06

Модифицированные параметры приема 1—3-композитов на основе сегнетоэлектрических кристаллов

© В.Ю. Тополов, А.Н. Исаева

Южный федеральный университет, 344090 Ростов-на-Дону, Россия e-mail: vutopolov@sfedu.ru

Поступило в Редакцию 17 ноября 2020 г. В окончательной редакции 22 января 2021 г. Принято к публикации 24 января 2021 г.

> Исследована система модифицированных параметров приема волокнистых пьезоактивных композитов "система однонаправленных сегнетоэлектрических кристаллических стержней — полимерная матрица" со связностью 1–3 в широком интервале объемных концентраций кристаллического компонента. Модифицированные параметры приема важны для оценки эффективности захвата, накопления и преобразования энергии в пьезоэлектрического компонента выступают поляризованные вдоль кристаллографического направления [001] полидоменные кристаллы (1 - x)Pb(Mg_{1/3}Nb_{2/3})O₃-*x*PbTiO₃ (0.28 $\leq x \leq 0.33$) и Li_v(K_{1-y}Na_y)_{1-v}(Nb_{1-z}Ta_z)O₃: Mn (v = 0.06, y = 0.1...0.3, z = 0.07...0.17). Проведено сравнение параметров, рассчитанных для 1–3-композитов по матричному методу и методу эффективного поля. Проанализирована роль электромеханических свойств кристаллического компонента в формировании модифицированных параметров приема композита. На основе результатов численного моделирования эффективных свойств и связанных с ними модифицированных параметров приема показаны преимущества бессвинцового 1–3-композита по сравнению с аналогами на основе кристаллов (1 - x)Pb(Mg_{1/3}Nb_{2/3})O₃-*x*PbTiO₃.

> Ключевые слова: пьезоактивный композит, эффективные электромеханические свойства, параметр приема, фактор анизотропии, свинецсодержащие и бессвинцовые компоненты.

DOI: 10.21883/JTF.2021.06.50867.319-20

Введение

Пьезоэлектрические материалы представляют академический и практический интерес с точки зрения эффективности преобразования и накопления энергии [1-5]. Развитие энергосберегающих технологий и создание новых устройств, действие которых основано на пьезоэлектрическом эффекте, требуют знания критериев отбора материалов [1,2,5,6], преобразующих механическую энергию в электрическую и наоборот. Элементы, изготовленные из пьезоэлектрических материалов, могут испытывать действия различных механических, тепловых и электрических полей [2,4,6,7]. В связи с этим следует отметить работы [2,3,5-7], где проанализированы параметры приема (ПП), связанные с электромеханическими (т.е. упругими, пьезоэлектрическими и диэлектрическими) свойствами материалов. Наряду с коэффициентами электромеханической связи, используемыми для оценки эффективности преобразования энергии [8], ПП важно учитывать при анализе цикла преобразования энергии для различных мод внешнего воздействия на пьезоэлектрический элемент.

В работе [6] развита концепция модифицированных ПП, применимых в случаях воздействия на пьезоэлектрический элемент механического напряжения $\sigma = \text{const}$ или деформации $\xi = \text{const}$. Авторы [6] проанализировали поведение модифицированных ПП пористых материалов на основе сегнетопьезокерамик (СПК). Однако до настоящего времени не проводился сравнительный анализ модифицированных ПП монолитных пьезоэлектрических материалов, включая композиты, состоящие из монолитных компонентов. В настоящей работе мы рассматриваем пьезоактивные композиты со связностью 1–3, которые являются важными объектами исследований (см., например, работы [3,9,10]). Это обусловлено относительно простой структурой 1–3-композитов [3,11], хорошо апробированными методами получения этих материалов [9–11] и особенностями их эффективных свойств [3,9–13]. Отдельно выделим работы по бессвинцовым 1–3-композитам [9,10,12], их эффективным свойствам и применениям.

На протяжении последних десятилетий сформировались несколько подходов к определению эффективных свойств композитов [14–17]. Основные принципы вычислительной механики композитов и стадии прогнозирования их эффективных свойств изложены в работе [15]. Наряду с асимптотическими методами осреднения свойств [14] находят применение методы вириального разложения, самосогласования (схемы методов эффективной среды и эффективного поля) [16–20], метод функций Грина [21,22], метод асимптотической гомогенизации [23], матричный метод [3,24] и метод конечных элементов [25–27]. Большой практический интерес представляют методы определения эффективных свойств пьезо- и пироактивных композитов [15,16] с различной связностью. Важные результаты по эффективным свойствам пьезоактивных и родственных композитов получены авторами работ [22,28], где рассмотрены стохастические и квазипериодические структуры, примеры многокомпонентных структур и развиты методы прогнозирования свойств для подобных структур. Анализ литературных данных по эффективным свойствам пьезоактивных композитов показывает, что в большинстве работ исследованы материалы типа "СПК-полимер".

Примеры эффективных электромеханических свойств 1-3-композитов на основе кристаллов релаксоровсегнетоэлектриков (1-x)Pb $(Mg_{1/3}Nb_{2/3})O_3-x$ PbTiO₃ (PMN-*x*PT) с высокой пьезоактивностью впервые описаны в работе [29]. Сравнения эффективных свойств, определенных для 1-3-композитов с использованием различных методов, проведены в работах [25] (матричный метод и метод конечных элементов) и [26] (метод эффективного поля и метод конечных элементов).

Цель настоящей работы — анализ концентрационных зависимостей системы модифицированных ПП 1-3-композитов на основе сегнетоэлектрических кристаллов и сравнение значений ПП свинецсодержащих и бессвинцовых композитов.

Модель пьезоактивного 1–3-композита, его эффективные свойства и параметры приема

1.1. Структура и эффективные свойства 1–3-композита "кристалл–полимер"

Исследуемый 1–3-композит представляет собой систему протяженных параллельных кристаллических стержней, окруженных непрерывной полимерной матрицей (рис. 1). На вставке I рис. 1 показаны ориентации векторов спонтанной поляризации $\mathbf{P}_{s,f}$ отдельных типов доменов (f = 1, 2, 3, 4), стрелкой справа показано направление внешнего электрического поля **E**, приводящего к данной ориентации доменов ("domain-engineered

Рис. 1. Схематическое изображение сечения 1-3-композита "сегнетоэлектрический кристалл-полимер"плоскостью (X_2OX_3) . $(X_1X_2X_3)$ —прямоугольная система координат, $\mathbf{P}_s^{(1)}$ — вектор спонтанной поляризации кристаллического стержня, m и 1-m — объемные концентрации кристаллического и полимерного компонента соответственно.

crystal", см. например, работу [30]). Каждый кристаллический стержень характеризуется вектором спонтанной поляризации $\mathbf{P}_{s}^{(1)}$, который сонаправлен с (*OX*₃). Сечения плоскостью (X1OX2)1-3-композитов со стержнями в форме прямоугольного параллелепипеда с квадратным основанием и в форме кругового цилиндра изображены соответственно на вставках 2 и 3 рис. 1. Главные кристаллографические оси каждого стержня X, Y, Z ориентированы вдоль направлений кубической элементарной ячейки следующим образом: ось Х параллельна направлению [100] и оси координат (OX_1) , ось Y параллельна [010] и (OX_2) , ось Z параллельна [001] и (ОХ₃). При этом ось координат (ОХ₃) является осью поляризации композита в целом. Предполагается, что центры оснований всех стержней в плоскости $(X_1 O X_2)$ формируют простую квадратную сетку (см. вставки 2 и 3 на рис. 1).

