Особенности структуры кристаллов LiNbO₃: Тb различного химического состава

© М.Н. Палатников,¹ Л.А. Алешина,² О.В. Сидорова,² А.В. Кадетова,¹ Н.В. Сидоров,¹ И.В. Бирюкова,¹ О.В. Макарова¹

¹ Институт химии и технологии редких элементов и минерального сырья им. И.В. Тананаева обособленное подразделение Федерального исследовательского центра "Кольский научный центр РАН",

184206 Апатиты, Мурманская обл., Россия ² Петрозаводский государственный университет, 185000 Петрозаводск, Россия e-mail: m.palatnikov@ksc.ru

Поступило в Редакцию 20 ноября 2020 г. В окончательной редакции 14 декабря 2020 г. Принято к публикации 16 декабря 2020 г.

Выращена серия кристаллов LiNbO₃: Tb ([Tb] = 0.1-2.89 wt.%), а также номинально чистые кристаллы ниобата лития конгруэнтного состава (LiNbO_{3cong}) и состава, близкого к стехиометрическому (LiNbO_{3near stoich}). Исследованы концентрационные зависимости физико-химических и структурных характеристик кристаллов LiNbO₃: Tb. Структурные характеристики кристаллов LiNbO₃: Tb сравниваются со структурными характеристиками кристаллов LiNbO_{3cong} и LiNbO_{3near stoich}.

Ключевые слова: выращивание кристаллов, ниобат лития, легирование, тербий, физико-химические и структурные характеристики.

DOI: 10.21883/JTF.2021.06.50865.216-20

Введение

06

В настоящее время заметный интерес вызывают легированные лантаноидами активно-нелинейные кристаллы, которые сочетают в себе активные (лазерные) свойства и нелинейно-оптические свойства матрицыосновы [1–3]. Интерес к кристаллам ниобата лития, легированным тербием, обусловлен, в частности, тем, что ранее при исследовании люминесцентных свойств кристаллов LiNbO₃: Тb была предположена возможность создания на их основе лазеров, излучающих в синей области видимого спектра, путем нелинейнооптического преобразования при накачке излучением в ближней ИК-области [4].

В качестве сред, наиболее перспективных для эффективных нелинейных преобразований, можно выделить также сегнетоэлектрические кристаллы с регулярной доменной структурой (РДС). Исследование физических характеристик таких кристаллов представляет несомненный интерес. Для сравнения свойств материалов, пригодных для создания периодически поляризованных структур, удобно использовать стехиометрические или близкие по составу к стехиометрическим кристаллы ниобата лития (LiNbO3near stoich). Величина коэрцитивного поля E_c в кристаллах LiNbO_{3near stoich} заметно меньше, чем у кристаллов LiNbO3 конгруэнтного состава (LiNbO_{3cong}), а этот фактор принципиален при формировании нелинейно-активных лазерных сред с РДС. Удобно также сопоставлять физические свойства легированных кристаллов LiNbO3 со свойствами наиболее широко используемых на практике кристаллов LiNbO3cong, структурные характеристики и тип дефектной структуры которых изучены наиболее полно [1–3].

Влияние легирующего катиона на свойства кристаллов LiNbO₃ часто носит скачкообразный характер [5–7], что определяется термином "концентрационный порог" (КП). Наиболее сильное изменение структуры наблюдается как раз при достижении легированным кристаллом LiNbO₃ "пороговых" значений концентрации примеси [6–8]. При этом осуществляется такая перестройка структуры кристалла LiNbO₃, при которой пространственная группа симметрии его элементарной ячейки не изменяется [6,7].

Целью настоящей работы является исследование концентрационных зависимостей физико-химических и структурных характеристик кристаллов LiNbO₃: Tb ([Tb] = 0.1-2.89 wt.% в кристалле). Проводится сравнение структурных характеристик кристаллов LiNbO₃: Tb и кристаллов LiNbO_{3near stoich} и LiNbO_{3cong}.

