15 Дисперсия плазменных колебаний в аморфных халькогенидных полупроводниках

© В.М. Стожаров

Российский государственный педагогический университет им. А.И. Герцена, 191186 Санкт-Петербург, Россия e-mail: gut1111@yandex.ru

Поступило в Редакцию 26 ноября 2020 г. В окончательной редакции 17 декабря 2020 г. Принято к публикации 22 декабря 2020 г.

> Исследованы тонкие пленки аморфных халькогенидных полупроводников на кристалле кремния методом дисперсии плазменных колебаний, и рассчитана асимметрия числа электронов в зоне формирования полного внешнего отражения рентгеновских лучей и возбуждения плазмонов. Наблюдались петлеобразные дисперсионные кривые, и определены средние энергии плазмонов и связанные с ними внутренние механические напряжения и поляризация исследованных пленок. Выяснено отсутствие внутренних механических напряжений и поляризации в аморфной полупроводниковой пленке сульфида молибдена.

Ключевые слова: дисперсия, плазмоны, полупроводник, поляризация, энергия, асимметрия.

DOI: 10.21883/JTF.2021.06.50878.325-20

Введение

С практической точки зрения исследование оптических, электрофизических и структурных свойств аморфных халькогенидных полупроводников и их изменений, стимулированных различными внешними воздействиями, является весьма актуальным [1–3]. Как показано в обзоре [4], это позволяет выяснить некоторые стороны физических процессов, лежащих в основе эффектов переключения и фазовой памяти и имеющих одно из наиболее перспективных приложений. В связи с этим представляет определенный интерес исследование дисперсии плазмонов, возбужденных рентгеновскими лучами, испытавшими полное внешнее отражение (ПВО) от приповерхностных слоев аморфных халькогенидных полупроводников. Таких работ в литературе не известно.

В большинстве работ объемные и поверхностные плазмоны возбуждались в оптическом и радиочастотном диапазонах [5–9] и электронным пучком [10,11].

Настоящая работа посвящена экспериментальному исследованию методом дисперсии плазмонов аморфных тонких пленок халькогенидных стеклообразных полупроводников в виде трех соединений типа Ge—Te—Sb, которые могут применяться как материалы ячеек с фазовой памятью, и аморфной тонкой пленки дисульфида молибдена MoS_2 толщиной порядка 10 nm, являющейся перспективным материалом в области наноэлектроники и фотоники [12]. Целью таких исследований является определение средних энергий плазмонов в исследуемых образцах и степени их поляризации.

1. Методика эксперимента

Под дисперсией плазмонов понимают зависимость энергии плазмонов E_p от их волнового вектора **k**. Такую функцию $E_p(\mathbf{k})$ иначе называют дисперсионным соотношением.

Величина энергии плазменных колебаний Е_p определялась методом ПВО рентгеновских лучей [13] на рентгеновском дифрактометре ДРОН-7 с параболическим зеркалом, формирующим параксиальный пучок рентгеновских лучей с расходимостью менее одной угловой минуты и обеспечивающим монохроматическое рентгеновское излучение СиКа1 с длиной волны $\lambda = 1.5406$ Å, что соответствует энергии рентгеновского кванта E = 8048 eV. Перед детектором рентгеновского излучения располагались коллиматор и горизонтальная щель Соллера. В этом случае запись рентгенограммы ПВО рентгеновских лучей в режиме "2*θ*-*θ*" обеспечило получение кривой ПВО с максимумом [14]. Угол а скольжения пучка рентгеновских лучей определял угловое положение этого максимума, что позволило вычислить энергию плазмона [13]. В этом случае площадь засветки поверхности образца s составляла $1.6 \, \mathrm{cm}^2$.

Кривые дисперсии плазмонов измерялись в шестнадцати точках путем поворота образца в его плоскости на азимутальный угол β в диапазоне углов от 0° до 360° с шагом 22.5°. Плазмонный волновой вектор \mathbf{k}_p , зависящий от угла β , определялся по формуле [15]:

$$\mathbf{k}_p = 5.05 \cdot 10^{16} \cdot E_p(\text{eV}) \cdot \cos\beta(\text{\AA}^{-1}).$$

2. Теоретические расчеты микроскопических характеристик тонких аморфных халькогенидных полупроводниковых пленок

2.1. Бинарное соединение MoS₂

2.1.1. Расчет зоны выхода h рентгеновских лучей, испытавших ПВО и возбуждающих плазменные колебания локализованных электронов

