансирование работы

Работа выполнена в рамках госзадания, тема 0040-2019-0017.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- [1] Shi De-Heng, Sun Jin-Feng, Zhu Zun-Lue, Liu Yu-Fang // Chinese Phys. 2007. V. 16. N 9. P. 2701.
- [2] Konowalowa D.D., Olson M.L. // J. Chem. Phys. 1979. V. 71.
 N 1. P. 450. doi 10.1063/1.438090
- [3] Le Roy J., Dattani N.S., Coxon J.A., Ross A.J., Crozet P., Linton C. // J. Chem. Phys. 2009. V. 131. P. 204309. doi 10.1063/1.3264688
- [4] Wang X., Yang J., Qi J., Lyyra A.M. // J. Mol. Spectrosc. 1998. V. 191. N 2. P. 295.
- [5] Wang X., Magnes J., Lyyra A.M., Ross A.J., Martin F., Dove P.M., Le Roy R.J. // J. Chem. Phys. 2002. V. 117. N 20. P. 9339. doi 10.1063/1.1514670
- [6] Coxon J.A., Melville T.C. // J. Mol. Spectrosc. 2006. V. 235.
 N 2. P. 235. doi 10.1016/ jms.2005.11.009
- [7] Картошкин В.А. // Опт. и спектр. 1998. Т. 85. № 1. С. 196; Kartoshkin V.A. // Opt. Spectrosc. 1998. V. 85. N 1. Р. 177.
- [8] Дмитриев С.П., Доватор Н.А., Картошкин В.А. // ЖТФ. 2015. Т. 85. № 6. С. 40; Dmitriev S.P., Dovator N.A., Kartoshkin V.A. Technical Physics. 2015. V. 60. N 6. P. 826. doi 10.1134/S1063784215060079
- [9] Картошкин В.А. // Опт. и спектр. 2010. Т. 109. № 5. С. 734; Kartoshkin V.A. // Opt. Spectrosc. 2010. V. 109. N 5. P. 674. doi 10.1134/S0030400X10110056
- [10] Клементьев Г.В., Мельников В.Д., Картошкин В.А. // Химическая физика. 1985. Т. 4. № 1. С. 37.
- [11] Картошкин В.А. // Опт. и спектр. 2010. Т. 108. № 6. С. 914; Kartoshkin V.A. // Opt. Spectrosc. 2010. V. 108. N 6. Р. 866. doi 10.1134/S0030400X1006007X
- Puchalski M., Pachucki K. // Phys. Rev. Lett. 2013. V. 111.
 P. 243001. doi 10.1103/PhysRevLett.111.243001
- [13] Linton C., Murphy T.L., Martin F., Bacis R., Verges J. // J. Chem. Phys. 1989. V. 91. N 10. P. 6036. doi 10.1063/1.457421
- [14] Konowalow D.D., Regan R.M., Rosenkrantz M.E. // J. Chem. Phys. 1984. V. 81. N 10. P. 4534. doi 10.1063/1.447424
- [15] Steinke M., Knöckel H., Tiemann E. // Phys. Rev. A. 2012.
 V. 85. P. 042720. doi 10.1103/PhysRevA.85.042720
- [16] Linton C., Martin F.J., Ross A., Russier I., Crozet P., Yiannopoulou A., Li L., Lyyra A.M. // J. Mol. Spectrosc. 1999. V. 196. N 1. P. 20.
- [17] Александров Е.Б., Вершовский А.К. // УФН. 2009. Т. 179. № 6. С. 605-637; Aleksandrov E.B., Vershovsky А.К. // Phys. Usp. 2009. V. 52. N 6. P. 573. doi 10.3367/UFNe.0179.200906f.0605
- [18] Affolderbach C., Droz F., Mileti G. // IEEE Trans. Instr. Measur. 2006. V. 55. N 2. P. 429. doi 10.1109/TIM.2006.870331
- [19] *Мотт Н., Месси Г.* Теория атомных столкновений. М.: Мир, 1969. 756 с.