Эффективные электромеханические свойства 1–3-композита со стержнями в форме прямоугольного параллелепипеда определяются с использованием матричного метода [3,24], а свойства 1–3-композита с цилиндрическими стержнями определяются по методу эффективного поля [3,16,31]. В обоих указанных методах учитывается электромеханическое взаимодействие между пьезоэлектрическими стержнями. При этом в матричном методе мы используем электромеханические константы компонентов из определяющих соотношений электроупругой среды [8,27]

$$\xi_p = s_{pq}^E \sigma_q + d_{fp} E_f; D_k = d_{kl} \sigma_l + \varepsilon_{kr}^\sigma E_r, \qquad (1)$$

в метоле эффективного поля-константы компонентов из определяющих соотношений [8,27] $\sigma_p = c^E_{pq} \xi_q - e_{fp} E_f; \qquad D_k = e_{kl} \xi_l + \varepsilon^{\xi}_{kr} E_r,$ где ξ,, $\sigma_q, \quad E_f, \quad D_k \quad$ соответственно механическая деформация, механическое напряжение, напряженность электрического поля, электрическое смещение. Упругие, пьезоэлектрические и диэлектрические константы (s_{pq}^{E}) d_{fp} и $\varepsilon_{kr}^{\sigma}$ в матричном методе или c_{pq}^{E} , e_{fp} и ε_{kr}^{ξ} в методе эффективного поля) образуют полные наборы электромеханических констант [8], которые представлены в двухиндексной (т.е. матричной) форме. Выбор матричного метода и метода эффективного поля связан с различными формами пьезоэлектрических стержней 1-3-композитов (см. вставки 2 и 3 на рис. 1), а также с важностью сопоставления результатов, получаемых при различных процедурах усреднения с использованием различных полных наборов электромеханических констант компонентов. В обоих методах [3,16,24,31] внешние механические или электрические поля, действующие на композитный образец, считаются слабыми, а возникающие во внешнем поле Е электрострикцонные деформации — пренебрежимо малыми по сравнению с пьезодеформациями (слагаемыми типа $d_{fp}E_f$ в (1)).

Матрица эффективных свойств, определяемых в рамках матричного метода для рассматриваемого

1-3-композита (рис. 1), имеет вид

$$\|\mathbf{C}_{matr}^{*}\| = [\|\mathbf{C}^{(1)}\| \cdot \|\mathbf{M}\|m + \|\mathbf{C}^{(2)}\|(1-m)] \times [\|\mathbf{M}\|m + \|\mathbf{I}\|(1-m)]^{-1},$$
(2)

где $\|\mathbf{C}^{(1)}\|$, $\|\mathbf{C}^{(2)}\|$ матрицы электромеханических свойств кристаллического и полимерного компонентов соответственно, $\|\mathbf{M}\|$ матрица, содержащая компоненты обобщенных "тензоров концентраций" (по терминологии [14]), $\|\mathbf{I}\|$ единичная матрица, m объемная концентрация кристаллического компонента в композите, "-1" в правой части используется для обозначения матрицы, обратной матрице $\|\mathbf{M}\|m + \|\mathbf{I}\|(1-m)$. Матрицы $\|\mathbf{C}^{(1)}\|$ и $\|\mathbf{C}^{(2)}\|$ из (2) представляются в виде блочной матрицы

$$\|\mathbf{C}^{(n)}\| = \begin{pmatrix} \|s^{(n),E}\| & \|d^{(n)}\|^t \\ \|d^{(n)}\| & \|\varepsilon^{(n),\sigma}\| \end{pmatrix},$$
(3)

и матрица $\|\mathbf{C}_{matr}^*\|$ из (2) имеет структуру, аналогичную $\|\mathbf{C}^{(n)}\|\|$ из (3). Размерность всех матриц в формулах (2) и (3) — 9 × 9. В формуле (3) $\|\mathbf{s}^{(n),E}\|$ — матрица упругих податливостей *n*-го компонента при E = const (размерность матрицы 6×6), $\|\mathbf{d}^{(n)}\|\|$ — матрица пьезомодулей *n*-го компонента (размерность матрицы 3×6), $\|\boldsymbol{\varepsilon}^{(n),\sigma}\|\|$ — матрица диэлектрических проницаемостей *n*-го компонента при $\sigma = \text{const}$ (размерность матрицы 3×6), $\|\boldsymbol{\varepsilon}^{(n),\sigma}\|\|$ — матрица диэлектрических проницаемостей *n*-го компонента при $\sigma = \text{const}$ (размерность матрицы 3×3), n = 1 соответствует кристаллу, n = 2 — полимеру, верхний индекс "*t*" обозначает транспонирование матрицы. Элементы матриц в правой части формулы (3) формируют полные наборы электромеханических констант по аналогии с константами из правых частей соотношений (1).

В модели композита (рис. 1) кристаллические стержни считаются бесконечно длинными вдоль оси (OX_3) , а их боковые грани идеально плоскими. Матрица $||\mathbf{M}||$ из (2) формируется [27] с учетом свойств кристалла и полимера и непрерывности:

а) компонент механических напряжений σ_{11} , σ_{12} , σ_{13} , деформаций ξ_{22} , ξ_{23} , ξ_{33} (в одноиндексной форме записи это σ_1 , σ_6 , σ_5 , ξ_2 , ξ_4 , ξ_3), напряженности электрического поля E_2 , E_3 и электрического смещения D_1 на плоских границах раздела "стержень — матрица", перпендикулярных оси (OX_1);

б) компонент механических напряжений σ_{12} , σ_{22} , σ_{23} , деформаций ξ_{11} , ξ_{13} , ξ_{33} (в одноиндексной форме это σ_6 , σ_2 , σ_4 , ξ_1 , ξ_5 , ξ_3), напряженности электрического поля E_1 , E_3 и электрического смещения D_2 на плоских границах раздела "стержень–матрица", перпендикулярных оси (OX_2).

В частности, для боковых граней стержней, перпендикулярных оси (OX_1) , матрица $|||\mathbf{M}||$ в соответствии с представлениями работ [14,27] имеет общий вид

$$\|\mathbf{M}\| = \|\mathbf{p}_1\|^{-1}\|\mathbf{p}_2\|$$
, где

 $\|p_n\| =$

$$= \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ s_{12}^{(n),E} & s_{22}^{(n),E} & s_{23}^{(n),E} & s_{24}^{(n),E} & s_{25}^{(n),E} & s_{26}^{(n),E} & d_{12}^{(n)} & d_{22}^{(n)} & d_{32}^{(n)} \\ s_{13}^{(n),E} & s_{23}^{(n),E} & s_{34}^{(n),E} & s_{35}^{(n),E} & s_{36}^{(n),E} & d_{13}^{(n)} & d_{23}^{(n)} & d_{33}^{(n)} \\ s_{14}^{(n),E} & s_{24}^{(n),E} & s_{34}^{(n),E} & s_{45}^{(n),E} & s_{46}^{(n),E} & d_{14}^{(n)} & d_{24}^{(n)} & d_{34}^{(n)} \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ d_{11}^{(n)} & d_{12}^{(n)} & d_{13}^{(n)} & d_{14}^{(n)} & d_{15}^{(n)} & d_{16}^{(n)} & \varepsilon_{11}^{(n),\sigma} & \varepsilon_{12}^{(n),\sigma} & \varepsilon_{13}^{(n),\sigma} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