1. Методика эксперимента

Кристаллы LiNbO₃: Тb и LiNbO_{3cong} выращивались методом Чохральского в воздушной атмосфере из платиновых тиглей в условиях сравнительно малого (1-2 K/mm) осевого градиента в направлении полярной оси (*z*-срез) при постоянных скоростях вращения (16 грm) и перемещения (0.8 mm/h). Процесс заканчивали при достижении веса кристалла $\leq \sim 230$ g. Все выращенные кристаллы имели плоский фронт кристаллизации и почти одинаковые геометрические размеры: диаметр $\approx 34-35$ mm, длину цилиндрической части

Таблица 1. Характеристики кристаллов LiNbO3: Tb

№ кристалла LiNbO ₃ : Tb	[Tb] в кристалле LiNbO ₃ :Tb,wt.%	Коэффициент распределения, <i>К</i> _р
1	0.1	1.0
2	0.48	0.97
3	1.42	0.97
4	2.24	0.96
5	2.54	0.9
6	2.89	0.83

 $L_{\rm cyl} \approx 30-35$ mm. Подробно методы получения в одном технологическом цикле серии легированных кристаллов LiNbO₃: Ме (Ме: редкоземельные элементы) с легированием от меньшей концентрации к большей описаны в работе [9]. Было выращено шесть кристаллов LiNbO₃: Тb с разными концентрациями легирующего элемента (табл. 1).

Кристалл LiNbO_{3near stoich}, исследованный в настоящей работе, выращен из под флюса K₂O с добавкой в расплав 5.8 wt.% K₂O. Выращивание кристалла проводили при малой скорости роста (~< 0.25 mm/h), а послеростовой отжиг кристаллической були — при 1473 К в течение 20 h. Состав кристалла LiNbO_{3near stoich} соответствовал концентрации $[L_2O] \approx 49.95$ mol.%.

Расчет профильных характеристик полученных рентгенограмм кристаллов LiNbO3: Tb, LiNbO3near stoich и LiNbO_{3cong} выполнен с использованием метода Паули. Для уточнения структурных характеристик: координат атомов, параметров теплового движения, коэффициентов заполнения позиций использован метод Ритвельда. В основе метода Ритвельда лежат построение по заданной модели теоретической рентгенограммы и сравнение ее с экспериментальной рентгенограммой. В настоящей работе для решения поставленных задач используются два программных комплекса, в которых реализован полнопрофильный анализ рентгенограмм методом Ритвельда: MRIA [10] и FULL PROF [11]. Рентгенограммы исследуемых кристаллов регистрировались на дифрактометре ДРОН-6. Более подробно процедура проведения рентгеновского эксперимента описана в работах [12,13].

2. Результаты и их обсуждение

Тип примесных катионов, их положение в октаэдре и распределение по октаэдрам в значительной степени определяют структурные характеристики кристаллов LiNbO₃. Исследование размещения примесных катионов внутри октаэдрических пустот в сегнетоэлектриках кислородно-октаэдрического типа (в частности, в ниобате лития, легированном лантаноидами) представляет несомненный интерес, прежде всего, с точки зрения формирования сегнетоэлектрического состояния и оптических свойств кристаллов. Распределение примесных катионов по октаэдрам, симметрия примесного центра

Журнал технической физики, 2021, том 91, вып. 6

и тип дефектной структуры обычно моделируется с помощью вакансионных моделей (наиболее распространенными из которых являются модель литиевых вакансий (Li-site vacancy model) и модель ниобиевых вакансий (Nb-site vacancy model) [1]). Причем заслуживающие доверия результаты свидетельствуют в пользу именно первой модели [14], которая (конечно, в сильно упрощенном виде) наиболее адекватно отражает формирование реальной структуры кристалла LiNbO₃.

Несмотря на длительную историю исследования особенностей дефектной структуры легированных различными примесями кристаллов ниобата лития до настоящего времени эта проблема привлекает пристальное внимание исследователей. Этой теме в самые последние годы посвящено большое количество работ [15–24].