Для рентгеновского излучения Cu $K_{\alpha 1}$ с длиной волны $\lambda = 1.5406$ Å в справочнике [16] находим значения массовых коэффициентов поглощения рентгеновских лучей:

$$\left(\frac{\mu}{\rho}\right)_{\rm Mo} = 157 \, \frac{\rm cm^2}{g}, \quad \left(\frac{\mu}{\rho}\right)_{\rm S} = 89.4 \, \frac{\rm cm^2}{g}.$$

Для дисульфида молибдена массовый коэффициент поглощения рентгеновских лучей рассчитывается по формуле

$$\left(\frac{\mu}{\rho}\right)_{\text{MoS}_2} = \frac{M_{\text{Mo}}}{M} \left(\frac{\mu}{\rho}\right)_{\text{Mo}} + \frac{2M_{\text{S}}}{M} \left(\frac{\mu}{\rho}\right)_{\text{S}}, \qquad (1)$$

где молярная масса *М* дисульфида молибдена выражается соотношением

$$M = M_{\rm Mo} + 2M_{\rm S} = 160\,{\rm g}$$

с учетом его составляющих $M_{Mo} = 96 \text{ g } \text{ и} M_{S} = 32 \text{ g } [17]$. В таком случае из формулы (1) массовый коэффициент поглощения рентгеновских лучей в дисульфиде молибдена будет равен

$$\left(\frac{\mu}{\rho}\right)_{\rm MoS_2} = 130 \,\frac{\rm cm^2}{g}.$$

учетом плотности дисульфида С молибдена $\rho = 5.06 \, \text{g/cm}^3$ получаем значения линейного коэффициента поглощения рентгеновских лучей $\mu = 657.4 \, {\rm cm}^{-1}$ и соответственно практического пробега рентгеновского кванта излучения СиКа1 в дисульфиде молибдена $R = \frac{1}{\mu} = 15.2 \,\mu$ m. В случае ПВО вдоль направления скольжения пучка рентгеновских лучей под углом а кванты рентгеновского излучения проникают в материал только на расстояние $\frac{\vec{R}}{2}$, которое для дисульфида молибдена составляет 7.6 μ m = 7.6 · 10⁻⁴ cm. Тогда зона выхода *h* рентгеновских лучей, испытавших ПВО и возбудивших плазменные колебания в приповерхностном слое дисульфида молибдена MoS₂, рассчитывается по формуле

$$h = \frac{R}{2} \sin \alpha = 7.6 \cdot 10^{-4} \cdot \sin \alpha.$$
 (2)

2.1.2. Расчет плотности N_0 локализованных электронов и их числа N в зоне выхода h

Согласно теории плазмонов [18], плотность локализованных электронов N_0 , формирующих ПВО, в системе СИ рассчитывалась из следующего соотношения:

$$N_0 = \frac{m}{4\hbar e^2} E_p^2 = 6.5 \cdot 10^{26} \cdot_p^2 \text{ (cm}^{-3})$$

Поскольку электроны твердого тела формируют ПВО рентгеновских лучей и плазмоны только в объеме $V = s \cdot h$ зоны выхода h, то число локализованных электронов в дисульфиде молибдена в этом случае определится соотношением

$$N = N_0 \cdot V = 7.9 \cdot 10^{23} \cdot E_p^2 \cdot \sin \alpha. \tag{3}$$

2.1.3. Расчет энергии плазмонов Е_р

Согласно [13], энергия плазмонов вычислялась по простой формуле

$$E_p = 8048 \cdot \sin \alpha. \tag{4}$$

2.2. Тройные соединения Ge-Sb-Te

Для трех исследованных тройных соединений Ge-Sb-Te с учетом их молярных масс $M_{\text{Ge}} = 72.52 \text{ g}$, $M_{\text{Sb}} = 121.75 \text{ g}$, $M_{\text{Te}} = 127.6 \text{ g}$ и массовых коэффициентов поглощения $\left(\frac{\mu}{\rho}\right)_{\text{Ge}} = 71.4 \frac{\text{cm}^2}{g}$, $\left(\frac{\mu}{\rho}\right)_{\text{Sb}} = 274 \frac{\text{cm}^2}{g}$, $\left(\frac{\mu}{\rho}\right)_{\text{Te}} = 290 \frac{\text{cm}^2}{g}$ расчеты зоны выхода *h* рентгеновских лучей и числа электронов *N* в зоне *h*, участвующих в формировании ПВО рентгеновских лучей и в возбуждении плазмонов, производились по схеме аналогично теоретическим расчетам для дисульфида молибдена. В табл. 1 приведены плотности и расчетные формулы для всех трех тройных соединений.