— вспомогательная матрица, которая содержит электромеханические константы кристалла (n = 1) или полимера (n = 2). Матрицы $\|\mathbf{p}_1\|$ и $\|\mathbf{p}_2\|$ являются связующими звеньями в условиях непрерывности компонент механических и электрических полей на плоской границе раздела. Эти условия с учетом формул (1) и свойств кристалла и полимера принимают компактную форму

$$\|p_1\| \begin{pmatrix} \|\sigma^{(1)}\| \\ \|\mathbf{E}^{(1)}\| \end{pmatrix} = \|p_2\| \begin{pmatrix} \|\boldsymbol{\sigma}^{(2)}\| \\ \|\mathbf{E}^{(2)}\| \end{pmatrix}$$

где $\|\boldsymbol{\sigma}^{(n)}\|$ — матрица-столбец, содержащая компоненты $\sigma_1, \sigma_2, \ldots, \sigma_6, \|\mathbf{E}^{(n)}\|$ — матрица-столбец, содержащая компоненты $E_1, E_2, E_3; n = 1; 2$. Строки матрицы $\|\mathbf{p}_n\|$ из (4), которые содержат электромеханические константы, имеют тот же вид, что и соответствующие строки $\|\mathbf{C}^{(n)}\|$ из (3).

В матричном методе сделано предположение об однородности механических напряжений σ_i и электрических полей E_k в компонентах1-3-композита, и именно σ_i и E_k присутствуют в правых частях выражений (1). Нами не учитываются переходные области между стержнями и полимерной средой вследствие незначительной диффузии [10–12] между разнородными неорганическими и органическими компонентами композита. Для сравнения укажем, что расчеты полного набора эффективных электромеханических констант полидоменного сегнетоэлектрического кристалла (аналога слоистого композита со связностью 2-2) впервые проведены Туриком [32] в приближении однородных полей σ_i и E_k в соседних 90°-ных доменах и при бесконечно тонких плоских границах между ними. В работе [32] записаны соотношения вида (1) с учетом ориентаций кристаллографических осей каждого типа 90°-ных доменов и с учетом симметрии 4тт отдельного домена. По аналогии с представлениями работ [32,33], мы считаем постоянными свойства стержней и окружающей матрицы вдоль боковых плоских границ раздела (рис. 1), а эти границы считаем достаточно тонкими, слабо влияющими на отношение объемных концентраций компонентов m/(1-m) в композитном образце. На данных границах раздела внутри композита не учитываются "шероховатости", вызванные различными ориентациями не 180°-ных доменов в стержнях (вставка 1 на рис. 1), анизотропными деформациями каждого типа доменов во внешних полях и возможным присутствием межфазных границ в гетерофазных составах [8] вблизи морфотропной фазовой границы. Полный набор электромеханических констант стержня характеризует его как эффективную (гомогенизированную) среду с учетом различных типов доменов, их объемных концентраций, ориентаций и пространственного распределения по кристаллу [30], а также с учетом гетерофазных областей в составах вблизи морфотропной фазовой границы [8]. Эффективные свойства, характеризующиеся матрицей $\|\mathbf{C}_{matr}^*\|$ из (2), удовлетворяют условиям длинноволнового приближения [34], т.е. когда длина волны внешнего поля (электрического или акустического) значительно больше длины отдельного стержня композита. В этом случае, например, пренебрегают различиями между значениями напряженности внешнего периодического поля Е из-за пренебрежимо малой разности фаз в различных точках образца.

Среди преимуществ матричного метода можно отметить компактность основных формул (2) и (3), а также использование в матрицах $\|\mathbf{C}^{(n)}\|$, $\|\mathbf{M}\|$ из (2), (3) и $\|\mathbf{p}_n\|$ из (4) электромеханических констант, кратных 10-1 в единицах СИ. Например, элементы $\|\mathbf{s}^{(n),E}\|$ компонентов задаются в $10^{-12} Pa^{-1}$, а элементы $\|\mathbf{d}^{(n)}\|$ в 10⁻¹² C/N. В матричном методе нет ограничений, налагаемых на симметрию свойств компонентов, а изменение объемной концентрации стержней т вследствие планарной микрогеометрии композита возможно в интервале $0 \le m \le 1$ [24,25,27]. Примеры согласия между концентрационными зависимостями эффективных пьезокоэффициентов, рассчитанных для 1-3-композитов "сегнетоэлектрический кристалл- сегнетоэлектрический полимер" по матричному методу и методу конечных элементов, приведены в работе [25].

До разработки матричного метода определение эффективных свойств и гидростатических параметров 1–3-композита "СПК — пьезопассивный полимер" с системой стержней в форме прямоугольного параллелепипеда проводилось [33] при записи определяющих соотношений (1) и условий непрерывности в переменных σ_i и E_k . Однако в работе [33] не рассмотрен полный набор электромеханических констант 1–3-композита даже для фиксированной объемной концентраци *m*.

Определяемую по методу эффективного поля матрицу эффективных свойств 1–3-композита с цилиндрическими стержнями [3, 25] можно представить как

$$\|\mathbf{C}_{EFM}^*\| = \|\mathbf{K}^{(2)}\| + m(\|\mathbf{K}^{(1)}\| - \|\mathbf{K}^{(2)}\|)[\|\mathbf{I}\| + (1-m)\|\mathbf{S}\| \cdot \|\mathbf{K}^{(2)}\|^{-1}(\|\mathbf{K}^{(1)}\| - \|\mathbf{K}^{(2)}\|)]^{-1}.$$
 (5)

В формуле (5) мы используем "-1" для обозначения матрицы, обратной данной. При этом структура блочной матрицы

$$\|\mathbf{C}_{EFM}^*\| = \begin{pmatrix} \|c^{*E}\| & \|e^*\|^t \\ \|e^*\| & -\|\varepsilon^{*o}\| \end{pmatrix}$$
(6)

отличается от представленной в (3). Матрицы в правой части формулы (6) характеризуют модули упругости при $E = \text{const}(\|\mathbf{c}^{*E}\|, \text{ размерность } 6 \times 6),$ пьезокоэффициенты ($\|\mathbf{e}^*\|$, размерность 3×6) и диэлектрические проницаемости при $\xi = \text{const} (\|\boldsymbol{\varepsilon}^{*\xi}\|, \text{ размерность } 3 \times 3).$ Формула (5) записана с учетом предположения об однородности полей деформаций и напряженностей электрического поля в кристаллическом стержне. В этом случае не учитываются особенности распределения деформаций и электрических полей внутри стержня при переходе от одного домена к другому (вставка 1 на рис. 1), и переходный слой между стержнем и матрицей предполагается бесконечно тонким. В формуле (5) матрицы $\|\mathbf{K}^{(1)}\|$ и $\|\mathbf{K}^{(2)}\|$ характеризуют свойства кристалла и полимера соответственно, а структура матриц $\|\mathbf{K}^{(n)}\|$ аналогична структуре $\|\mathbf{C}_{EFM}^*\|$ из (6). Матрица $\|\mathbf{S}\|$ из (6) содержит компоненты тензора Эшелби [3,35], зависящего от свойств полимерной матрицы и от формы границы раздела компонентов (т.е. от боковой поверхности цилиндра в рассматриваемом случае). Добавим, что в методе эффективного поля [3,31] среда, окружающая стержни, может быть либо изотропной, либо трансверсально изотропной. При заполнении композита протяженными цилиндрическими стержнями с регулярным расположением (вставка 3 на рис. 1) объемная концентрация стержней ограничена сверху значением $m_{up} = \pi/4$. Сравнение эффективных свойств 1-3-композитов "СПК — пьезопассивный полимер" которые определены по методам эффективного поля и конечных элементов в работе [26], указывает на хорошее согласие между расчетными результатами.