Рис. 1. Концентрационные зависимости: *а* — объема; *b*, *c* — параметров элементарной ячейки кристаллов LiNbO₃ : Tb.

На рис. 1 приведены зависимости объема и параметров элементарной ячейки от концентрации примеси в кристаллах LiNbO₃: Tb. Параметр с с ростом концентрации примеси уменьшается, а параметр а растет (рис. 1, b, c). При достижении концентрации тербия 2.24 wt.% с дальнейшим ростом концентрации примеси параметр с начинает расти, а параметр a — уменьшаться. Такое концентрационное поведение параметров элементарной ячейки кристалла LiNbO₃: Tb, по-видимому, обусловлено наличием концентрационного порога вблизи концентрации тербия ~ 2.2–2.3 wt.%.

Рентгенограммы всех исследованных образцов LiNbO₃: Тb качественно подобны и соответствуют рентгенограмме ниобата лития с пространственной группой симметрии *R*3*c*. Наблюдается лишь незначительное взаимное перераспределение интенсивностей на рентгенограммах для отражений (204) и (116).

Объем и периоды элементарной ячейки исследованных в настоящей работе кристаллов LiNbO_{3near stoich} и LiNbO_{3cong} приведены в табл. 2.

Следует отметить, что в кристаллах LiNbO₃ и октаэдры NbO₆, и октаэдры LiO₆ искажены так, что имеют место три короткие (4–6, рис. 2) и три длинные (1–3, рис. 2) связи металл–кислород. Заполненные октаэдры NbO₆, и LiO₆ связаны между собой через длинные связи, а пустые октаэдры ограничиваются короткими (рис. 2, a).

Значения периодов элементарной ячейки в кристаллах LiNbO₃: Tb № 1–3 со сравнительно низкой концентрацией легирующей примеси близки к таковым для кристалла LiNbO_{3near stoich} (рис. 1, *b*, *c* и табл. 2). При дальнейшем увеличении концентрации примеси (образцы № 4–6) период *a* кристаллов LiNbO₃: Tb выше на ~ 0.01 Å, чем соответствующее значение в кристалле LiNbO_{3near stoich}, а период*c* ниже на ~ 0.01 Å (рис. 1, *b*, *c* и табл. 2).

После уточнения профильных параметров рентгенограммы структурные характеристики кристаллов уточнялись, а именно координаты атомов и коэффициенты заполнения позиций. При уточнении структурных характеристик кристаллов LiNbO₃: Ть методом Ритвельда были рассмотрены все известные из литературных данных модели собственных дефектов кристаллов LiNbO_{3cong}, а также модели размещения атомов примеси при легировании. Принципы подобного подхода описаны в работе [13]. Критериями выбора той или иной модели служили значения факторов недостоверности и устойчивость модели в ходе уточнения. При этом были подтверждены изменения количества и характера

Таблица 2. Объем и периоды элементарной ячейки кристаллов LiNbO_{3near stoich} и LiNbO_{3cong}

Кристалл	V, Å ³	<i>a</i> , Å	<i>c</i> , Å
LiNbO3near stoich	317.3	5.1428	13.8443
LiNbO _{3cong}	318.5	5.154	13.859

Рис. 2. Мотив соединения октаэдров (a) и расположение атомов в элементарной ячейке ниобата лития. Межионные расстояния указаны для кристалла конгруэнтного состава (b).

неэквивалентных примесных и собственных дефектных центров при изменении концентрации легирующей добавки в кристаллах LiNbO₃: Тb. Результаты уточнения структурных характеристик исследованных кристаллов LiNbO₃: Tb, приведены в табл. 3. Анализ данных табл. 3 с учетом подходов, использованных в работе [13], позволяет отметить следующее:

1) во всех исследованных образцах нет избыточного ниобия, но имеют место вакансии в позициях ниобия. Кроме того, в образцах LiNbO₃: Tb № 1 и 2 присутствуют и антиструктурные дефекты Nb_{Li}. При этом ниобий в образцах LiNbO₃: Tb № 1–4 (т. е. вплоть до концентрации Tb, равной 2.24 wt.%) частично появляется в пустых октаэдрах;