Результаты экспериментов и их обсуждение

Рассмотрим в качестве примера микроскопические характеристики дисульфида молибдена при азимутальном угле $\beta = 0^{\circ}$ и его дисперсионное соотношение (рис. 1). Изображенная на рис. 1 дисперсионная кривая для дисульфида молибдена представляет собой кривую с минимумом при k = 0 подобную экспериментальным результатам в Nd_{2-x}Ce_xCuO₄, полученным методом неупругого рассеяния рентгеновских лучей [19,20]. В противоположность простой дисперсии плазмонов в дисульфиде молибдена дисперсионная кривая для аморфной тонкой пленки халькогенидного полупроводника GeSb₄Te₇ представляет собой петлю с большой площадью S (рис. 2), в пределах которой можно вычислить среднюю энергию

Рис. 1. Дисперсия плазмонов в дисульфиде молибдена MoS₂.

Рис. 2. Дисперсия плазмонов в аморфной тонкой пленке халькогенидного полупроводника $Ge_1Sb_4Te_7$ с указанием для каждой экспериментальной точки азимутального угла β в градусах.

плазмонов $\overline{E}_p(S)$, характеризующую площадь петли, по эмпирической формуле

$$\overline{E}_p(S) = \frac{\sum_{i=1}^n E_{Pi}}{n}.$$
(5)

Определенный интерес представляет асимметрия числа N локализованных электронов, которая зависит от степени поляризации исследуемых полупроводников, связанной в первую очередь с дипольными моментами молекул, и выражается усреднением отношений числа локализованных электронов N в четырех диаметрально противоположных направлениях в плоскости образца, характеризуемых четырьмя парами азимутальных углов β с шагом 180°: 0°–180°, 45°–225°, 90°–270° и 135°–335°. Для дисульфида молибдена сумма асимметрий $\sum asym = 4.8$ и средняя асимметрия составляет

Журнал технической физики, 2021, том 91, вып. 6

Таблица 1. Плотности трех образцов Ge–Sb–Te и формулы для расчетов микроскопических характеристик этих образцов

Sample	ρ , g/cm ³	h, cm	N	
$\begin{array}{c} Ge_2Sb_2Te_5\\ GeSb_2Te_4\\ GeSb_4Te_7 \end{array}$	6.40 6.22 6.64	$\begin{array}{c} 3.06 \cdot 10^{-4} \cdot \sin \alpha \\ 3.02 \cdot 10^{-4} \cdot \sin \alpha \\ 2.75 \cdot 10^{-4} \cdot \sin \alpha \end{array}$	$\begin{array}{c} 3.19 \cdot 10^{23} \cdot E_p^2 \cdot \sin \alpha \\ 2.89 \cdot 10^{23} \cdot E_p^2 \cdot \sin \alpha \\ 2.87 \cdot 10^{23} \cdot E_p^2 \cdot \sin \alpha \end{array}$	

Таблица 2. Результаты обработки дисперсионных кривых и расчетов микроскопических характеристик в аморфных тонких пленках халькогенидных полупроводников Ge–Sb–Te

Sample	$\overline{E}_p(S)$, eV	asym	<i>h</i> , Å	$N \cdot 10^{20}$ electron
Ge ₂ Sb ₂ Te ₅	0.0675	1.72	8.75	4.85
Ge Sb ₂ Te ₄	0.2508	1.76	10.86	8.70
Ge Sb ₄ Te ₇	0.5240	1.79	9.31	7.21

 $\overline{asym} = 1.2$. Величина средней асимметрии, близкая к единице, свидетельствует о незначительной поляризации дисульфида молибдена в пределах поверхностного слоя толщиной порядка 10 nm, а простая дисперсионная кривая (рис. 1) свидетельствует об отсутствии в MoS₂ внутренних микронапряжений и, следовательно, дефектов структуры.

Для трех исследованных аморфных тонких пленок халькогенидных полупроводников Ge–Sb–Te были построены дисперсионные кривые $E_p(\mathbf{k})$, рассчитаны энергии плазмонов E_p для каждого из этих соединений и вычислены их микроскопические характеристики по формулам, приведенным в табл. 1. Полученные результаты обработки дисперсионных кривых этих пленок приведены в табл. 2.

Анализ данных, приведенных в табл. 2, показывает зависимость средней энергии плазмонов от состава исследованных халькогенидных полупроводниковых тройных соединений, характеризуемую ростом средней энергии плазмонов с увеличением содержания в этих соединениях бинарного соединения Sb_2Te_3 в составе пленки, что свидетельствует в этом случае об увеличении внутренних микронапряжений, соответственно приводящих к увеличению дефектной структуры пленки.

Средняя асимметрия локализованных электронов, определяющая степень поляризации исследованных аморфных тонких пленок халькогенидных полупроводников Ge–Sb–Te, мало зависит от состава пленки (табл. 2).