1.2. Модифицированные параметры приема композита

При исследовании пьезоактивных 1–3-композитов вызывает интерес немонотонное концентрационное поведение квадратов ПП [3,27,36,37]

$$(Q_{3j}^*)^2 = d_{3j}^* g_{3j}^* \ \mathbf{u} \ (Q_h^*)^2 = d_h^* g_h^*, \tag{7}$$

которые используются для оценки отношения "сигнал-шум". В формулах (7) g_{3j}^* — пьезокоэффициенты, d_h^* и g_h^* — гидростатические пьезокоэффициенты, индекс j = 1 или 2 соответствует поперечному пьезоэффекту, а j = 3 — продольному пьезоэффекту. Следуя концепции [5–7,38], мы рассматриваем четыре вида модифицированных ПП, связанных с продольным и поперечным пьезооткликами композита ¹):

¹ Учитывая слабый сдвиговый пьезоэффект по сравнению с продольным или поперечным пьезоэффектом в различных 1—3-композитах на основе СПК или сегнетоэлектрических кристаллов [27], мы не рассматриваем ПП $\lambda_{15,m}^*$, L_{15}^* и т. п.

Компоненты	s_{11}^{E} , 10^{-12} Pa^{-1}	s_{12}^{E} , 10^{-12} Pa^{-1}	s_{13}^{E} , 10^{-12} Pa^{-1}	s_{33}^{E} , 10 ⁻¹² Pa ⁻¹	s_{44}^{E} , 10 ⁻¹² Pa ⁻¹	s_{66}^{E} , 10^{-12} Pa^{-1}	<i>d</i> ₃₁ , pC/N	<i>d</i> ₃₃ , pC/N	<i>d</i> ₁₅ , pC/N	$arepsilon_{11}^\sigma/arepsilon_0$	$arepsilon_{33}^{\sigma}/arepsilon_0$
PMN-0.33PT [30]	69.0	-11.1	-55.7	119.6	14.5	15.2	-1330	2820	146	1600	8200
PMN-0.30PT [39]	52.0	-18.9	-31.1	67.7	14.0	15.2	-921	1981	190	3600	7800
PMN-0.29PT [40]	52.1	-24.6	-26.4	59.9	16.0	28.3	-699	1540	164	1560	5400
PMN-0.28PT [41]	44.57	-28.91	-13.91	34.38	15.22	16.34	-569	1182	122	1672	5479
KNNTL-Mn [42]	33.4	-7.36	-25.8	57.7	12.8	13.5	-260	545	66	400	650
Полиуретан [43]	405	-151	-151	405	1110	1110	0	0	0	3.5	3.5

Таблица 1. Упругие податливости s_{ab}^{E} , пьезомодули d_{ij} и диэлектрические проницаемости $\varepsilon_{pp}^{\sigma}$ компонентов исследуемых композитов

1. Максимальный коэффициент передачи, т. е. наибольшее отношение выходной электрической энергии образца ко входной механической энергии, или наибольшее отношение выходной механической энергии образца ко входной электрической энергии

$$\lambda_{3j,m}^* = \left[(k_{3j}^*)^{-1} - \left((k_{3j}^*)^{-2} - 1 \right)^{1/2} \right]^2.$$
(8)

 Отношение максимальной выходной электрической энергии образца к максимальной электрической энергии, накопленной в нем, равно

$$L_{3i}^* = \lambda_{3i,m}^* / (k_{3i}^*)^2.$$
⁽⁹⁾

3. ПП, связанный с воздействием на образец однородного механического напряжения, —

$$F_{3j}^{*\sigma} = L_{3j}^* (Q_{3j}^*)^2.$$
⁽¹⁰⁾

4. ПП, связанный с воздействием на образец однородной механической деформации, —

$$F_{3j}^{*\xi} = F_{3j}^{*\sigma} / \left(s_{jj}^{*E} s_{jj}^{*D} \right). \tag{11}$$

В формуле (8) k_{3j}^* — коэффициент электромеханической связи композита, причем k_{31}^* или k_{32}^* берется по модулю. В формуле (11) s_{jj}^{*D} — упругая податливость при D = const.

1.3. Компоненты композитов

Для анализа концентрационных зависимостей модифицированных ПП из (8)–(11) нами использованы измеренные при комнатной температуре [30,39-43] константы компонентов (табл. 1). Пьезоэлектрическими компонентами композитов являются поляризованные вдоль направления [001] кристаллы PMN-xPT при x == 0.28...0.33 и $[Li_v(K_{1-v}Na_v)_{1-v}](Nb_{1-z}Ta_z)O_3: Mn$ (KNNTL-Mn) при v = 0.06, y = 0.1 - 0.3, z = 0.07 - 0.17. Данные кристаллы со структурой типа перовскита и с доменной структурой, показанной схематически на вставке 1 рис. 1, характеризуются макроскопической симметрией 4mm [30,39-42]. Химический состав кристалла РМN-0.33РТ, обладающего

наибольшей пьезоактивностью среди перечисленных в табл. 1 соединений, соответствует морфотропной фазовой границе [44]. Бессвинцовый кристалл KNNTL-Mn обладает пьезомодулями d_{3j} , превышающими аналогичные значения многих перовскитовых свинецсодержащих СПК [8,27]. Вторым компонентом исследуемых композитов является полиуретан [3,43].

В табл. 1 представлены электромеханические константы, используемые для формирования $\|\mathbf{C}^{(n)}\|$ в матричном методе (формулы (1)–(3)). Для расчетов по методу эффективного поля используются константы из матриц $\|\mathbf{c}^{(n),E}\|$, $\|\mathbf{e}^{(n)}\|$ и $\|\boldsymbol{\varepsilon}^{(n),\xi}\|$. Связи между различными полными наборами электромеханических констант пьезоэлектрической среды описываются с помощью формул [8,27].

Концентрационные зависимости эффективных пьезоэлектрических свойств и модифицированных параметров приема 1–3-композитов

Примеры концентрационных зависимостей эффективных пьезомодулей $d_{3j}^*(m)$ композитов и их модифицированных ПП из формул (8)–(11) графически представлены на рис. 2. Данные зависимости рассчитаны в рамках матричного метода. Рассчитанные по методу эффективного поля концентрационные зависимости аналогичных параметров используются нами для сравнения, см. разд. 3.