2) в образцах № 1–4 катионы тербия входят только в позиции лития с образованием дефекта Tb_{Li} . Причем с возрастанием концентрации Тb возрастает заселенность позиций лития, достигая максимума при [Tb] ~ 2.24 wt.% (образец LiNbO₃: Tb № 4), а дефекты Nb_{Li} в образцах № 3 и 4 отсутствуют;

3) в образцах LiNbO₃: Tb № 5 и 6 с концентрацией примеси 2.54 и 2.89 wt.% Tb вытесняет ниобий из пустых октаэдров в позиции лития (что вновь приводит к образованию дефектов Nb_{Li}), оставаясь, главным образом, также и в позициях лития (Tb_{Li}).

Такое перераспределение в структуре кристалла LiNbO₃: Тb ниобия и тербия и аномалии на концентрационных зависимостях параметров решетки (рис. 1, *b*, *c*) свидетельствуют о существенной перестройке структуры вблизи [Tb] $\approx 2.2-2.3$ wt.%. В свою очередь, концентрационное поведение параметров решетки (рис. 1, *b*, *c*), изменение характера дефектной структуры (табл. 3), а также резкое уменьшение коэффициента распределения K_D при [Tb] > 2.24 wt.% (табл. 1) однознач-

Элемент	G	x/a	y/b	z/c	Элемент	G	x/a	y/b	z/c
Образец 6: $C_{\text{Tb}} = 2.89 \text{ wt.}\%$ $(R_{wp}(\%) = 5.63, R_p(\%) = 5.31)$				Образец 4: $C_{\text{Tb}} = 2.24 \text{ wt.}\%$ $(R_{wp}(\%) = 7.46, R_p(\%) = 6.74)$					
Nb	0.97	0	0	0	Nb	0.946	0	0	0
0	1.00	0.054	0.35	0.065	0	1.00	0.061	0.348	0.065
Li	0.95	0	0	0.28	Li	0.97	0	0	0.281
Nb_{Li}	0.014	0	0	0.266	Nb _{oct}	0.022	0	0	0.125
Tb_{Li}	0.01	0	0	0.265	Tb _{Li}	0.029	0	0	0.265
Tb _{oct}	0.015	0	0	0.125					
	Образец 3: $C_{\text{тb}} = 1.42 \text{ wt.}\%$ $(R_{wp}(\%) = 6.93, R_p(\%) = 4.68)$			Образец 2: $C_{\text{Tb}} = 0.48 \text{ wt.}\%$ $(R_{wp}(\%) = 6.84, R_p(\%) = 4.75)$					
Nb	0.965	0	0	0	Nb	0.964	0	0	0
0	1.00	0.051	0.350	0.063	0	1.00	0.051	0.350	0.063
Li	0.98	0	0	0.281	Li	0.98	0	0	0.280
Nb _{oct}	0.013	0	0	0.122	Nb _{oct}	0.013	0	0	0.12
Tb_{Li}	0.01	0	0	0.287	Tb _{Li}	0.006	0	0	0.289
Образец 1: $C_{\text{Tb}} = 0.1$ wt.% $(R_{wp}(\%) = 8.04, R_p(\%) = 8.61)$					•				
Nb	0.93	0	0	0					
0	1.00	0.057	0.349	0.066					
Li	0.96	0	0	0.282					
Nb _{oct}	0.022	0	0	0.158					

0.29

Таблица 3. Уточненные значения координат атомов (x/a, y/b, z/c) и коэффициентов заполнения позиций G в кристаллах LiNbO₃: Tb

но подтверждают наличие при концентрациях примеси 2.2–2.3 wt.% КП, в области которого обычно происходит заметное изменение как структуры расплава, так и механизмов кристаллизации [5–8].

