06

Photoluminescence and Photoconductivity of Lead Halide Perovskite Films Modified with Mixed Cellulose Esters¹

© A.N. Aleshin¹, P.P. Shirinkin¹, A.K. Khripunov², N.N. Saprykina², I.P. Shcherbakov¹, I.N. Trapeznikova¹, P.A. Aleshin¹, V.N. Petrov¹

¹ Ioffe Institute,
194021 Saint-Petersburg, Russia
² Institute of Macromolecular Compounds,
199004 Saint-Petersburg, Russia
e-mail: aleshin@transport.ioffe.ru

Received January 27, 2021. Revised January 27, 2021. Accepted January 27, 2021.

We have investigated the photoluminescence (PL) and photoconductivity of lead halide perovskite (CH₃NH₃PbBr₃) films modified with different mixed cellulose esters (CEs). It was shown that the absorbance and PL spectra of CH₃NH₃PbBr₃: CE films contain contributions of both the CH₃NH₃PbBr₃ and CE with the dominant contribution to the PL from perovskite component. The dependences of the integral PL intensities of the CH₃NH₃PbBr₃: CE films on the optical excitation power turned out to be sublinear. This indicates that exciton recombination, as well as recombination via impurity levels, occur in CH₃NH₃PbBr₃: CE films at high excitation power levels. The conductivity of CH₃NH₃PbBr₃: CE films at 300 K increases up to ~ 90 times when illuminated by a solar simulator, and this effect is environmentally stable due to the formation of hydrogen bonds between CE and the lead halide perovskite CH₃NH₃PbBr₃. It is expected that appropriate selection of CE and optimization of CE inclusion will improve the optoelectronic properties and stability of composite films based on lead halide perovskite-CE composites.

Keywords: mixed cellulose esters, lead halide perovskites, photoluminescence, conductivity.

¹ Полный текст статьи опубликован в "Technical Physics", **66** (6), 2021.