Конфигурация кривых пьезомодулей $d_{3j}^*(m)$ (рис. 2, *a*) обусловлена не только микрогеометрией 1–3-композита (рис. 1), но и модулем разности $\left|s_{ab}^{(1),E} - s_{ab}^{(2),E}\right|$, связанным с различием упругих свойств кристалла и полимера. Благодаря бо́льшей разности $\left|s_{ab}^{(1),E} - s_{ab}^{(2),E}\right|$ пьезомодули $d_{3j}^*(m)$ достигают насыщения при меньшей объемной концентрации *m* (кривые 3, 4 на рис. 2, *a*). Анализ зависимостей $d_{33}^*(m)$ композитов на основе PMN–*x*PT показывает, что при *m* = const наибольшее значение d_{33}^* соответствует композиту с *x* = 0.33, далее следуют d_{33}^* композитов с *x* = 0.30, 0.29, 0.28 и d_{33}^* композита на ос-

Рис. 2. Концентрационные зависимости эффективных пьезомодулей $d_{3j}^*(a - \mathbf{B} \, \mathbf{pC/N})$ и модифицированных ПП $\lambda_{33,m}^*(b), \lambda_{31,m}^*(c), L_{33}^*(d), L_{31}^*(e), F_{33}^{*\sigma}(f - \mathbf{B} \, 10^{-12} \mathrm{Pa}^{-1}), F_{31}^{*\sigma}(g - \mathbf{B} \, 10^{-12} \mathrm{Pa}^{-1}), F_{33}^{*\xi}(h - \mathbf{B} \, 10^{10} \mathrm{Pa}), F_{31}^{*\xi}(i - \mathbf{B} \, 10^{10} \mathrm{Pa})$ 1–3-композитов с кристаллическими стержнями в форме прямоугольного параллелепипеда.

нове KNNTL-Mn. Данная последовательность согласуется с последовательностью значений пьезомодулей d_{33} кристаллов (табл. 1).

Несмотря на значительные различия между пьезомодулями d_{3j}^* композитов на основе PMN–0.33PT и KNNTL–Mn (рис. 2, *a*), значения ПП $\lambda_{3j,m}^*$ композита на основе KNNTL–Mn мало отличаются от $\lambda_{3j,m}^*$ композита на основе РМN–0.33РТ (кривые 2 и 3 на рис. 2, b, c). Малые различия наблюдаются также при сравнении ПП L_{3j}^* двух данных композитов (рис. 2, d, e). Не показанные на рис. 2, b–e кривые $\lambda_{3j,m}^*(m)$ и $L_{3j}^*(m)$, относящиеся к композитам на основе РМN–*x*РТ с x = 0.30, 0.29, могут быть построены в узкой области между кривыми 1 и 2. Отметим большую анизотропию $\lambda_{33,m}^*/\lambda_{31,m}^*$ в ши-

роком интервале *m* (рис. 2, *b*, *c*) независимо от состава кристалла композита. Этот эффект связан с микрогеометрией 1–3-композита (рис. 1) и анизотропией его упругих и пьезоэлектрических свойств.

Достаточно большие значения $\lambda_{33,m}^*$ и L_{33}^* композита на основе KNNTL-Mn (кривые *3* на рис. 2, *b*, *d*) связаны с большим коэффициентом электромеханической связи кристалла $k_{33}^{(1)}$. Примечательно, что кристалл KNNTL-Mn характеризуется значением $k_{33}^{(1)} = 0.95$ [42], практически равным $k_{33}^{(1)}$ кристалла PMN-0.33PT [30]. У исследованных композитов $k_{33}^*(m)$ является монотонной зависимостью независимо от кристаллического компонента, что согласуется с результатами [27] по различным пьезоактивным 1–3-композитам.

Зависимости $F_{33}^{*\sigma}(m)$ (рис. 2, f) показывают, что композит на основе KNNTL-Mn имеет преимущества по сравнению с композитами на основе PMN-*x*PT с $x \leq 0.30$. Отметим, что тах $F_{33}^{*\sigma}$ композита на основе KNNTL-Mn достигается при объемной концентрации m = 0.125 (кривая 5 на рис. 2, f), что облегчает получение 1–3-композитов [11]. Учитывая формулы (7), (10) и пропорциональность $F_{33}^{*\sigma} \sim L_{33}^{*s}; F_{33}^{*\sigma} \sim (Q_{33}^*)^2 \sim (g_{33}^*)^2$, можно утверждать следующее. Большие значения $F_{33}^{*\sigma}$ композита на основе KNNTL-Mn связаны не только

с большим $k_{33}^{(1)}$, но и с большим пьезокоэффициентом $g_{33}^{(1)} = 94.7 \text{ mV} \cdot \text{m/N}$ [42], что обусловлено низкой диэлектрической проницаемостью $\varepsilon_{33}^{(1),\sigma}$ KNNTL-Mn по сравнению с $\varepsilon_{33}^{(1),\sigma}$ PMN-0.33PT (табл. 1 и работы [30,42]).

Фактор анизотропии ПП $F_{33}^{*\sigma}/F_{31}^{*\sigma}$ (ср. рис. 2, f и g) при m = const выше, чем $\lambda_{33,m}^*/\lambda_{31,m}^*$ (ср. рис. 2, b и c). Это обусловлено влиянием на $F_{33}^{*\sigma}/F_{31}^{*\sigma}$ анизотропии пьезомодулей d_{33}^*/d_{31}^* . На рис. 2, g мы не показываем кривые ПП для композитов на основе РМN-xРТ с $x \leq 0.30$ вследствие малой разности между значениями $F_{31}^{*\sigma}(m)$ этих композитов и $F_{31}^{*\sigma}(m)$ на кривых 1, 2 рис. 2, g.

Из сравнения кривых на рис. 2, *h*, *i* можно установить существование интервалов объемных концентраций *m*, соответствующих большой анизотропии ПП $F_{33}^{*\xi} \gg F_{31}^{*\xi}$. Монотонное изменение упругих податливостей $s_{jj}^{*E}(m)$ и $s_{jj}^{*D}(m)$ влияет на ход кривых $F_{3j}^{*\xi}(m)$ (j = 1, 3). Вследствие уменьшения $s_{jj}^{(1),E}$ KNNTL-Mn по сравнению с $s_{jj}^{(1),E}$ PMN-0.33PT практически в два раза и благодаря уменьшению $\varepsilon_{33}^{(1),\sigma}$ KNNTL-Mn по сравнению с $\varepsilon_{33}^{(1),\sigma}$ PMN-0.33PT в 12.6 раз (табл. 1) композит на основе KNNTL-Mn обладает большим ПП $F_{33}^{*\xi}$ (кривая 5 на рис. 2, *h*).

т	$(Q_{33}^*)^2$, 10 ⁻¹² Pa ⁻¹	$(Q_{31}^*)^2,$ 10 ⁻¹² Pa ⁻¹	$F_{33}^{*\sigma},$ 10 ⁻¹² Pa ⁻¹	$F_{31}^{*\sigma},$ 10 ⁻¹² Pa ⁻¹	$(Q_{33}^*)^2$, 10 ⁻¹² Pa ⁻¹	$(Q_{31}^*)^2,$ 10^{-12} Pa^{-1}	$F_{33}^{*\sigma},$ 10 ⁻¹² Pa ⁻¹	$F_{31}^{*\sigma},$ 10 ⁻¹² Pa ⁻¹	$(Q_{33}^*)^2,$ 10 ⁻¹² Pa ⁻¹	$(Q_{31}^*)^2,$ 10 ⁻¹² Pa ⁻¹	$F_{33}^{*\sigma},$ 10^{-12} Pa^{-1}	$F_{31}^{*\sigma},$ 10 ⁻¹² Pa ⁻¹
	Композит "кристалл РМN-0.33РТ- полиуретан"				Композит "кристалл РМN–0.28РТ– полиуретан"				Композит "кристалл KNNTL-Mn- полиуретан"			
0.05	217	29.9	81.6	7.80	92.8	9.65	33.0	2.47	167	22.4	59.3	5.78
0.10	242	34.1	106	8.99	94.9	10.5	38.4	2.70	182	25.1	77.5	6.56
0.15	238	34.5	113	9.15	87.5	10.2	37.7	2.64	167	24.0	77.9	6.28
0.20	227	34.0	114	9.07	79.4	9.85	35.6	2/54	150	22.4	73.8	5.88
0.30	204	38.5	109	8.73	65.9	9.12	30.9	2.36	123	19.7	63.9	5.18
0.50	165	29.6	93.7	8.12	48.4	8.11	23.7	2.11	88.5	16.1	48.4	4.31
0.70	137	27.2	80.5	7.01	38.1	7.44	19.1	1.96	68.9	13.9	38.6	3.82