0

0

0.004

 $Tb_{Li} \\$

При малых концентрациях примеси (0.1 wt.%) внедрении тербия в позиции лития в решетке приводит к тому, что октаэдр $Tb_{Li}O_6$ стремится к правильной форме (рис. 3, *b*). Присутствие же атомов ниобия в положениях лития приводит к значительным изменениям в расстояниях между катионами вдоль полярной оси. Октаэдры искажаются: длинные расстояния увеличиваются на 0.082 Å, а короткие уменьшаются на 0.026 Å (рис. 3, *c*).

В регулярном октаэдре NbO₆ происходят следующие изменения: длинные расстояния между ионами ниобия и кислорода уменьшаются на 0.054 Å, а короткие увеличиваются на 0.038 Å по сравнению с таковыми в конгруэнтном кристалле LiNbO_{3cong} (табл. 4), т. е. форма октаэдров стремится к правильной. В регулярном литиевом октаэдре аналогичная ситуация: короткие связи увеличиваются, а длинные уменьшаются (рис. 3, *a*).

Журнал технической физики, 2021, том 91, вып. 6

На рис. 4 представлены значения межионных расстояний для основного мотива структуры (рис. 4, *a*), а также в случае внедрения атомов ниобия и тербия в литиевые позиции (рис. 4, *b*, *c*) кристалла LiNbO₃: Tb с несколько большей концентрацией примеси, [Tb] = 0.5 wt.%. В области собственных и примесных дефектов межионные расстояния вдоль полярной оси изменяются значительно: длинные расстояния увеличиваются, а короткие уменьшаются относительно таковых для основного мотива структуры. При внедрении атомов тербия и ниобия в литиевый октаэдр его форма стремится к правильной (рис. 4, *b*, *c*).

Для кристалла LiNbO₃: Tb № 3 ([Tb] = 1.42 wt.%) расстояния Nb–O в ниобиевом октаэдре практически аналогичны таковым для кристалла LiNbO_{3cong}, а в литиевом октаэдре длинное расстояние Li–O уменьшается на 0.044 Å (табл. 4). Межкатионные расстояния вдоль полярной оси также практически равны таковым для конгруэнтного кристалла LiNbO_{3cong} (табл. 4). При вхождении тербия в позицию лития расстояния между

Рис. 3. Иллюстрации изменения расстояний в октаэдрах структуры кристалла LiNbO₃ : Tb, [Tb] = 0.1 wt.%. Расположение катионов вдоль полярной оси: изменение межионных расстояний в области собственных (c) и примесных (b) дефектов по сравнению с таковыми для основного мотива структуры (a).

Расстояния Nb-O в октаэдрах NbO ₆ основного мотива									
Расстояния Li–O в октаэдрах LiO ₆ основного мотива									
Расстояния Nb _{Li} -O в октаэдрах Nb _{Li} O ₆									
вдоль полярной оси Nb-Li, Li-Nb'									
вдоль полярной оси Nb–Nb _{Li} , Nb _{Li} –Nb';									

Таблица 4. Межатомные расстояния в кристаллах LiNbO3near stoich и LiNbO3cong

Примечание. Обозначения расстояний Nb-Li', Li'-Nb', Nb'-Li'', Li''-Nb'' даны на рис. 2. В круглых скобках указана погрешность в последнем знаке.

ионами металлов вдоль полярной оси значительно изменяются по сравнению с кристаллом LiNbO_{3cong} (табл. 4): длинное расстояние увеличивается с 3.869 до 4.010 Å, а короткое соответственно уменьшается с 3.065 до 2.911 Å. Расстояния Tb–O в октаэдре Tb_{Li}O₆ меняются таким образом, что длинные практически равны коротким, т. е. форма октаэдра стремится к правильной.

Для образца № 5 с гораздо большей концентрацией тербия ([Tb] = 2.54 wt.%) при внедрении ниобия в позицию лития с образованием дефектов Nb_{Li} литиевый октаэдр искажается таким образом, что длинные

расстояния увеличиваются, а короткие уменьшаются. В противоположность этому вдоль полярной оси длинные межкатионные расстояния уменьшаются, а короткие увеличиваются по сравнению с таковыми для конгруэнтного кристалла LiNbO_{3cong} и для основного мотива структуры данного образца. В области дефекта Tb_{Li} октаэдр деформируется сильнее, чем в области дефекта по ниобию Nb_{Li}: длинные расстояния увеличиваются на 0.024 Å, а короткие уменьшаются на 0.008 Å.