Заключение

Рентгеновский анализ аморфных тонких пленок халькогенидных полупроводников толщиной порядка 10 nm возможен только при скользящих углах $\alpha \sim 1'$ падения на поверхность образца первичного пучка рентгеновских

лучей, при которых глубина проникновения рентгеновских лучей в материал пленки не превышает трех нанометров. Рентгеновские лучи при таких скользящих углах падения генерируют в пленках поверхностные плазмоны. Измеряя их энергии в зависимости от азимутального угла β , получаются дисперсионные кривые, несущие информацию о механических и электрических свойствах твердых тел. В частности, метод дисперсии плазмонов позволяет определять наличие микронапряжения и степень поляризации в исследуемых пленках. Представляется перспективным применение метода дисперсии плазмонов к исследованиям различных классов твердых тел: металлов, полупроводников и диэлектриков.

Финансирование работы

Работа выполнена в рамках государственного задания при финансовой поддержке Министерства науки и высшего образования РФ проект № 3.5005.2017/ВУ.

Конфликт интересов

Автор заявляет, что у него нет конфликта интересов.

Список литературы

- A.V. Kolobov, P. Fons, A.I. Frenkel, A.L. Ankundinov, J. Tominaga, T. Uruga. Nature Mater., 3, 703 (2004). https://doi.org/10.1038/nmat.1215
- [2] A.V. Kolobov, M. Krbal, P. Fons, J. Tominaga, T. Uruga. Nature Chem., 3, 311 (2011).
 DOI: 10.1038/ncchem.1007.Epubo 2011 Mar20
- [3] Х.Ф. Нгуен, С.А. Козюхин, А.В. Певцов. ФТП, **48** (5), 597 (2014). journals.ioffe.ru/arttides/view PDF/27053
- [4] Н.А. Богословский, К.Д. Цэндин. ФТП, **46** (6), 577 (2012). journals.ioffe.ru/arttides/view PDF/7691
- [5] В.А. Волков. Плазмоны и магнитоплазмоны. Влияние на отклик полупроводниковых структур в гига- и терагерцовом диапазонах (ИРЭ РАН, М., 2019) DOI: 10.26201/ISSP.2019/NMTSS.2
- [6] A. Karalis, E. Lidorikis, M. Ibanescu, J.D. Joannopoulos. Phys. Rev. Lett., 95 (063901), 1 (2005).
- [7] В.В. Климов. УФН, 8, 875 (2008). https://doi.org/10.3367/UF Nr.178.20080g.0875
- [8] С.Г. Тиходеев, Н.А. Гиппиус. УФН, 9, 1003 (2009).
 DOI: 10.3367/UFNe0179 200901a.0003
- [9] P. Chen, R. Nable. New Modes of Particle Ecceleration. AIP, 95 (1997).
- N.L. Ayzatskiy, A.N. Dobnya, V.V. Sakutin and other. Phys. Part. Nucl. Lett., 5 (7), 86 (2008). https//doi.org/10.515/9783110619607-202
- [11] Е.М. Бойтингер, М.М. Брженинская, Н.А. Векессер, В.В. Шнитов. Известия Челябинского НЦ. Общая и техническая физика, **39** (1), 36 (2008).
- [12] В.М. Стожаров. ЖТФ, **89** (7),1042 (2019). DOI: 10.21.883/JTF.2019.07.47794.51-18
- [13] В.М. Стожаров. ЖТФ, 87 (1), 125 (2017).
- DOI: 10.21.883/JTF.2017.01.44028.1586
- [14] М.В. Давидович. Опт. и спектр., 126 (3), 360 (2019). DOI: 10.21883/OS.2019.03.47379.228-18

- [15] М.А. Блохин, И.Е. Швейцер. *Рентгеноспектральный* справочник (Наука, М., 1988)
- [16] А.А. Кацнельсон. Рассеяние рентгеновских лучей конденсированными средами (МГУ, М.,1991)
- [17] Н. Ашкрофт, Н. Мермин. Физика твердого тела (Мир, М.,1982), т. 1.
- [18] T.Matsunaga, N. Yamada, Y. Kubota. Acta Crystallogr., ser. B: Structur Sci., 60, 685 (2004). DOI: 10.1039/c2nr32907g
- [19] W.S. Lee, J.J. Lee, E.A. Nowadnick, S. Gerber, W. Tabis, S.W. Huang, V.N. Strocov. Nature Phys., **10**, 883 (2014).
- [20] K. Ishii, M. Fujita, T. Sasaki, M. Yoshida, R. Kajimoto, M. Kurooka, J. Mizuki. Nature Commun., 5, 3714 (2014).