Таблица 2. Аналогия между концентрационными зависимостями квадратов ПП $(Q_{3j}^*)^2$ и модифицированных ПП $F_{3j}^{*\sigma}$ 1–3-композитов с кристаллическими стержнями в форме прямоугольного параллелепипеда

Таблица 3. Сравнение эффективных параметров родственных 1–3-композитов с кристаллическими стержнями в форме прямоугольного параллелепипеда или в форме кругового цилиндра

т	<i>d</i> [*] ₃₃ , pC/N	<i>d</i> [*] ₃₁ , pC/N	λ_{33}, m^*	L_{33}^{*}	$10^{-2}\lambda_{31,m}^*$	L_{31}^{*}	$F_{33}^{*\sigma}$, 10 ⁻¹² Pa ⁻¹	$F_{31}^{*\sigma}$, 10 ⁻¹² Pa ⁻¹	$F_{33}^{*\xi}$, 10 ¹⁰ Pa	$F_{31}^{*\xi}$, 10 ⁸ Pa		
Композит "кристалл PN-0.33PT-полиуретан"												
0.05	426 (423)	$-158 \\ (-160)$	0.226 (0.225)	0.376 (0.375)	2.14 (2.14)	0.261 (0.261)	81.6 (80.6)	7.81 (7.96)	0.157 (0.156)	0.639 (0.629)		
0.15	1050 (1050)	$-401 \\ (-403)$	$\begin{array}{c} 0.381 \\ (0.380) \end{array}$	$0.477 \\ (0.476)$	3.00 (2.90)	0.264 (0.264)	113 (112)	9.15 (9.30)	0.635 (0.635)	1.11 (1.01)		
0.184	1220 (1213)	$-469 \\ (-474)$	0.407 (0.406)	0.495 (0.494)	3.17 (3.02)	0.266 (0.265)	114 (114)	9.11 (9.27)	$\begin{array}{c} 0.814 \\ (0.813) \end{array}$	1.25 (1.08)		
0.30	1670 (1660)	-666 (-672)	$0.462 \\ (0.462)$	0.534 (0.534)	3.70 (3.53)	0.269 (0.267)	109 (108)	8.74 (8.98)	1.45 (1.45)	1.81 (1.62)		
0.50	2170 (2170)	-921 (-928)	0.508 (0.508)	0.569 (0.568)	4.79 (4.62)	0.275 (0.271)	93.7 (93.5)	8.12 (8.14)	2.59 (2.59)	3.43 (3.29)		
Композит "кристалл KNNTL-Mn-полиуретан"												
0.05	147 (146)	-53.7 (-55.7)	0.191 (0.190)	0.354 (0.354)	1.67 (1.61)	0.258 (0.259)	59.3 (58.6)	5.78 (5.92)	0.132 (0.132)	0.514 (0.505)		
0.125	273 (271)	$-102 \\ (-106)$	0.341 (0.340)	0.449 (0.449)	2.23 (2.16)	0.261 (0.261)	78.7 (78.1)	6.46 (6.61)	0.610 (0.609)	0.840 (0.830)		
0.20	347 (346)	$-134 \\ (-138)$	0.402 (0.401)	0.492 (0.491)	2.39 (2.19)	0.262 (0.261)	73.8 (73.5)	5.89 (6.04)	1.20 (1.20)	1.07 (0.962)		
0.30	409 (408)	$-164 \\ (-168)$	0.443 (0.442)	0.520 (0.520)	2.60 (2.42)	0.263 (0.261)	63.9 (63.7)	5.18 (5.33)	2.06 (2.06)	1.45 (1.34)		
0.50	477 (476)	-204 (-206)	0.480 (0.479)	0.547 (0.547)	3.31 (3.14)	0.267 (0.263)	48.4 (48.3)	4.31 (4.34)	3.84 (3.84)	2.90 (2.77)		

Примечание. Эффективные параметры композитов с кристаллическими стержнями в форме кругового цилиндра приведены в скобках. $\max F_{33}^{*\sigma}(m)$ достигается при m = 0.184 и 0.125 в композите на основе PMN–0.33PT и KNNTL–Mn соответственно независимо от формы основания стержней.

Табл. 2 иллюстрирует аналогичный характер концентрационных зависимостей $[Q_{3j}^*(m)]^2$ и $F_{3j}^{*\sigma}(m)$ компози-

тов. По значениям $[Q_{33}^*(m)]^2$ и $F_{33}^{*\sigma}(m)$ композит на основе KNNTL-Мп занимает промежуточное положение,

как показано в табл. 2. Значения $\max[Q_{33}^{*}(m)]^2$ различных композитов соответствуют меньшим объемным концентрациям *m* по сравнению с $\max F_{33}^{*\sigma}(m)$, что связано с активным влиянием пьезокоэффициента $g_{33}^{*}(m)$ на зависимость $[Q_{33}^{*}(m)]^2$, особенно при $m \ll 1$. В качестве примера укажем, что согласно результатам, полученным в рамках матричного метода для композита на основе KNNTL-Mn, $\max[Q_{33}^{*}(m)]^2$ и $\max F_{33}^{*\sigma}(m)$ достигаются при m = 0.084 и 0.125 соответственно.

3. Сравнение результатов

Данные табл. 3 показывают, что хорошее согласие между эффективными параметрами, рассчитанными с использованием двух методов (см. разд. 1.1), наблюдается в широком интервале *m*. Различия между численными значениями (табл. 3) обусловлены различными формами кристаллических стержней (вставки 2, 3 на рис. 1) и спецификой процедур усреднения свойств (формулы (2), (5)). При этом изменение формы и электромеханических свойств стержней не приводит к заметному изменению факторов анизотропии композита

$$\lambda_{33,m}^*/\lambda_{31,m}^* \gg 1; \ F_{33}^{*\sigma}/F_{31}^{*\sigma} \gg 1; \ F_{33}^{*\xi}/F_{31}^{*\xi} \gg 1,$$
(12)