В образце № 6 с наибольшей концентрацией примеси ([Tb] = 2.89 wt.%) на рис. 5 представлены значения ме-

Рис. 4. Иллюстрации изменения расстояний в октаэдрах структуры кристалла LiNbO₃ : Tb, [Tb] = 0.5 wt.%. Расположение катионов вдоль полярной оси: изменение межионных расстояний в области собственных (*c*) и примесных (*b*) дефектов по сравнению с таковыми для основного мотива структуры (*a*).

Рис. 5. Иллюстрации изменения расстояний в октаэдрах структуры кристалла LiNbO₃: Tb, [Tb] = 2.89 wt.%. Расположение катионов вдоль полярной оси: изменение межионных расстояний в области собственных (*c*) и примесных (*b*) дефектов по сравнению с таковыми для основного мотива структуры (*a*).

жионных расстояний для основного мотива структуры (рис. 5, a), а также в случае внедрения атомов тербия и ниобия в литиевые позиции структуры. В области примесных и собственных дефектов Tb_{Li} и Nb_{Li} (рис. 5, b, c) межкатионные расстояния вдоль полярной оси изменяются значительно: длинные расстояния уменьшаются, а короткие увеличиваются относительно таковых для основного мотива структуры. При внедрении атомов тербия и ниобия в литиевый октаэдр его форма сильно изменяется (рис. 5, b, c).

Таким образом, можно сделать вывод, что легирование ниобата лития тербием приводит к размещению катионов примеси в позициях лития при всех ее концентрациях. При концентрациях тербия 2.54 и 2.89 wt.% тербий размещается дополнительно еще и в пустых октаэдрах. При этом изменения связей металл-кислород в октаэдрах, а также металл-металл вдоль полярной оси, наблюдающиеся в области дефектов Tb_{Li}, выражены более резко, чем изменения в области основного мотива структуры кристалла LiNbO₃: Tb или в области собственного дефекта Nb_{Li}.

Кроме того, как показывают проделанные ранее модельные расчеты [25], в структуре легированных кристаллов ниобата лития могут формироваться кластеры вблизи собственных и примесных дефектов (типа Nb_{Li} и $Tb_{Li})$, которые образуют упорядоченные подрешетки дефектов с шагом в несколько периодов трансляции, т. е. $\sim 1\!-\!2$ nm.

Заключение

Выращены кристаллы LiNbO_{3near stoich} и LiNbO_{3cong}, а также серия кристаллов LiNbO₃: Tb ([Tb] = 0.1 - 2.89 wt.%). Исследованы процессы кристаллизации и концентрационные зависимости структурных характеристик кристаллов LiNbO₃: Tb. Структурные характеристики кристаллов LiNbO₃: Tb сравниваются со структурными характеристиками кристалла LiNbO_{3near stoich}, выращенного из под флюса K₂O (с добавкой в расплав 5.8 wt.% K₂O) и кристалл LiNbO_{3cong}.

Исследования структурных характеристик методом Ритвельда показали, что во всех исследованных образцах LiNbO3: Тb нет избыточного ниобия, но имеются вакансии в позициях ниобия. При этом ниобий в образцах № 1-4 (т.е. вплоть до концентрации Tb, равной 2.24 wt.%) частично появляется в пустых октаэдрах, а в образцах № 1 и 2 образует также и антиструктурные дефекты Nb_{Li}. В образцах № 1-4 катионы тербия входят только в позиции лития с образованием дефекта TbLi. Причем с возрастанием концентрации Тb заселенность позиций лития возрастает, достигая максимума при ~ 2.24 wt.% (образец LiNbO₃ : Tb № 4), а концентрация дефектов NbLi уменьшается от образца 1 к образцу 2. Причем в образцах № 3 и 4 дефекты Nb_L отсутствуют. В образцах LiNbO₃ : Tb № 5 и 6 с концентрацией примеси 2.54 и 2.89 wt.% Тb вытесняет Nb из пустых октаэдров в позиции лития, где вновь образуются дефекты NbLi. При этом тербий остается также, главным образом, и в позициях лития (Tb_{Li}). Такое перераспределение ниобия и тербия, сопровождающееся к тому же аномальным концентрационным поведением периодов решетки и резким уменьшением коэффициента распределения K_D, свидетельствует о существенной перестройке структуры расплава и кристалла и соответственно о наличии концентрационного порога вблизи [Tb] $\approx 2.2 - 2.3$ wt.%.

Следует отметить, что для создания лазеров с нелинейно-оптическим преобразованием излучения накачки следует выбирать только "допороговые" составы с концентрацией тербия $< \sim 2.24$ wt.%, поскольку для них коэффициент распределения K_D близок к единице, что дает возможность выращивать кристаллы LiNbO₃: Тb с высокой композиционной и оптической однородностью.

Финансирование работы

Работа была выполнена в рамках государственного задания Министерства науки и высшего образования РФ (тема № 0226-2018-0004, регистрационный номер АААА-А18-118022190125-2) и при финансовой поддержке РФФИ (грант "Аспиранты" № 20-33-90038).

Конфликт интересов

Авторы заявляют, что у них нет конфликта интересов.

Список литературы

- [1] A.M. Prokhorov, Yu.S. Kuz'minov. *Physics and Chemistry of Crystalline Lithium Niobate* (Adam Hilger, NY, 1990)
- [2] A. Räuber. In: *Current Topics in Material Sciences V. 1.*, ed. by E. Kaldis (North Holland, Amsterdam, 1978), p. 481.
- [3] S.C. Abrahams. In: Properties of lithium niobite. EMIS. INSPEC Datareviews Series N 28, ed. by K.K. Wong (The Institution of Electrical Engineers, London, 2002), p. 3.
- W. Ryba-Romanowski, S. Gołab, G. Dominiak-Dzik, M.N. Palatnikov, N.V. Sidorov. App. Phys. Lett., 78 (23), 3610 (2001). DOI: 10.1063/1.1376660
- [5] Т.Р. Волк, Н.М. Рубинина. ФТТ, 33 (4) 1192 (1991).
 [T.R. Volk, N.M. Rubinina. Soviet Physics, Solid State. 33 (4), 674 (1991).]
- [6] Т.С. Черная, Т.Р. Волк, И.А. Верин, В.И. Симонов. Кристаллография. 53 (4), 612 (2008). [Т.S. Chernaya, Т.R. Volk, I.A. Verin, V.I. Simonov. Cryst. Rep., 53 (4), 573 (2008). DOI: 10.1134/S106377450804007X]
- [7] Н.В. Сидоров, Т.Р. Волк, Б.Н. Маврин, В.Т. Калинников. Ниобат лития: дефекты, фоторефракция, колебательный спектр, поляритоны (Наука, М., 2003)
- [8] М.Н. Палатников, И.В. Бирюкова, О.В. Макарова, В.В. Ефремов, О.Э. Кравченко, В.И. Скиба, Н.В. Сидоров, И.Н. Ефремов. Неорган. матер. 51 (4), 428 (2015). 10.7868/S0002337X15040120 DOI: [M.N. Palatnikov, I.V. V.V. Efremov, Biryukova, O.V. Makarova, O.E. Kravchenko, V.I. Skiba, N.V. Sidorov, I.N. Efremov. Inorgan. Mater., 51 (4), 375 (2015). DOI: 10.1134/S0020168515040123]
- M.N. Palatnikov, I.V. Biryukova, N.V. Sidorov, A.V. Denisov, V.T. Kalinnikov, P.G.R. Smith, V.Ya. Shur. J. Cryst. Growth. 291, 390 (2006). DOI: 10.1016/j.jcrysgro.2006.03.022
- [10] V.B. Zlokazov, V.V. Chernyshev. J. Appl. Cryst., 25 (3), 447 (1992). DOI: 10.1107/S0021889891013122
- [11] J. Rodríguez-Carvajal, Commiss. Powder Diff., IUCr, Newsletter, 26, 12 (2001).
- [12] M.N. Palatnikov, N.V. Sidorov, D.V. Manukovskaya, O.V. Makarova, L.A. Aleshina, A.V. Kadetova. J. Amer. Ceram. Society, **100** (8), 3703 (2017). DOI: 10.1111/jace.14851
- [13] E.P. Fedorova, L.A. Aleshina, N.V. Sidorov, P.G. Chufyrev, A.A. Yanichev, M.N. Palatnikov, V.M. Voskresenskii, V.T. Kalinnikov. Inorgan. Mater., 46 (2), 206 (2010). DOI: 10.1134/S0020168510020214
- [14] L. Kovacs, L. Rebouta, J.C. Soares, M.F. Da Silva. Radiation Effects and Defect in Solids, 119–121 (1), 445 (1991).
 DOI: 10.1080/10420159108224918
- [15] W.W. Wang, D.H. Zheng, M.Y. Hu, S. Saeed, H.D. Liu, Y.F. Kong, L.X. Zhang, J.J. Xu. Mater., **12**, 100 (2019). DOI: 10.3390/ma12010100
- [16] L.L. Xing, W.Q. Yang, J.C. Lin. Opt. Mater., 84, 215 (2018).
 DOI: 10.1016/j.optmat.2018.07.005
- [17] L. Dai, L.P. Wang, Y. Shao, X.B. Han, C.R. Liu, Y.H. Xu. Opt. Mater., 83, 7 (2018). DOI: 10.1016/j.optmat.2018.05.051
- [18] H.M. Zhang, W.B. Xiao. J. Alloys Compound, 745, 586 (2018). DOI: 0.1016/j.jallcom.2018.02.209