(табл. 3). ПП $\lambda_{33,m}^*$ и L_{33}^* 1–3-композитов (рис. 2, b, d и табл. 3) превышают аналогичные ПП пористых материалов на основе СПК типа РZТ [6], что связано с более высокими значениями d_{33}^*, g_{33}^* и k_{33}^* исследованных нами композитов. Для 1-3-композита "СПК РZТ-7А-аральдит" [45] при объемной концентрации СПК $m_{cer} = 0.2$ мы получаем расчетные значения ПП $\lambda_{33,m}^* \approx 0.072$, $L_{33}^* \approx 0.29$, $(Q_{33}^*)^2 \approx 16 \cdot 10^{-12} \,\mathrm{Pa}^{-1}$ и $F_{33}^{*\sigma} \approx 4.6 \cdot 10^{-12} \,\mathrm{Pa}^{-1}$. При этом мы исходим из экспериментальных значений [45] $d_{33}^* \approx 120 \, {\rm pC/N},$ $\varepsilon_{33}^{*\sigma}/\varepsilon_0 \approx 100, \ k_t^* \approx 0.50$ и справедливости соотношения $k_{33}^* \approx k_t^*$ для 1–3-композитов в широком интервале *m* [27, 45], где k_t^* —коэффициент электромеханической связи толщиной моды. Приведенные выше значения $\lambda_{33,m}^*$, L_{33}^* , $(Q_{33}^*)^2$ и $F_{33}^{*\sigma}$ 1–3-композита на основе РZТ-7А меньше соответствующих ПП, определенных в широком интервале т для ряда композитов (рис. 2, b, d, f и табл. 2, 3). С учетом параметров 1-3-композита "кристалл PMN-0.30PT-эпоксидная смола" [11] $d^*_{33} \approx 1200 \,\mathrm{pC/N}, \ \varepsilon^{*\sigma}_{33}/\varepsilon_0 \approx 1600, \ k^*_t \approx 0.80$ при m = 0.56 мы получаем $\lambda_{33,m}^* \approx 0.25$, $L_{33}^* \approx 0.39$, $(Q_{33}^*)^2 \approx 100 \cdot 10^{-12} \,\mathrm{Pa}^{-1}$ и $F_{33}^{*\sigma} \approx 39 \cdot 10^{-12} \,\mathrm{Pa}^{-1}$. При-мечательно, что $(Q_{33}^*)^2$ находится в интервале значений, определенных для двух композитов на основе РМN-*x*РТ (табл. 2 для x = 0.33, 0.28), а значение $F_{33}^{*\sigma}$ приближенно равно $F_{33}^{*\sigma}$ композита "кристалл PMN– 0.30РТ-полиуретан" (кривая 2 на рис. 2, f).

Заключение

В работе проведено исследование системы модифицированных ПП из (8)–(11) пьезоактивных

1-3-композитов на основе поляризованных вдоль [001] кристаллов РМN-хРТ и KNNTL-Мп. На поведение ПП $\lambda_{3i,m}^{*}(m)$ и $L_{3i}^{*}(m)$ в широком интервале объемных концентраций т влияют коэффициенты электромеханической связи $k_{3i}^*(m)$, причем монотонное поведение последних обусловливает в большинстве случаев монотонные зависимости $\lambda^*_{3i,m}(m)$ (рис. 2, *b*, *c*) и $L_{3i}^{*}(m)$ (рис. 2, d, e). Немонотонные зависимости ПП $F_{3i}^{*\sigma}(m)$ (рис. 2, f, g) объясняются важной ролью ПП $(Q_{3i}^*)^2$ (формула (10) и табл. 2), а следовательно, пьезокоэффициентов g_{3i}^* согласно формулам (7). На практике легче получить композит [11] с объемной концентрацией *m* > 0.1 (т.е. в области *m*, где наблюдается max $F_{3i}^{*\sigma}(m)$), чем аналогичный композит с m < 0.1 (т.е. при концентрациях вблизи $\max[Q_{3i}^*(m)]^2$; см. пример в конце разд. 2). Это обстоятельство выгодно отличает модифицированный ПП $F_{3i}^{*\sigma}$ от традиционного $\Pi\Pi (Q_{3i}^*)^2.$

В отличие от ПП $F_{3j}^{*\sigma}$, связанных с воздействием на образец поля механических напряжений $\sigma = \text{const}$, ПП $F_{3j}^{*\xi}$ для случая поля деформаций $\xi = \text{const}$ не имеют экстремумов во всем интервале *m* (рис. 2, *h*, *i*). Монотонное возрастание $F_{3j}^{*\xi}(m)$ связано с активным влиянием, согласно (11), упругих податливостей s_{jj}^{*E} и s_{jj}^{*D} , убывающих монотонно с увеличением *m*. Исследованным 1–3-композитам присуща большая анизотропия трех видов ПП (формулы (12)) независимо от состава кристаллического компонента из табл. 1. Такие анизотропные характеристики в значительной мере обусловлены микрогеометрией композитов (рис. 1) и анизотропией свойств их кристаллических компонентов.

Сравнение эффективных параметров, рассчитанных для 1-3-композитов с помощью двух различных методов (табл. 3), позволяет сделать вывод о хорошем согласии между результатами, относящимися к четырем видам модифицированных ПП из (8)-(11). Особый интерес представляет бессвинцовый композит на основе KNNTL-Mn, способный благодаря большим значениям ряда ПП (рис. 2, b, d, f, g, h, i) конкурировать с композитами на основе кристаллов PMN-*x* PT или СПК типа РZТ. Исследованные 1-3-композиты целесообразно применять как пьезоэлектрические преобразователи, сенсоры и элементы энергосберегающих устройств, работающих при $\sigma = \text{const}$ или $\xi = \text{const.}$ Такие устройства рассмотрены, например, в работе [38] (накопление и преобразование энергии при воздействии внешней силы) и патенте [46] (пьезоэлектрический элемент, на который действует пружина при условии $\xi = \text{const}$).

Благодарности

Авторы выражают благодарность РФФИ за эту поддержку. Авторы благодарны проф. А.Е. Паничу (ЮФУ) и проф. С.R. Bowen (University of Bath, Соединенное Королевство) за постоянный интерес к тематике исследований и полезные дискуссии по вопросам эффективности современных пьезоэлектрических материалов. Авторы выражают особую благодарность д.т.н. И.А. Паринову (ЮФУ) и рецензенту за внимательное изучение рукописи статьи и полезные замечания.

Финансирование работы

Исследование выполнено при финансовой поддержке РФФИ в рамках научного проекта № 20-38-90163.

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- S. Priya. IEEE Trans. Ultrason., Ferroelec., a. Freq. Contr., 57 (12), 2010 (2010). DOI: 10.1109/TUFFC.2010.1734
- [2] G.M. Sessler, J. Hillenbrand. Appl. Phys. Lett., 103 (12), 122904 (2013). http://dx.doi.org/10.1063/1.4821647
- [3] C.R. Bowen, V.Yu. Topolov, H.A. Kim. *Modern Piezoelectric* Energy Harvesting (Springer International Publishing Switzerland, Cham, 2016)
- [4] J.I. Roscow, R.W.C. Lewis, J. Taylor, C.R. Bowen. Acta Mater., 128, 207 (2017). DOI: 10.1016/j.actamat.2017.02.029
- [5] K. Uchino. Energy Technol., 6 (5), 829 (2018).
 DOI: 10.1002/ente.201700785
- [6] J.I. Roscow, H. Pearce, H. Khanbareh, S. Kar-Narayan, C.R. Bowen. Eur. Phys. J. Special Topics, 228 (7), 1537 (2019). https://doi.org/10.1140/epjst/e2019-800143-7
- [7] T. Rödig, A. Schönecker, G. Gerlach. J. Am. Ceram. Soc., 93 (4), 901 (2010). https://doi.org/10.1111/j.1551-2916.2010.03702.x
- [8] Пьезоэлектрическое приборостроение, под ред. А.В. Гориша. Т. 1. Физика сегнетоэлектрической керамики (Радиотехника, М., 1999)
- [9] L. Jiang, R. Chen, J. Xing, G. Lu, R. Li, Y. Jiang, K. Shung, J. Zhu, Q. Zhou. J. Appl. Phys., **125** (21), 214501 (2019). https://doi.org/10.1063/1.5088171
- [10] Q. Ke, W.H. Liew, H. Tao, J. Wu, K. Yao. IEEE Trans. Ultrason., Ferroelec., a. Freq. Contr., 66 (8), 1395 (2019). DOI: 10.1109/TUFFC.2019.2914464
- [11] F. Wang, C. He, Y. Tang, X. Zhao, H. Luo. Mater. Chem. Phys., **105** (2–3), 273 (2007).
 DOI: 10.1016/j.matchemphys.2007.04.060
- [12] D. Zhou, K.H. Lam, Y. Chen, Q. Zhang, Y.C. Chiu, H. Luo, J. Dai, H.L.W. Chan. Sens. Actuators A-Phys., 182 (1), 95 (2012).
- Z. Yang, D. Zeng, H. Wang, C. Zhao, J. Tan. Smart Mater. Struct., 24 (7), 075029 (2015).
 DOI: 10.1088/0964-1726/24/7/075029
- [14] Б.Е. Победря. *Механика композиционных материалов* (Изд-во Моск. ун-та, М., 1984)
- [15] Б.Е. Победря. Механика композитных материалов, 32 (6), 729 (1996). [В.Е. Pobedrya. Mech. Compos. Mater., 32 (6), 504 (1996). DOI: 10.1007/BF02280632]
- [16] M.L. Dunn. J. Appl. Phys., 73 (10), 5131 (1993).
 DOI: 10.1063/1.353787

- [17] V.M. Levin, M.I. Rakovskaja, W.S. Kreher. Internat. J. Solids Struct., 36 (18), 2683 (1999).
- DOI: 10.1016/S0020-7683(98)00131-0
 [18] N. Fakri, L. Azrar, L. El Bakkali. Internat. J. Solids Struct., 40 (2), 361 (2003). DOI: 10.1016/S0020-7683(02)00524-3
- [19] С.К. Канаун, В.М. Левин. Метод эффективного поля в механике композитных материалов (Изд-во Петрозав. ун-та, Петрозавод., 1993)
- [20] S. Kanaun, V. Levin. In: Effective Properties of Heterogeneous Materials, ed. by M. Kachanov, I. Sevostianov (Springer, Dordrecht, 2013), p. 199.
- [21] Л.П. Хорошун, Б.П. Маслов, П.В. Лещенко. Прогнозирование эффективных свойств пьезоактивных композитных материалов (Наук. думка, Киев, 1989)
- [22] А.А. Паньков. Статистическая механика пьезокомпозитов (Изд-во Перм. гос. техн. ун-та, Пермь, 2009)
- [23] A.L. Kalamkarov, K.S. Challagulla. In: *Effective Properties of Heterogeneous Materials*, ed. by M. Kachanov, I. Sevostianov (Springer, Dordrecht, 2013), p. 283.
- [24] F. Levassort, M. Lethiecq, C. Millar, L. Pourcelot. IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 45 (5), 1497 (1998). DOI: 10.1109/58.738289
- [25] V.Yu. Topolov, A.V. Krivoruchko, P. Bisegna, C.R. Bowen. Ferroelectrics, 376, 140 (2008).
 DOI: 10.1080/00150190802440997
- [26] V.Yu. Topolov, P. Bisegna, A.V. Krivoruchko. J. Phys. D: Appl. Phys., 41 (3), 035406 (2008).
 DOI: 10.1088/0022-3727/41/3/035406
- [27] V.Yu. Topolov, C.R. Bowen, P. Bisegna. *Piezo-Active Composites. Microgeometry –Sensitivity Relations* (Springer International Publishing Switzerland, Cham, 2018)
- [28] Ю.В. Соколкин, А.А. Паньков. Электроупругость пьезокомпозитов с нерегулярными структурами (Физматлит, М., 2003)
- [29] S.V. Bezus, V.Yu. Topolov, C.R. Bowen, J. Phys. D: Appl. Phys., **39** (9), 1919 (2006). DOI: 10.1088/0022-3727/39/9/029
- [30] R. Zhang, B. Jiang, W. Cao. J. Appl. Phys., 90 (7), 3471 (2001). https://doi.org/10.1063/1.1390494
- [31] M.L. Dunn, M. Taya. Internat. J. Solids Struct., 30 (2), 161 (1993). https://doi.org/10.1016/0020-7683(93)90058-F
- [32] А.В. Турик. ФТТ, **12** (3), 892 (1970). [A.V. Turik. Soviet Phys.–Solid State, **12** (3), 688 (1970).]
- [33] W.A. Smith. IEEE Trans. Ultrason., Ferroelec., Freq. Contr., 40 (1), 41 (1993). DOI: 10.1109/58.184997
- [34] O. Sigmund, S. Torquato, I.A. Aksay, J. Mater. Res., 13 (4), 1038 (1998). DOI: 10.1557/JMR.1998.0145
- [35] J.H. Huang, S. Yu. Compos. Engin., 4 (11), 1169 (1994). https://doi.org/10.1016/0961-9526(95)91290-W
- [36] L. Li, N.R. Sottos. J. Appl. Phys., 77 (9), 4595 (1995). https://doi.org/10.1063/1.359424
- [37] J. Bennett, G. Hayward. IEEE Trans. Ultrason., Ferroelec., a. Freq. Contr., 44 (3), 565 (1997). DOI: 10.1109/58.658308
- [38] D.B. Deutz, J.-A. Pascoe, B. Schelen, S. van der Zwaag, D.M. de Leeuw, P. Groen. Mater. Horiz., 5 (3), 444 (2018). https://doi.org/10.1039/C8MH00097B
- [39] R. Zhang, W. Jiang, B. Jiang, W. Cao. Fundamental Physics of Ferroelectrics, ed. by R.E. Cohen (American Institute of Physics, Melville, 2002), p. 188.
- [40] S. Zhang, J. Luo, W. Hackenberger, T.R. Shrout. J. Appl. Phys., 104 (6), 064106 (2008). DOI: 10.1063/1.2978333
- [41] G. Liu, W. Jiang, J. Zhu, W. Cao. Appl. Phys. Lett., 99 (16), 162901. https://doi.org/10.1063/1.3652703

- [42] X. Huo, R. Zhang, L. Zheng, S. Zhang, R. Wang, J. Wang, S. Sang, B. Yang, W. Cao. J. Am. Ceram. Soc., 98 (6), 1829 (2015). DOI: 10.1111/jace.13540
- [43] L.V. Gibiansky, S. Torquato. J. Mech. Phys. Sol., 45 (5), 689 (1997). DOI: 10.1016/S0022-5096(96)00106-8
- [44] B. Noheda. Curr. Opin. Solid State Mater. Sci., 6 (1), 27 (2002). https://doi.org/10.1016/S1359-0286(02)00015-3
- [45] H.L.W. Chan, J. Unsworth. IEEE Trans. Ultrason., Ferroelec.,
 a. Freq. Contr., 36 (4), 434 (1989). DOI: 10.1109/58.31780
- [46] D.L. Churchill, S.W. Arms. *Piezoelectric Composite with Tapered Beam*, Patent US 7880370 B2, 01.02.2011