- [19] S. Sulyanov, T. Volk. Crystals, 8, 210 (2018).DOI: 10.3390/cryst8050210
- [20] C. Cochard, M. Guennou, T. Spielmann, N. van Hoof, A. Halpin, T. Granzow. J. Appl. Phys., **123**, 154105 (2018).
 DOI: 10.1063/1.5021758
- [21] L.L. Li, Y.L. Li, X. Zhao. Phys. Rev. B, 96, 115118 (2017).
 DOI: 10.1103/PhysRevB.96.115118
- [22] M. Boukhtouta, Y. Megdoud, S. Benlamari, H. Meradji, Z. Chouahda, R. Ahmed, S. Ghemid, M. Abu-Jafar, S. Syrotyuk, D.P. Rai, S. Bin Omran, R. Khenata. Phyl. Mag., 100, 1150 (2020). DOI: 10.1080/14786435.2020.1719286
- [23] S. Saeed, D.H. Zheng, H.D. Liu, L.Y. Xue, W.W. Wang,
 L. Zhu, M.Y. Hu, S.G. Liu, S.L. Chen, L. Zhang, Y.F. Kong,
 R. Rupp, J.J. Xu. J. Phys. D Appl. Phys., 52, 405306 (2019).
 DOI: 10.1088/1361-6463/ab30ed
- [24] S. Saeed, H.D. Liu, L.Y. Xue, D.H. Zheng, S.G. Liu, S.L. Chen, Y.F. Kong, R. Rupp, J.J. Xu. Mater., **12**, 3143 (2019). DOI: 10.3390/ma12193143
- [25] В.М. Воскресенский, О.Р. Стародуб, Н.В. Сидоров, М.Н. Палатников, Б.Н. Маврин. Кристаллография, 56 (1), 246 (2011). [V.M. Voskresenskii, O.R. Starodub, N.V. Sidorov, M.N. Palatnikov, B.N. Mavrin. Crystall. Rep., 56 (2), 221 (2011). DOI: 10.1134/S1063774511010251]